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Abstract

In this paper we study Armendariz semiring, which has been introduced by V.Gupta and
P.kumar, in the paper entitled ‘Armendariz and qusi-Armendariz and PS-semirings’ [8] .We
extend some results of Armendariz rings and semi-commutative rings of [3] for semirings with
1 6= 0. (i)We obtain that for a semirings S, S is Armendariz if and only eS and (1 + e)S are
Armendariz for every idempotent e of S if and only if eS and (1 + e)S are Armendariz for every
central idempotent e of S. (ii) For a semiring S if S/I is an Armendariz semiring for some
reduced ideal I of S then S is Armendariz.
Keywords:

Armendariz semiring, p.s Armendariz semiring, Abelian semiring, Reduced semiring, Right
quotient semiring, Semicommutative semiring, k-ideal.

1. Introduction

In 1934, H.S. Vandiver published a paper [13] entitled “Note on a simple type of Algebra in which the
cancellation law of addition does not hold” which opened a new horizon in the research of Advanced algebra.
In this paper, he introduced a new type of algebraic system which is commonly known an Semiring. Semiring
is a common generalization of the theory of associative rings and the theory of distributives lattices. A
semiring is an algebraic system consisting of a nonempty set S together with two binary operations, called
addition and multiplication, which forms a commutative semigroup relative to addition, a semigroup relative
to multiplication and the left, right distributive laws hold. The set of natural numbers is a natural example
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of a semiring. Now a days there has been a remarkable growth of the theory of semiring. Many classical
notions of the ring theory have been generalized to semiring.

The theory of semirings and related topics are scattered over diverse areas of mathematics. Semirings
arise in combinatorics and graph theory, automata and formal language, commutative and noncommutative
ring theory, Euclidean geometry and topology, functional analysis and mathematical modelling of quantum
physics, probability theory and optimization theory and many other areas of mathematics. More information
about semiring can be found in [6] written by J.S.Golan; in [9],written by U.Hebish and H.J.Weinert and in
[4],[5] written by K.Glazek.
A ring R is said to be Armendariz if the product of two polynomials in R[x] is zero if and only if the product of
their coefficients is zero. More precisely, if f(x) = a0+a1x+....+amx

m and g(x) = b0+b1x+....+bnx
n ∈ R[x]

be such that f(x)g(x) = 0, then aibj = 0 for all i=0,1,2....,m and j=0,1,2,...,n. We will refer to this as
the Armendariz condition. This definition was given by Rega and chhawchharia in [11] using the name
Armendariz since E.P. Armendariz had proved in [2] that reduced rings satisfied this condition.

2. Preliminaries

Definition 1. A nonempty set S together with a binary addition + and a multiplication · is called a semiring
if
(i) (S,+) is commutative semigroup.
(ii) (S, ·) is semigroup.
(iii)for any three elements a, b, c ∈ S
the left distributive law a.(b+ c) = a.b+ a.c and
the right distributive law (b+ c).a = b.a+ c.a both hold.

Example 1. The set of all natural no N, and the set Z+
0 are semirings.

Definition 2. An element ′0′ in S is called a zero element of S if a+ 0 = 0 + a = a,∀a ∈ S and ′0′ is called
an absorbing zero if a.0 = 0.a = a ∀ a ∈ S.

Example 2. The set of all natural no N, and the set Z+
0 are semirings.

Definition 3. An element ′0′ in S is called a zero element of S if a+ 0 = 0 + a = a,∀a ∈ S and ′0′ is called
an absorbing zero if a.0 = 0.a = a ∀ a ∈ S.

Definition 4. An element ′1′ in S is called an identity element of S if a.1 = 1.a = a, ∀ a ∈ S.

Definition 5. A semiring S is called commutative if a.b = b.a. for all a, b ∈ S.

Definition 6. A subset T of a semiring S with zero is called a subsemiring of S if it contains 0 and is closed
under the operations of addition and multiplication in S.

Definition 7. A nonempty subset I of a semiring S is called a left ideal of S if
(i) a, b ∈ I implies a+ b ∈ I and
(ii) a ∈ I, s ∈ S implies s.a ∈ I
Similarly we can define a right ideal of a semiring. A nonempty subset I of a semiring S is called an ideal
of S if it is a left ideal as well as a right ideal of S.

