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1. Introduction 

  Given the location of a service facility, the transfer point location problem (TPLP) is defined as 

the establishment of a new location called " transfer point " that connects all demand points to 

the service facility in such a way to fulfill some optimization criterion. The transfer point 

location problem was first studied by Berman et al. [6]. They introduced three models  and 

proved properties of the solutions to the first model. Both planar and network variants, as well as 

the minisum and minimax objectives, were considered.In Berman et al. [4], He proposed 

heuristic approaches for the solution to the multiple TPLP and provided computational 

Abstract. 

     This paper is concerned with analyzing some models of the weighted transfer point location problem 

under the minisum and minimax criterions when demand points are randomly distributed over regions of 

the plane and the location of the service facility is known. In case of minisum objective with rectilinear 

distance, an iterative procedure was constructed for estimating the optimal transfer point location using 

the hyperbolic application procedure. Exact analytic solution was obtained when the random demand 

points follow uniform distributions. A unified analytic optimal solution was provided for all types of 

probability distributions of the random demand points when the distance is the squared Euclidean 

distance. For minimax objective with squared Euclidean distance, an iterative procedure based on Karush-

Kuhn-Tucker conditions was developed to produce an approximate solution to the optimal solution. 

Illustrative numerical examples were provided.  
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experiments. Later, Berman et al.[7] applied the results of a previous work to solve the multiple 

TPLP when the location of the facility is known. Both minisum and minimax versions of the 

models were investigated in the plane and on the network. Transfer point location problem is 

one of the latest related models to hub and spoke location models. According to O'Kelly [15], 

Hub refers to a central facility which connects a set of interacting points. Although the network 

hub location problem was first addressed by Goldman [12], the investigation on hub location 

started with pioneering researches of O’Kelly [16-17]. Continuous hub location problem is 

concerned with locating hub facilities on a plane rather than on the nodes of a network. For a 

comprehensive review of hub and spoke models see Campbell et al.[8] and Alumur and Kara 

[1]. All of the mentioned previous studies consider customer locations as being fixed. However, 

in several instances, the assumption of known fixed demands points does not hold. Consider for 

example, the location of a single fire station, which is to serve potential residents of a new 

residential community. In such a setting, one can assume that the location probabilistic 

distribution of each demand point on the plane is known but it is not known which particular one 

will request service. Randomness aspect in location theory has been studied by many 

researchers, see, e.g., [2-3, 5, 9, 11, 19]. Wheras the literature on stochastic models in facility 

location is important, research on stochastic models for the transfer point problem is rare. The 

first research on the stochastic transfer point problem was investigated by Hosseinnijou and 

Bashiri [13]. They analyzed two stochastic models of the weighted TPLP by considering the 

minimax criterion with random demand points whose coordinates follow uniform distributions. 

For the first model, they found analytical optimal solution and for the second one, they suggest a 

numerical scheme to find the optimal solution. Later, Youselfi et al. [20] developed a weighted 

transfer point location problem in which demand points have probabilistic coordinates. The 

proposed model is formulated as a probabilistic unconstrained nonlinear programming and the 

optimum values of decision variables are obtained in the form of probability distribution 

functions. 

In this paper, we extend the investigation of stochastic transfer point models and  propose new 

approaches to solve them. Our aim is to determine the optimal location of a transfer point under 

minisum and minimax criterions when coordinates of the demands points are random and the 

location of the service facility is known. The remaining of the paper is organized as follows. In 

Section 2, the Stochastic transfer point location models are formulated and main results are 

described. Illustrative examples are provided. 
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2. Analysis 

  Suppose there is a set of m demand points {𝑌𝑖 =  𝑈𝑖  ,𝑉𝑖 ∶ 𝑖 = 1,2,… ,𝑚} having random 

coordinates in the plane. Assume that 𝑈𝑖  (resp.𝑉𝑖) has probability density function 𝑓𝑈𝑖 𝑢  

(resp. 𝑓𝑉𝑖 𝑣 ) and cumulative distribution function 𝐹𝑈𝑖  𝑢  (resp. 𝐹𝑉𝑖 𝑣 ). Let 𝑋 =  𝑥,𝑦  be the 

location of the transfer point, 𝑆 = (𝑎, 𝑏) the service facility location, 𝛼 factor by which travel to 

the transfer point  from the service facility is multiplied (0 < 𝛼 < 1), and 𝑤𝑖  > 0  be the cost 

per unit distance between the transfer point and random demand location 

𝑖, 𝑖 = 1,2,… ,𝑚.𝑑𝑅 . , .   and 𝑑𝑆𝐸 . , .  denotes, respectively,  the rectilinear and the squared 

euclidean distance. The following figure depicts a pictorial representation of the problem 

elements. 

 

 

 

 

 

 

 

 

 

 

 

The problem we address in this section is of locating a transfer point by considering the 

following two problems:   

 Minisum Problem: Minimizes the weighted sum of the expected distances from random 

demands points to the service facility through the transfer point.  