Definition 8. Let I be a proper ideal of a semiring S. Then the congruence on S, denoted by ρI and defined
by sρIs

′
if and only if s+ a1 = s

′
+ a2 for some a1, a2 ∈ I, is called the Bourne congruence on S defined by

the ideal I.
We denote the Bourne congruence (ρI) class of an element s of S by s/ρI or simply by s/I and denote the
set of all such congruence classes of S by S/ρI or simply by S/I.
It should be noted that for any s ∈ S and any proper ideal I of S, S/I is not necessarily equal to S + I =
{s+ a : a ∈ I} but surely contains it.
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Definition 9. For any proper ideal I of S if the Bourne congruence ρI , defined by I, is proper i.e 0/I 6= S
then we define the addition and multiplication on S/I by a/I + b/I = (a+ b)/I and (a/I)(b/I) = (ab)/I for
all a, b ∈ S. With these two operations S/I forms a semiring which is called the Bourne factor semiring or
simply the factor semiring.

Definition 10. A proper ideal I of a semiring S is called a prime ideal if AB ⊆ I implies either A ⊆ I or
B ⊆ I, where A and B are ideals of S.

Definition 11. A semiring S is called a prime semiring if {0} is a prime ideal of S.

Definition 12. A proper ideal I of a semiring S is called a semiprime ideal if A2 ⊆ I implies that A ⊆ I,
where A is an ideal of S.

Definition 13. An element a of a semiring S is said to be nilpotent if there exists a positive integer n such
that an = 0.

Definition 14. An ideal I of a semiring S is said to be nil ideal if each element of I is nilpotent.

Definition 15. An ideal I of a semiring S is said to be nilpotent if there exists a positive integer n such
that In = 0.

Definition 16. Let A be a nonempty subset of a semiring S. Right annhilator of A, denoted by annR(A),
is defined by annR(A) = {s ∈ S : As = (0)}.
Analogously we can define left annhilator (annL(A)) of A. Annhilator of a set A, denoted by ann(A), is a
left as well as a right annihilator of A.

Remark 1. If S is a semiring with absorbing zero then annR(A) is a right ideal of S and annL(A) is left
ideal of S. If A is an ideal of S then both annihilators are ideals of S.

Definition 17. A semiring S is called zerosumfree if a+ b = 0 for some a, b ∈ S, implies that a = b = 0.

Throughout this paper by a semiring S we shall always mean a semiring with zero and identity.

3. Armendariz semiring and Abelian semiring

Definition 18. A semiring S is called Armendariz if f =
∑m

i=0 aix
i,g =

∑n
j=0 bjx

j ∈ S[x] be such that
fg = 0 then aibj = 0 for all i and j.

Example 3. Let S be a zerosumfree semiring. Also let f =
∑m

i=0 aix
i, g =

∑n
j=0 bjx

j ∈ S[x] be such that
f(x)g(x) = 0. Then we have a0b0 = 0, a0b1+a1b0 = 0, a0b2+a1b1+a2b0 = 0,...., a0bn+a1bn−1+....+anb0 =
0. From the second equation we get a0b1 = 0 and a1b0 = 0(since S is zerosumfree semiring). Again from the
third equation we get a0b2+a1b1 = 0⇒ a0b2 = a1b1 = 0(since S is zerosumfree semiring) and a2b0 = 0(since
S is a zerosumfree semiring). Continuing this process we get aibj = 0 ∀ i, j. Hence S is Armendariz semiring.

Example 4. Let Z+ be the semiring of all positive integers. Let f(x), g(x) ∈ Z/9Z[x] be such that
f(x)g(x) = 0. This implies that 32|f(x)g(x). Let f(x) = 3rf

′
(x) and g(x) = 3sg

′
(x) for some f

′
(x)

and g
′
(x) such that the g.c.d of the coefficient of f

′
(x)(also of g

′
(x)) is not divisible by 3. Obviously 32|3r+s.

So r + s ≥ 2. It follows that aibj = 0 for all i and j. Hence Z/9Z is Armendariz semiring.