 

 Minimax Problem: Minimizes the maximum weighted expected distances from random 

demands points to the service facility through the transfer point.  

 

2.1.  Minisum transfer point location problem  

Let 𝑋 =  𝑥,𝑦  be the location of the transfer point, 𝑆 = (𝑎, 𝑏) the location of the service facility, 

𝛼 factor by which travel to the transfer point  from the service facility is multiplied (0 < 𝛼 < 1), 

and 𝑤𝑖 > 0  be the cost per unit distance between the transfer point and random demand 

location 𝑖, 𝑖 = 1,2,… ,𝑚.  
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The problem can be stated as 

𝑚𝑖𝑛𝑋 𝐹 𝑋 =  𝑤𝑖(𝐸 𝑑 𝑋,𝑌𝑖  + 𝛼𝑑 𝑋, 𝑆 )𝑚
𝑖=1                                                                      (1) 

𝑑(. , . ) denotes either the rectilinear or the squared Euclidean distance. 

2.1.1.  Case of rectilinear distance 

The rectilinear distance between the demand point  𝑌𝑖 =  𝑈𝑖  ,𝑉𝑖   and the transfer 

point 𝑋 = (𝑥,𝑦) is  𝑑𝑅 𝑋 ,𝑌𝑖 =  𝑥 − 𝑈𝑖 +  𝑦 − 𝑉𝑖  and between the the transfer 

point 𝑋 = (𝑥,𝑦) and service facility 𝑆 = (𝑎, 𝑏) is  𝑑𝑅 𝑋 , 𝑆  =  𝑥 − 𝑎 +  𝑦 − 𝑏 . 

 

Problem (1) becomes  

 

𝑚𝑖𝑛(𝑥 ,𝑦) 𝐹 𝑥,𝑦 =  𝑤𝑖(𝐸  𝑥 − 𝑈𝑖 +  𝑦 − 𝑉𝑖  + 𝛼  𝑥 − 𝑎 +  𝑦 − 𝑏  )𝑚
𝑖=1                        (2) 

where  𝐸 …   is the expected value of some random variable. 

 We have     𝐸 𝑑𝑅 𝑋 ,𝑌𝑖  = 𝐸  𝑥 − 𝑈𝑖  +  𝐸  𝑦 − 𝑉𝑖  , 

𝐸  𝑥 − 𝑈𝑖   = 𝐸 𝑈𝑖 −  𝑥 1 −  2𝐹𝑈𝑖 𝑥  −  2 𝑢𝑓𝑈𝑖 𝑢 𝑑𝑢
𝑥

−∞
,                   

 and  𝐸  𝑦 − 𝑉𝑖  = 𝐸 𝑉𝑖 −  𝑦 1 −  2𝐹𝑉𝑖 𝑦  −  2 𝑣𝑓𝑉𝑖 𝑣 𝑑𝑣
𝑦

−∞
  ( by definition of  the 

expected value ), so the objective function 𝐹 𝑥,𝑦  of problem (1) can  be written as𝐹 𝑥,𝑦 =

𝑓1 𝑥 + 𝑓2(𝑦) 

where    𝑓1 𝑥 =  𝑤𝑖 𝐸  𝑥 − 𝑈𝑖  + 𝛼 𝑥 − 𝑎  =  𝑤𝑖 𝐸 𝑈𝑖 −  𝑥 1 −  2𝐹𝑈𝑖 𝑥  −
𝑚
𝑖=1

𝑚
𝑖=1

 2−∞𝑥𝑢𝑓𝑈𝑖𝑢𝑑𝑢 +𝛼𝑤𝑥−𝑎 

and       𝑓2 𝑦 =  𝑤𝑖 𝐸  𝑦 − 𝑉𝑖  + 𝛼 𝑦 − 𝑏  =  𝑤𝑖 𝐸 𝑉𝑖 −  𝑦 1 −  2𝐹𝑉𝑖 𝑦  −
𝑚
𝑖=1

𝑚
𝑖=1

 2−∞𝑦𝑣𝑓𝑉𝑖𝑣𝑑𝑣 +𝛼𝑤𝑦−𝑏 

So that          𝑚𝑖𝑛(𝑥 ,𝑦) 𝐹 𝑥,𝑦 = 𝑚𝑖𝑛
𝑥
𝑓1 𝑥 + 𝑚𝑖𝑛

𝑦
𝑓2(𝑦) 

Since 𝑓1 𝑥  and 𝑓2 𝑦  have the same form, then any procedure developed for minimizing 𝑓1 𝑥  

will apply to  𝑓2 𝑦 . 

 

Consider the problem 

𝑚𝑖𝑛
𝑥
𝑓1 𝑥                                                                                                   (3) 
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      where 𝑓1 𝑥 =  𝑤𝑖  𝐸 𝑈𝑖 −  𝑥 1 − 2𝐹𝑈𝑖 𝑥  −  2 𝑢𝑓𝑈𝑖 𝑢 𝑑𝑢
𝑥

−∞

 + 𝛼𝑤  𝑥 − 𝑎 

𝑚

𝑖=1

 

 , and  𝑤 =  𝑤𝑖 .
𝑚
𝑖=1  

Now, we show that 𝑓1 𝑥  is convex.  