Proposition 1. [8] Subsemiring of an Armendariz semiring is Armendariz.

Proposition 2. Suppose S is an Armendariz semiring. If f1, f2, ....fn ∈ S[x] are such that f1f2......fn = 0,
then a1a2a3......an = 0, where ai is a coefficient of fi.
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Proof. We shall prove the proposition by induction on n. If n = 1, proof is obvious. Next suppose that n = 2
i.e f1f2 = 0. Since S is Armendariz, a1a2 = 0, where a1 is any coefficient of f1 and a2 is any coefficient of f2.
Suppose that the proposition is true for all k < n. Suppose that f1f2f3...fn = 0. Then f1(f2f3.....fn) = 0.
By our induction hypothesis a1b = 0 where a1 is any coefficient of f1 and b is any coefficient f2f3...fn.Then
we have a1(f2f3.....fn) = 0, i.e (a1f2)(f3f4.....fn) = 0. By our induction hypothesis a1a2......an = 0, where
ai is any coefficient of fi.

Theorem 3. [8] A semiring S is Armendariz if and only if S[x] is Armendariz.

Definition 19. A Semiring S is called abelian if every idempotent e of S central, i.e es = se ∀s ∈ S.

Theorem 4. An additive cancellative semiring S is abelian if and only if S[x] is abelian.

Proof. Suppose that S is abelian. Then every idempotent of S is central. Let f ∈ S[x] be idempotent. Then
f2 = f . Let f = e0 + e1x+ e2x

2 + ......+ enx
n where ei ∈ S, i = 0, 1, 2, ....., n. Now f2 = f implies that

e20 = e0............(1)
e0e1 + e1e0 = e1...........(2)
e0e2 + e1e1 + e2e0 = e2.........(3)
.........................
e0en + e1en−1 + ........+ ene0 = en.........(n)
(1) yields e0 is idempotent; so it is central. If we multiply equation (2) on the left side by e0,we get
e0e1 + e0e1e0 = e0e1. But e0e1e0 = e0e1 because e0 is central and since S is additively cancellative, e0e1 = 0
and from (2)we get e1 = 0. Hence equation (3) becomes e0e2 + e2e0 = e2, If we multiply equation (3) on the
left side by e0 we get e0e2 + e0e2e0 = e0e2. But e0e2e0 = e0e2. Since S is additively cancellative, e0e2 = 0
and from (3) e2 = 0. Proceeding in this way we can see that en = 0. Thus f = e0 is an idempotent of S and
hence it is central. So S[x] is abelian. Conversely assume that S[x] is abelian. Since every idempotent of S
is an idempotent of S[x], every idempotent of S is central. So S is abelian.

Theorem 5. For a semiring S the following statements are equivalent:
(1) S is an Armendariz semiring.
(2) eS and (1 + e)S are Armendariz for every idempotent e of S.
(3) eS and (1 + e)S are Armendariz for every central idempotent e of S.

Proof. (1)⇒ (2). Obviously 0 = e.0 ∈ eS. So eS is non-empty. Let ex, ey ∈ eS where x, y ∈ S and e is an
idempotent of S. Then ex + ey = e(x + y) ∈ eS and also ex.ey ∈ eS. Thus eS is a subsemiring of S, and
hence it is Armendariz. Similarly we can prove that (1 + e)S is Armendariz for every idempotent e of S.
(2)⇒ (3) is obvious.
(3) ⇒ (1) Let f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j where ai, bj ∈ S for i = 0, 1, 2....., n and j =