Let     𝑓11 𝑥 =  𝑤𝑖 𝐸 𝑈𝑖 −  𝑥 1 − 2𝐹𝑈𝑖 𝑥  −  2 𝑢𝑓𝑈𝑖 𝑢 𝑑𝑢
𝑥

−∞
 𝑚

𝑖=1  

 and  𝑓12 𝑥 = 𝛼𝑤  𝑥 − 𝑎 ,   so that   𝑓1 𝑥  = 𝑓11 𝑥 + 𝑓12 𝑥  

The second derivative of 𝑓11 𝑥  is given by 𝑓11
′′  𝑥 = 2 𝑤𝑖𝑓𝑈𝑖(𝑥)𝑚

𝑖=1  

 Since 𝑓𝑈𝑖 𝑥  is a probability density function, therefore 𝑓11
′′  𝑥 ≥ 0, so that  𝑓11 𝑥  is convex. 

Clearly 𝑓12 𝑥 = 𝛼𝑤  𝑥 − 𝑎  is a strictly convex function. Therefore 𝑓1 𝑥  is strictly convex and 

hence 𝑓1 𝑥  has a unique global minimum.  

To find this global minimum, we use an approach called Hyperbolic Approximation Procedure 

or HAP (Eyster et al. [10]). The non-differentiable function part of 𝑓1 𝑥  (resp.𝑓2 𝑦 ), namely 

𝛼𝑤  𝑥 − 𝑎  (resp.  𝛼𝑤  𝑦 − 𝑏 ) is perturbed by adding a positive-valued constant 𝜀 to obtain the 

smooth functions 𝑓 1(𝑥) (resp. 𝑓 2  𝑦 called hyperbolic approximations given by : 

𝑓 1 𝑥 =  𝑤𝑖 𝐸 𝑈𝑖 −  𝑥 1 −  2𝐹𝑈𝑖 𝑥  −  2 𝑢𝑓𝑈𝑖 𝑢 𝑑𝑢
𝑥

−∞
  + 𝛼𝑤 [ 𝑥 − 𝑎 2 + 𝜀]1/2𝑚

𝑖=1  and  

𝑓 2 𝑦 =  𝑤𝑖  𝐸 𝑉𝑖 −  𝑦 1 −  2𝐹𝑉𝑖 𝑦  −  2 𝑣𝑓𝑉𝑖 𝑣 𝑑𝑣
𝑦

−∞

  + 𝛼𝑤 [ 𝑦 − 𝑏 2 + 𝜀]1/2

𝑚

𝑖=1

 

where  𝜀 is a small positive number.  

We first note that 𝑓 1 𝑥  (resp. 𝑓 2 𝑦 ) is strictly convex and therefore has a unique global 

minimum.  

Problem (3) is approximated by:    

𝑚𝑖𝑛
𝑥
𝑓 1 𝑥                                                                                                (4) 

According to Rosen and Xue [18], the optimal solution to problem (4) can be made as close as 

possible to the optimal solution of problem (3) by choosing small value of 𝜀. Therefore any 

solution to problem (4) can be considered as an approximate solution to problem (3). 

The HAP iterations for problem (4) are given by:  

𝑥(𝑡+1) =
1

2𝛼𝑤 
 𝑤𝑖𝑗  1 − 2𝐹𝑈𝑖 𝑥

(𝑡)  [ 𝑥(𝑡) − 𝑎 
2

+ 𝜀]1/2 + 𝑎     

𝑚

𝑖=1
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Algorithm HAP 

STEP_0. Choose  𝑥(0) =
 𝑤𝑖𝛼𝑖
𝑚
𝑖=1

 𝑤𝑖
𝑚
𝑖=1

 as initial point 
(*)

 

Let ε > 0, and  𝛿 > 0. Set t = 0 and go to step_1. 

STEP_1. 𝑥(𝑡+1) =
1

2𝛼𝑤 
 𝑤𝑖𝑗  1 − 2𝐹𝑈𝑖 𝑥

(𝑡)  [ 𝑥(𝑡) − 𝑎 
2

+ 𝜀]1/2 + 𝑎     𝑚
𝑖=1  

STEP_2. If    𝑥(𝑡+1) − 𝑥(𝑡) ≤ 𝛿, then stop. 

Otherwise, replace t with t +1 and go to step_1. 

 

Rosen and Xue [18] prove that the HAP is a descent algorithm and that it always converges to 

the minimum of the objective function from any initial point.  
 (*)

Although the algorithm allows choosing an arbitrary initial point, it is preferred that the initial 

location of the transfer point lie in the convex hull of the demand points (considering their 

expected values). One possible choice is the following center of gravity rule (Rosen and Xue 

[18]).  

 

𝑥(0) =
 𝑤𝑖𝜇𝑖
𝑚
𝑖=1

 𝑤𝑖
𝑚
𝑖=1

 and    𝑦(0) =
 𝑤𝑖𝜇 𝑖
𝑚
𝑖=1

 𝑤𝑖
𝑚
𝑖=1

 (for the problem  𝑚𝑖𝑛𝑦 𝑓 2 𝑦 ) 

where 𝜇𝑖 = 𝐸 𝑈𝑖  and𝜇 𝑖 = 𝐸 𝑉𝑖 .  

Example 1.  Suppose we have three demand points 𝑌𝑖 =  𝑈𝑖 ,𝑉𝑖  , 𝑖 = 1,2,3,distributed 

according to a bivariate uniform distribution over the rectangular region  𝑎𝑖 , 𝑏𝑖 x 𝑐𝑖 ,𝑑𝑖 , 𝑖 =

1,2,3.The service facility is located at  𝑆 = (5,4) and𝛼 = 0.4.Table 1 gives the data for this 

example. We solve this problem using a matlab code devised for the proposed algorithm with  

𝜀 = 0.01 and, 𝛿 = 0.01 with the starting point 𝑋(0) =  𝑥(0),𝑦(0) = (3.37 , 3.62). The optimal 

location of the transfer point is  𝑋∗ =  𝑥∗,𝑦∗ =  4.93 , 4.0 . 

Table 1 

 

 

 

 

 

 

 

In what follows, we present another method to solve problem (3) for the special case where 𝑈𝑖  

and 𝑉𝑖  follow the uniform distributions over the interval  [𝑎𝑖 , 𝑏𝑖] and  𝑐𝑖 ,𝑑𝑖 , 𝑖 = 1,2. . ,𝑚, 

respectively.  

(𝑐𝑖 ,𝑑𝑖) (𝑎𝑖 , 𝑏𝑖) wi I 

(3,11) (1,4) 2 1 

(4,9)  (2,10) 2 2 

(1,4) (7,12) 3 3 
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The probability density functions are given by: 












otherwise

dvc
dcvf

ii

iiVi

,0

,
1

)(











otherwise

bua
abuf

ii

iiUi

,0

,
1

)(  

and their corresponding probability distribution functions by:  

ii

ii

i
U bua

ab

au
uF

i





 ,)( ii

ii

i
V dvc

cd

cv
vF

i





 ,)(  

Problem (3) can be expressed as   

𝑚𝑖𝑛
𝑥

 𝑓1 𝑥 =  𝑤𝑖
′[ 𝑥 − 𝑎𝑖 

2 +  𝑥 − 𝑏𝑖 
2] + 𝛼𝑤  𝑥 − 𝑎 

𝑚

𝑖=1

 

where   𝑤 =  𝑤𝑖 ,
𝑚
𝑖=1   and  𝑤𝑖

′ =
𝑤 𝑖

2 𝑏𝑖−𝑎𝑖 
 

 𝑓1 𝑥   can also be written as  

𝑓1 𝑥 =

 
 
 

 
  𝑤𝑖

′ [ 𝑥− 𝑎𝑖 
2 +  𝑥 − 𝑏𝑖 

2] + 𝛼𝑤  𝑎 − 𝑥 

𝑚

𝑖=1

, 𝑥 < 𝑎

 𝑤𝑖
′ [ 𝑥− 𝑎𝑖 

2 +  𝑥 − 𝑏𝑖 
2] + 𝛼𝑤  𝑥 − 𝑎 

𝑚

𝑖=1

, 𝑥 ≥ 𝑎

  

and its piecewise derivative  

𝑓1
′ 𝑥 =

 
 
 

 
  𝑤𝑖  2

𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

− 1 − 𝛼𝑤 

𝑚

𝑖=1

, 𝑥 < 𝑎

 𝑤𝑖  2
𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

− 1 + 𝛼𝑤 

𝑚

𝑖=1

, 𝑥 ≥ 𝑎

  

  The solution to equation 𝑓1
′ 𝑥 = 0, denoted 𝑥0,  is given by 

𝑥0 =

 
  
 

  
  𝑤𝑖  

𝑎𝑖+𝑏𝑖

𝑏𝑖−𝑎𝑖
 + 𝛼𝑤 𝑚

𝑖=1

2 
𝑤 𝑖

𝑏𝑖−𝑎𝑖

𝑚
𝑖=1

,       if𝑥 < 𝑎

 𝑤𝑖  
𝑎𝑖+𝑏𝑖

𝑏𝑖−𝑎𝑖
 − 𝛼𝑤 𝑚

𝑖=1

2 
𝑤 𝑖

𝑏𝑖−𝑎𝑖

𝑚
𝑖=1

,      if𝑥 ≥ 𝑎

  

Since 𝑓1 𝑥  is strictly convex, therefore the unique optimal solution 𝑥∗to problem (3) 
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𝑚𝑖𝑛
𝑥
𝑓1 𝑥  

is given by      𝑥∗ =

 
  