0, 1, 2, ....,m. Let f(x)g(x) = 0. Let e be a central idempotent of S. Let f1(x) = ef(x), f2(x) = (1 + e)f(x),
g1(x) = eg(x) and g2(x) = (1 + e)g(x). Now f1(x)g1(x) = ef(x).eg(x) = e2f(x)g(x) = ef(x)g(x) = 0,(since
e is a central idempotent) and f2(x)g2(x) = (1 + e)f(x).(1 + e)g(x) = (f(x) + ef(x))(g(x) + eg(x)) =
f(x)g(x) + 3ef(x)g(x)(since e is a central idempotent)= f(x)g(x) + 3f1(x)g1(x) = 0 + 0 = 0. Since f1(x),
g1(x) ∈ eS[x] and eS is Armendariz,f1(x)g1(x) = 0 implies that eai.ebj = 0 i.e eaibj = 0(since e is central
idempotent). Again f2(x), g2(x) ∈ (1 + e)S[x] and (1 + e)S is Armendariz, f2(x)g2(x) = 0 implies that
(1 + e)ai.(1 + e)bj = 0 i.e aibj + 3eaibj = 0 which implies that aibj = 0(since eaibj = 0). Thus S is
Armendariz.

Definition 20. An ideal I of a semiring S is called a k-ideal if a, b ∈ S, a+ b ∈ I and a ∈ I implies b ∈ I.

Definition 21. A semiring S is called the reduced if it has no non zero nilpotent elements.

Theorem 6. [8] Let S be a semiring. Let S/I be an Armendariz semiring for some k-ideal I of S. If I is
reduced then S is Armendariz.

Definition 22. An element a of a semiring S is called regular if it is neither a left nor a right zero divisor.
Following the definition of right quotient ring [12] we define right quotient semiring as follows.
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Definition 23. A semiring Q is said to be a right quotient semiring of a semiring S with respect to a set T
of regular elements of S if
(i) S ⊆ Q
(ii) The elements of T are units in Q.
(iii) The elements of Q have the form ac−1 where c ∈ T , a ∈ S.

Theorem 7. Suppose that there exists a right quotient semiring Q of a semiring S. Then S is Armendariz
if and only if Q is Armendariz.

Proof. Suppose that S is Armendariz. Consider two polynomials f(x) =
∑m

i=0 αix
i, g(x) =

∑n
j=0 βjx

j

of Q[x], such that αi, βj ∈ Q. We may assume that αi = aiu
−1, βj = bjv

−1 with ai, bj , u, v ∈ S, and
u, v regular. Again for each j there exists cj , w ∈ S with w regular such that u−1bj = cjw

−1. Now
f1(x) =

∑m
i=0 aix

i,g1(x) =
∑n

j=0 bjx
j ∈ S[x] . Again we have 0 = f(x)g(x) =

∑m
i=0

∑n
j=0(αiβj)x

i+j =∑m
i=0

∑n
j=0(aiu

−1)(bjv
−1)xi+j =

∑m
i=0

∑n
j=0 ai(u

−1bj)v
−1xi+j =

∑m
i=0

∑n
j=0 aicjw

−1v−1xi+j =
∑m

i=0

∑n
j=0 aicj(vw)−1xi+j =

f1(x)g1(x)(vw)−1. Hence f1(x)g1(x) =
∑m

i=0

∑n
j=0(aicjx

i+j) = 0 in S[x]. Since S is Armendariz, aicj = 0

∀i, j and so αiβj = (aiu
−1)(bjv

−1) = ai(u
−1bj)v

−1 = ajcjw
−1v−1 = 0 ∀ i, j. Therefore Q is Armendariz.

Converse follows, since subring of Armendariz semiring is Armendariz.

Definition 24. Let S be a semiring and S[[x]] denote the set of all sequences {an} = {a0, a1, ....} of elements
of S. Then S[[x]] is a semiring with addition and multiplication defined by {an} + {bn} = {an + bn} and
{an}{bn} = {cn} where cn =

∑n
i=0 aibn−i. This semiring S[[x]] is called the semiring of formal power series

over S.
Obviously S[x] is a subsemiring of S[[x]]. Any element of S[[x]] will be written as f(x) =

∑∞
n=0 anx

n.

Definition 25. A semiring S is called a semiprime semiring if {0} is a semiprime ideal of S.

Definition 26. A semiring S is called power-serieswise quasi-Armendariz if whenever f =
∑∞

i=0 aix
i,

g =
∑∞

j=0 bjx
j ∈ S[[x]] be such that fSg = 0 then aiSbj = 0 for all i and j.

Theorem 8. [8] Let S be a semiprime semiring. Then S is a p.s-quasi Armendariz semiring.