 

  
 

 𝑤 𝑖 
𝑎𝑖+𝑏𝑖
𝑏𝑖−𝑎𝑖

 +𝛼𝑤 𝑚
𝑖=1

2 
𝑤𝑖

𝑏𝑖−𝑎𝑖

𝑚
𝑖=1

,       if
 𝑤 𝑖 

𝑎𝑖+𝑏𝑖
𝑏𝑖−𝑎𝑖

 +𝛼𝑤 𝑚
𝑖=1

2 
𝑤𝑖

𝑏𝑖−𝑎𝑖

𝑚
𝑖=1

< 𝑎

 𝑤 𝑖 
𝑎𝑖+𝑏𝑖
𝑏𝑖−𝑎𝑖

 −𝛼𝑤 𝑚
𝑖=1

2 
𝑤𝑖

𝑏𝑖−𝑎𝑖

𝑚
𝑖=1

,      if
 𝑤 𝑖 

𝑎𝑖+𝑏𝑖
𝑏𝑖−𝑎𝑖

 −𝛼𝑤 𝑚
𝑖=1

2 
𝑤𝑖

𝑏𝑖−𝑎𝑖

𝑚
𝑖=1

≥ 𝑎

    𝑎                                                        ,     otherwise

  

 

2.1.2.  Case of squared euclidean distance 

The squared euclidean distance between the demand point  𝑌𝑖 =  𝑈𝑖  ,𝑉𝑖   and the transfer point 

= (𝑥,𝑦) is 𝑑𝑆𝐸 𝑋 ,𝑌𝑖 = (𝑥 − 𝑈𝑖)
2 +(𝑦 − 𝑉𝑖)

2 and between the service facility 𝑆 =  𝑎 , 𝑏    and 

the transfer point = (𝑥, 𝑦) is 𝑑𝑆𝐸 𝑋 , 𝑆  = (𝑥 − 𝑎)2 +((𝑦 − 𝑏)2. Sustituting into problem (1) 

gives 

𝑚𝑖𝑛
(𝑥 ,𝑦)

𝐹 𝑥,𝑦 =  𝑤𝑖(𝐸  𝑥 − 𝑈𝑖 
2 + (𝑦 − 𝑉𝑖)

2 + 𝛼[(𝑥 − 𝑎)2

𝑚

𝑖=1

+ (𝑦 − 𝑏)2]) 

𝐸 𝑑𝑆 𝑋 ,𝑌𝑖  = 𝐸  𝑥 − 𝑈𝑖 
2] +  𝐸[(𝑦 − 𝑉𝑖)

2   and by definition of expected value, we have  

𝐸[(𝑥 − 𝑈𝑖)
2] =  𝑥 − 𝐸 𝑈𝑖  

2 + 𝑉𝑎𝑟[𝑈𝑖] 

𝐸[(𝑦 − 𝑉𝑖)
2] =  𝑦 − 𝐸 𝑉𝑖  

2 + 𝑉𝑎𝑟[𝑉𝑖] 

𝑉𝑎𝑟 𝑈𝑖 = 𝜎2
𝑖(resp. 𝑉𝑎𝑟 𝑉𝑖 = 𝜎 2

𝑖) is the variance of the random variable 𝑈𝑖(resp.𝑉𝑖). 

The objective function 𝐹 𝑥,𝑦  of problem (1) can then be written as   

𝐹 𝑥,𝑦 = 𝑓1 𝑥 + 𝑓2(𝑦) 

Where 𝑓1 𝑥 =  𝑤𝑖  𝑥 − 𝐸 𝑈𝑖  
2 + 𝑉𝑎𝑟 𝑈𝑖  + 𝛼 𝑥 − 𝑎 2) =  𝑤𝑖  𝑥 − 𝜇𝑖 

2 + 𝜎2
𝑖 +𝑚

𝑖=1
𝑚
𝑖=1

𝛼𝑥−𝑎2)   

and  𝑓2 𝑦 =  𝑤𝑖  𝑦 − 𝐸 𝑉𝑖  
2 + 𝑉𝑎𝑟 𝑉𝑖  + 𝛼 𝑦 − 𝑏 2) =𝑚

𝑖=1  𝑤𝑖  𝑦 − 𝜇 𝑖 
2 + 𝜎 2

𝑖 +𝑚
𝑖=1

𝛼𝑦−𝑏2)   

so that     

𝑚𝑖𝑛
(𝑥 ,𝑦)

𝐹 𝑥,𝑦 = 𝑚𝑖𝑛
𝑥
𝑓1 𝑥 + 𝑚𝑖𝑛

𝑦
𝑓2(𝑦) (5) 

Then the optimal solution to problem (5) may be obtained by solving the independent problems 

𝑚𝑖𝑛
𝑥
𝑓1 𝑥  and𝑚𝑖𝑛

𝑦
𝑓2 𝑦 .  