Definition 27. A semiring S is called quasi-Armendariz if whenever f =
∑m

i=0 aix
i,g =

∑n
j=0 bjx

j ∈ S[x]
be such that fSg = 0 implies that aiSbj = 0 for all i and j.

Theorem 9. [8] Let S be a p.s quasi-Armendariz semiring. Then matrix semiring Tn(S) of all n × n
matrices over S is also a p.s quasi-Armendariz semiring.

Corollary 1. [8] Let S be a quasi-Armendariz semiring. Then Tn(S) is also a quasi-Armendariz semiring.

Theorem 10. [8] Let S be a p.s quasi-Armendariz semiring. Then eSe is also a p.s quasi-Armendariz
semiring for any non-zero idempotent e in S.

Corollary 2. [8] Let S be a quasi-Armendariz semiring. Then eSe is also a quasi-Armendariz semiring for
any non-zero idempotent e in S.

4. Armendariz semiring and Semicommutative semiring

Definition 28. A semiring S is called semicommutative if for every a ∈ S, {b ∈ R : ab = 0} is an ideal of
S. i.e the right annhilator of a in S is an ideal of S.

Theorem 11. For a semiring S the following statements are equivalent:
(1) S is semi-commutative.
(2) Any right annihilator over S is an ideal of S.
(3) Any left annihilator over S is an ideal of S.
(4) For any a, b ∈ S, ab = 0 implies aSb = 0.
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Proof. we shall show that (1)⇒ (2)⇒ (4)⇔ (3) and finally (4)⇒ (1)
(1)⇒ (2)
Since S is semi-commutative, from the definition of semicommutative semiring rannS(x) is an ideal of S;
Hence (2).
(2) ⇒ (4) Let a, b ∈ S be such that ab = 0. Then b ∈ rannS(a). Since by (2), rannS(a) is an ideal of S,
sb ∈ rannS(a) ∀ s ∈ S. Hence asb = 0 ∀ s ∈ S,i.e aSb = 0.
(4)⇒ (3) We define left annihilator of an element x ∈ S, denoted by lannS(x), as follows: lannS(x) = {b ∈
S : bx = 0}. It can be readily seen that lannS(x) is a left ideal of S. Let b ∈ lannS(x). Then bx = 0. By
(4) bsx = 0∀s ∈ S. This implies that bs ∈ lannS(x). So lannS(x) is a right ideal and hence an ideal of S.
(3)⇒ (4) Let a, b ∈ S, be such that ab = 0. Then a ∈ lannS(b) ∀ s ∈ S. By (3), as ∈ lannS(b) ∀ s ∈ S. So
aSb = 0
(4)⇒ (1) The proof is similar to the proof of (4)⇒ (3).

Theorem 12. Subsemiring of semicommutative semiring is semicommutative.

Proof. Suppose S is a semicommuataive semiring and T be a subsemiring of S. Let a, b ∈ T be such that ab =
0. This implies that aSb = 0, since S is semicomutative and hence aTb = 0. So T is semicommutaive.

Corollary 3. Let S be a semiring such that S[x] is semi-commutative. Then S is semi-commutative.

Proof. The proof follows from the theorem 12, since S is a subsemiring of S[x].

Let S be a semiring and Ω be a subsemigroup of S consisting of central regular elements of the semigroup
(S, .). Let Ω−1S = {α−1s : for all α ∈ Ω and for all s ∈ S}. Now we have the following theorem.

Theorem 13. Suppose that S is a semiring and Ω is a subsemigroup of S consisting of central regular
elements of the semigroup (S, ·). Then Ω−1S is a semiring.