Consider the problem 𝑚𝑖𝑛
𝑥
𝑓1 𝑥  
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where       𝑓1 𝑥 =  𝑤𝑖   𝑥 − 𝜇𝑖 
2 + 𝜎2

𝑖  + 𝛼[(𝑥 − 𝑎)2]  𝑚
𝑖=1  

 The second derivative of  𝑓1 𝑥 ,𝑓1
′′  𝑥 = 2(1 + 𝛼) 𝑤𝑖

𝑚
𝑖=1  , is strictly positive. This implies 

that  𝑓1 𝑥  has unique global minimum. Setting the first derivative to zero gives the following 

unique solution  

𝑥∗ =
𝛼𝑤 𝑎 +  𝑤𝑖𝜇𝑖

𝑚
𝑖=1

𝑤 (1 + 𝛼)
 

Similarly,  the unique global minimum of problem 𝑚𝑖𝑛
𝑦
𝑓2 𝑦  is given by  

𝑦∗ =
𝛼𝑤 𝑏 +  𝑤𝑖𝜇 𝑖

𝑚
𝑖=1

𝑤 (1 + 𝛼)
 

We conclude that the unique global minimum of problem (5) is  

𝑥∗ =
𝛼𝑤 𝑎 +  𝑤𝑖𝜇𝑖

𝑚
𝑖=1

𝑤 (1 + 𝛼)
 

𝑦∗ =
𝛼𝑤 𝑏 +  𝑤𝑖𝜇 𝑖

𝑚
𝑖=1

𝑤 (1 + 𝛼)
 

Remark 1. The above optimal solution of problem (5) has a unique expression for all types of 

bivariate distribution of the random demand points. Moreover, the optimal solution depends 

only on the expected values of the random variable 𝑈𝑖and𝑉𝑖 . 

Example 2.  Suppose we have three demand points 𝑌𝑖 =  𝑈𝑖 ,𝑉𝑖  , 𝑖 = 1,2,3  distributed 

according to a bivariate normal distribution, 𝑈𝑖⁓ 𝑁(𝜇𝑖 ,𝜎𝑖
2) and  𝑉𝑖⁓ 𝑁(𝜇 𝑖 ,𝜎 𝑖

2). The service 

facility is located at  𝑆 = (3,5) and the value of 𝛼 = 0.3.Tables 2 gives the data for this 

example. Simple calculation gives 𝑋∗ =  𝑥∗,𝑦∗ =  2.871, 2.435 as the optimal location of the 

transfer point. 

Table 2 

 

 

 

 

 

 

2.2.  Minimax transfer point location problem  

(𝜇 𝑖 ,𝜎 𝑖) (𝜇𝑖 ,𝜎𝑖) wi I 

(3,5) (3,1) 1 1 

(4,3)  (2,2) 3 2 

(2,2) (4,1) 2 3 
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Let 𝑋 =  𝑥,𝑦  be the location of the transfer point, 𝑆 =  𝑎, 𝑏  the location of the service facility, 

𝛼 factor by which travel to the transfer point  from the service facility is multiplied (0 < 𝛼 < 1), 

and 𝑤𝑖 > 0  be the cost per unit distance between the transfer point and random demand 

location 𝑖, 𝑖 = 1,2,… ,𝑚.  

The problem can be stated as 

min𝑋 𝐹 𝑋 = max1≤𝑖≤𝑚 {𝑤𝑖(𝐸 𝑑 𝑋,𝑌𝑖 ] + 𝛼𝑑(𝑋, 𝑆))                                   (6) 

𝑑(. , . ) denotes either the rectilinear or the squared Euclidean distance. 

2.2.1.  Case of squared euclidean distance 

The squared euclidean distance between the demand point  𝑌𝑖 =  𝑈𝑖  ,𝑉𝑖   and the transfer point 

𝑋 = (𝑥,𝑦) is  𝑑𝑆𝐸 𝑋 ,𝑌𝑖 =  𝑥 − 𝑈𝑖 
2 + (𝑦 − 𝑉𝑖)

2 and between the the transfer point 𝑋 = (𝑥, 𝑦) 

and service facility 𝑆 = (𝑎, 𝑏) is  𝑑𝑆𝐸 𝑋 , 𝑆  =  𝑥 − 𝑎 2 + (𝑦 − 𝑏)2. 

Problem (6) becomes  

 

𝑚𝑖𝑛
(𝑥 ,𝑦)

𝐹 𝑥,𝑦 = max
1≤𝑖≤𝑚

 𝑤𝑖(𝐸  𝑥 − 𝑈𝑖 
2 + (𝑦 − 𝑉𝑖)

2 + 𝛼  𝑥 − 𝑎 2 +  𝑦 − 𝑏 2 )  

or   𝑚𝑖𝑛(𝒙,𝒚) 𝐹 𝑥,𝑦 = max1≤𝑖≤𝑚 𝑤𝑖  𝑥 − 𝜇𝑖 
2 +  𝑦 − 𝜇 𝑖 

2 + 𝜎𝑖
2 + 𝜎 𝑖

2 + 𝛼[ 𝑥 − 𝑎 2 +

                  𝑦−𝑏2]                                                                                                                                 (7) 

Let 𝑟 = max1≤𝑖≤𝑚  𝑤𝑖  𝑥 − 𝜇𝑖 
2 +  𝑦 − 𝜇 𝑖 

2 + 𝜎𝑖
2 + 𝜎 𝑖

2 + 𝛼[ 𝑥 − 𝑎 2 +  𝑦 − 𝑏 2]  .  

Then problem (7) is equivalent to the following non-linear program  

𝑚𝑖𝑛(𝑟) 

    𝑠. 𝑡.   𝑤𝑖  𝑥 − 𝜇𝑖 
2 +  𝑦 − 𝜇 𝑖 

2 + 𝜎𝑖
2 + 𝜎 𝑖

2 + 𝛼[ 𝑥 − 𝑎 2 +  (𝑦 − 𝑏)2 ≤ 𝑟, 

𝑖 = 1,2, . .𝑚                                                                                                                                 (8)     

Remark 2.  Note that the nonlinear program (8) has a unique expression for all types of 

bivariate distribution of the random demand points. 

 We now use a convenient iterative procedure to solve problem (8). The approach produces 

successively improved approximation to a solution to the Karush-Kuhn-Tucker conditions that 

are sufficient for this problem. These conditions are:  

1.  𝜆𝑖𝑤𝑖 𝑥 − 𝜇𝑖 
𝑚
𝑖=1 = 0 , 𝑖 = 1,2,… ,𝑚 

2.  𝜆𝑖 = 1𝑚
𝑖=1  

  3. 𝜆𝑖 𝑤𝑖  𝑥 − 𝜇𝑖 
2 +  𝑦 − 𝜇 𝑖 

2 + 𝜎𝑖
2 + 𝜎 𝑖

2 + 𝛼[ 𝑥 − 𝑎 2 +   𝑦 − 𝑏 2] −    𝑟 = 0 

  4. 𝜆𝑖 ≥ 0,    𝑖 = 1,2,… ,𝑚and 𝜆𝑖  are the Lagrange multipliers.  
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Iterative procedure for estimating the optimal transfer point location  𝑿∗ 

The present algorithm is a variant of Lawson-Charalambous algorithm (Love et al [14]). Before 

describing the algorithm, we define the following auxiliary problem:  

For given values 𝜆 𝑖   of  𝜆𝑖  , 𝑖 = 1,2,… ,𝑚,  we will need to solve the following nonlinear 

program:  

 

min
(𝑥 ,𝑦)

 𝑔(𝑋, 𝜆  =  𝜆 𝑖𝑤𝑖  𝑥 − 𝜇𝑖 
2 +  𝑦 − 𝜇 𝑖 

2 + 𝛼  𝑥 − 𝑎 2 +   𝑦 − 𝑏 2 + 𝛾𝑖
2 ,   where  𝛾𝑖

2

𝑚

𝑖=1

= 𝜎𝑖
2 + 𝜎 𝑖

2                                                                                            (9) 

 

Problem (9) is a minisum facility location problem with squared Euclidean distance (see Section 

2.1.2). 

Algorithm 

STEP_0. Let  𝑡 = 0 andsome 𝜀 > 0. Set   𝜆𝑖
(𝑡)

= 1,    𝑖 = 1,2, . . ,𝑚. 

STEP_1. Find a minimizer  𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of    𝑔(𝑋(𝑡),  𝜆(𝑡)  

              Then set:          𝜆𝑖
(𝑡+1)

= 𝜆𝑖
(𝑡) 𝑤 𝑖  𝑥

(𝑡)−𝜇 𝑖 
2

+ 𝑦 (𝑡)−𝜇 𝑖 
2

+𝛼  𝑥 (𝑡)−𝑎 
2

+  𝑦 (𝑡)−𝑏 
2
 +𝛾𝑖

2 

𝑆
 

              where       𝑆 =  𝜆𝑖
(𝑡)
𝑤𝑖   𝑥

(𝑡) − 𝜇𝑖 
2

+  𝑦(𝑡) − 𝜇 𝑖 
2

+ 𝛼   𝑥(𝑡) − 𝑎 
2

+𝑚
𝑖=1

                𝑦(𝑡)−𝑏2+𝛾𝑖2 

STEP_2. Calculate 𝑟1 = 𝐹 𝑋 𝑡   

Let𝑟0 =  𝜆𝑖
(𝑡+1)

𝑤𝑖   𝑥
(𝑡+1) − 𝜇𝑖 

2
+  𝑦(𝑡+1) − 𝜇 𝑖 

2
+ 𝛼   𝑥(𝑡+1) − 𝑎 

2
+   𝑦(𝑡+1) − 𝑏 

2
 

𝑚

𝑖=1

+ 𝛾𝑖
2  

                If 
 𝑟1− 𝑟0 

𝑟0
< 𝜀,   then stop. Otherwise let 𝑡 = 𝑡 + 1 and return to 𝑺𝑻𝑬𝑷_𝟐. 