Proof. Let a = α−1s1 and b = β−1s2 where α, β ∈ Ω and s1, s2 ∈ S. Now a + b = α−1s1 + β−1s2 =
α−1β−1(βs1 + αs2) = (βα)−1(βs1 + αs2) ∈ Ω−1S. Let a = α−1s1, b = β−1s2 and c = γ−1s3, where
α, β, γ ∈ Ω and s1, s2, s3 ∈ S. Now (a+ b) + c = (α−1s1 + β−1s2) + γ−1s3 = α−1β−1(βs1 + αs2) + γ−1s3 =
α−1β−1γ−1(γ(βs1 + αs2) + βαs3) = (γβα)−1(γ(βs1 + αs2) + βαs3)=(γβα)−1((γβs1 + γαs2) + βαs3) =
(γβα)−1((γβs1+αγs2)+αβs3) since α, β, γ are central regular elements. Again a+(b+c) = α−1s1+(β−1s2+
γ−1s3) = α−1s1 +β−1γ−1(γs2 +βs3) = α−1β−1γ−1(γβs1 +α(γs2 +βs3))=(γβα)−1(γβs1 + (αγs2 +αβs3)).
Therefore a + (b + c) = (a + b) + c ∀ a, b, c ∈ Ω−1S. Now a + b = α−1s1 + β−1s2 = α−1β−1(βs1 + αs2) =
(βα)−1(βs1+αs2) and b+a = β−1s2+α−1s1 = β−1α−1(αs2+βs1) = (βα)−1(αs2+βs1) = (βα)−1(βs1+αs2).
So a+b = b+a ∀ a,b Thus (Ω−1S,+) is a commutative semigroup. Also a ·b = α−1s1 ·β−1s2 = (αβ)−1s1s2 ∈
Ω−1S and a.(b.c) = α−1s1.(β

−1s2.γ
−1s3) = α−1s1.β

−1γ−1(s1s2) = (γβα)−1(s1.(s2s3)), since α, β, γ ∈ Ω.In
a similar fashion we can show that (a.b).c = (γβα)−1((s1s2)s3),so a.(b.c) = (a.b).c ∀ a, b, c ∈ Ω−1S, since
S is semiring.Thus (Ω−1S, .) is a semigroup.Finally we shall show that the both distributive laws holds.
a.(b + c) = α−1s1.(β

−1s2 + γ−1s3) = α−1s1.β
−1s2 + α−1s1.γ

−1s3 = a.b + a.c. Similarly we can show that
(a+ b).c = a.c+ b.c. Hence Ω−1S is a semiring.

Theorem 14. Suppose that S is a semiring and Ω is subsemigroup of S consisting of central regular elements
of the semigroup (S, ·). Then S is semicommutative if and only if Ω−1S is semicommutative.

Proof. Suppose that S is a semicommutative semiring. Let a, b ∈ Ω−1S be such that ab = 0. Then a = α−1s1
and b = β−1s2 where α, β ∈ Ω and s1, s2 ∈ S. Now 0 = ab = (α−1s1)(β−1s2) = α−1β−1s1s2[Since Ω is
contained in the center of S]=(βα)−1s1s2. This implies s1s2 = 0, it follows that s1Ss2 = 0, since S is
semicommutative. Let γ = ω−1s ∈ Ω−1S, where ω ∈ Ω and s ∈ S. Now aγb = α−1s1ω

−1sβ−1s2 =
α−1ω−1β−1(s1ss2) = 0. Hence Ω−1S is semicommutative. Converse is obvious.

Proposition 15. The semiring of Laurent polynomials in x with coefficients in a semiring S, consists of all
formal sums

∑n
i=kmix

i with obvious addition and multiplication, where mi ∈ S and k, n are integers(not
necessarily positive). We denote this semiring by S[x;x−1]
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Theorem 16. For a semiring S, S[x] is semicommutative if and only if S[x;x−1] is semicommutative.

Proof. Suppose that S[x] is semicommutative. Let Ω = {1, x, x2, ...}. Obviously Ω is a subsemigroup of S[x]
and closed under multiplication. Since S[x;x−1] = Ω.S[x], it follows that S[x;x−1] is semicommutative by
proposition 15. Converse follows from theorem 12.

Theorem 17. Let S be a semiring and I be a k − ideal of S such that S/I is semicommutative. Now if I
is reduced then S is semicommutative.

Proof. Let ab = 0 with a, b ∈ S. Now bIa ⊆ I. Also (bIa)2 = bIabIa = 0(Since ab = 0). Since I is reduced,
bIa = 0. Again ((aSb)I)2 = aSbIaSbI = 0,since bIa = 0. So (aSb)I = 0,since I is reduced and (aSb)I ⊆ I.
Now (a/I)(b/I) = ab/I = 0/I = I. Since S/I is semicommutative, then (a/I)S/I(b/I) = 0/I, i.e aSb/I = I.
This implies that aSb ⊆ I, since I is a k− ideal of S.Now (aSb)2 ⊆ (aSb)I = 0 which implies that (aSb) = 0.
Thus S is semicommutative.

Theorem 18. Let S be a semicommutative semiring which is also an Armendariz semiring. Then S[x] is a
semicommutative semiring.

Proof. Let f(x), g(x) be two polynomials in S[x] be such that f(x)g(x) = 0 where f(x) =
∑m

i=0 aix
i and

g(x) =
∑n

j=0 bjx
j and ai, bj ∈ S and i, j ∈ {0, 1, 2...}. Let h(x) =

∑t
k=0 ckx

k ∈ S[x]. Since S is Armendariz
and f(x)g(x) = 0, aibj = 0 for all i and j. Since S is semicommutative, aiSbj = 0. This implies that
aickbj = 0 for each i,j and k. Hence f(x)h(x)g(x) = 0. Thus S[x] is a semicommutative semiring.

5 Armendariz semiring and Reduced semiring

Proposition 19. [8] Subsemiring of a reduced semiring is reduced.

Theorem 20. [8] A semiring S is reduced if and only if S[x] is reduced.

Theorem 21. Every reduced semiring is an Armendariz semiring.

Proof. Let S be a reduced semiring and f, g ∈ S[x] with f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j where
ai, bj ∈ S, 0 6 i 6 m, 0 6 j 6 n. Let fg = 0. We can assume that n = m. Then we have a0b0 = 0,
a1b0 + a0b1 = 0,......., anb0 + ......+ a0bn = 0. Now (b0a0)2 = b0a0b0a0 = 0 which implies that b0a0 = 0, since
S is reduced. Hence left multiplying the second equation by b0 from the left we get b0a1b0 + b0a0b1 = 0.
i.e b0a1b0 = 0. Again (a1b0)2 = a1b0a1b0 = 0 which implies that a1b0 = 0 since S is reduced. Similarly
we get aib0 = 0 for 1 6 i 6 n. Then we get a0b1 = 0, a1b1 + a0b2 = 0,.......,an−1b1 + ...... + a0bn = 0.
Now (b1a0)2 = b1a0b1a0 = 0 which implies that b1a0 = 0 since S is reduced. Again we multiply the second
equation by b1. We get b1a1b1 = 0; (a1b1)2 = a1b1a1b1 = 0 which implies that a1b1 = 0 since S is reduced.
Continuing this process we get aib1 = 0 ∀ 1 6 i 6 n. Again continuing the above process we get aibj = 0 ∀
1 6 i 6 n and 1 6 j 6 n as desired.
The converse is obvious since if aibj = 0 ∀ 0 6 i 6 n and 0 6 j 6 n, then fg = 0.

Converse of the above result may not be true which follows from the fact that an Armendariz ring which
is evidently Armendariz seming may not be reduced [4].

Theorem 22. Let S be a semiring and Q(S) be its right quotient semiring of S. Then S is reduced if and
only if Q(S) is reduced.

Proof. Let Q(S) be reduced. Then S is reduced, since subsemiring of a reduced semiring is again a reduced
semiring. Conversely let S be a reduced semiring. Now we shall show that Q(S) is a reduced semiring.
Let q = ab−1 ∈ Q(S) where a ∈ S and b is regular such that and q2 = 0 ⇒ ab−1ab−1 = 0. Obviously
b−1a ∈ Q(S). So there exists elements c, d ∈ S with d regular such that b−1a = cd−1. Now ac(bd)−1 =
acd−1b−1 = ab−1ab−1 = 0. This implies ac = 0. Now (ca)2 = caca = 0. Since S is reduced, ca = 0. Now
from b−1a = cd−1, we get ad = bc, which implies that ada = bca = 0. Hence (ad)2 = adad = 0. Since
S is reduced, ad = 0. Again a = (ad)d−1 which implies that a = 0. Thus q = ab−1 = 0. Hence Q(S) is
reduced.
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