 

 

Example 3. Suppose we have three demand points 𝑌𝑖 =  𝑈𝑖 ,𝑉𝑖  , 𝑖 = 1,2,3  distributed 

according to a bivariate normal distribution, 𝑈𝑖⁓ 𝑁(𝜇𝑖 ,𝜎𝑖
2) and  𝑉𝑖⁓ 𝑁(𝜇 𝑖 ,𝜎 𝑖

2). The service 

facility is located at  𝑆 = (10,20) and the value of 𝛼 = 05.Table 3 gives the data for this 

example. We solved this problem using a matlab code devised for the proposed algorithm with  

𝜀 = 0.001. The optimal location of the transfer point is at 𝑋∗ =  𝑥∗,𝑦∗ = (8.269, 17. 261) 
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Table 3 

 

 

 

 

 

 

2.2.2.  Case of rectilinear distance. 

Consider problem (6) with rectilinear distance  

min𝑋 𝐹 𝑋 = max1≤𝑖≤𝑚 {𝑤𝑖(𝐸 𝑑𝑅 𝑋,𝑌𝑖 ] + 𝛼𝑑𝑅(𝑋, 𝑆))                    (10) 

Substituting  𝑑𝑅 𝑋 ,𝑌𝑖 =  𝑥 − 𝑈𝑖 +  𝑦 − 𝑉𝑖  and  𝑑𝑅 𝑋 , 𝑆  =  𝑥 − 𝑎 +  𝑦 − 𝑏  into 

problem(10) gives 

 

𝑚𝑖𝑛(𝑥 ,𝑦) 𝐹 𝑥,𝑦 = max1≤𝑖≤𝑚 𝑤𝑖(𝐸  𝑥 − 𝑈𝑖 +  𝑦 − 𝑉𝑖  + 𝛼  𝑥 − 𝑎 +  𝑦 − 𝑏  )  (11) 

By definition of expected value, we have  

                            𝐸  𝑥 − 𝑈𝑖  = 𝐸 𝑈𝑖 −  𝑥  1 −  2𝐹𝑈𝑖 𝑥  −  2 𝑢𝑓𝑈𝑖 𝑢 𝑑𝑢
𝑥

−∞

 

𝐸  𝑦 − 𝑉𝑖  = 𝐸 𝑉𝑖 −  𝑦  1 −  2𝐹𝑉𝑖 𝑦  −  2 𝑣𝑓𝑉𝑖 𝑣 𝑑𝑣
𝑦

−∞

 

Let 𝑟 = max1≤𝑖≤𝑚  𝑤𝑖(𝐸  𝑥 − 𝑈𝑖 +  𝑦 − 𝑉𝑖  + 𝛼  𝑥 − 𝑎 +  𝑦 − 𝑏  ) . Then problem 

  Problem (11) is equivalent to the following nonlinear program  

𝑚𝑖𝑛 𝑟 

𝑠. 𝑡.   𝑤𝑖(𝐸  𝑥 − 𝑈𝑖 +  𝑦 − 𝑉𝑖  + 𝛼  𝑥 − 𝑎 +  𝑦 − 𝑏  ) ≤ 𝑟,    

𝑖 = 1,2, . .𝑚 

or𝑚𝑖𝑛(𝑟) 

(𝜇 𝑖 ,𝜎 𝑖) (𝜇𝑖 ,𝜎𝑖) wi i 

(20,1) (3,1) 1 1 

(25,6 )  (10,3) 4 2 

(10,2) (15,4) 2 3 
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𝑠. 𝑡.   𝑤𝑖  𝐸 𝑈𝑖 −  𝑥  1 −  2𝐹𝑈𝑖 𝑥  −  2 𝑢𝑓𝑈𝑖 𝑢 𝑑𝑢
𝑥

−∞

+ 𝐸 𝑉𝑖 

−                                𝑦  1 −  2𝐹𝑉𝑖 𝑦  

−  2 𝑣𝑓𝑉𝑖 𝑣 𝑑𝑣 + 
𝑦

−∞

𝛼  𝑥 − 𝑎 +  𝑦 − 𝑏   ≤ 𝑟,  

𝑖 = 1,2, . .𝑚 

 

The form of the above problem will vary according to the random distributions of the demand 

points ( 𝑈𝑖  , 𝑉𝑖). Therefore finding closed form for the optimal solution is infeasible. This 

problem is a nonlinear convex program (see Section 2.1.1) and hence many numerical methods 

exist which solve it efficiently. 

3    Conclusions 

  This paper dealt with determining the optimal location of a transfer point in the plane under 

minisum and minimax criterions when coordinates of the demands points are random and the 

location of the service facility is known. New approaches have been develop to investigate both  

minisum and minimax versions under rectilinear and squared Euclidean distances. Some results 

were described and illustrative examples were provided. Possible extension of this work would 

be the study of the obnoxious TPLP and  the multi-TPLP with random demands points. 
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