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Abstract

False codling moth (FCM) (Thaumatotibia lucotreta) is a significant pest due to its potential eco-
nomic impact on many susceptible fruits in most temperate regions of the world. Efforts to control
the codling moth in the past mostly relied on the use of broad spectrum insecticide sprays, which has
resulted in the development of insecticide resistance, and the disruption of the control of secondary
pests. Understanding the dynamic of this pest is of great in importance in order to effectively employ
the most effective control strategies. In this study, a mathematical model of host-false codling moth
interactions is developed and qualitatively analysed using stability theory of system of differential
equations. The basic offspring number with respect to FCM free equilibrium is obtain using next
generation matrix. The condition for local and global asymptotic stability of FCM free and coexis-
tence equilibria are established. The model is analysed numerically and graphically represented to
justify the analytical results.
Keywords:

Mathematical modeling, False codling moth, stability Analysis, Host-pest interactions, Plant pest
model.

1. Introduction

False codling moth (FCM), (Thaumatotibia leucotreta) is considered the most significant indigenous pest due
to its potential economic impact on many horticultural and agricultural crops (Gillaga et al., 2011). larval attack
over 70 host plants, many of which are horticultural crops with fruit, pods, and berries, such as beans, grapes,
citrus, capsicum, avocado, guava, pomegranate, and ornamental plants. They also feed on macadamia nuts, cotton,
tea, and a variety of other wild plants. Female moths are attracted to lay their eggs on the flower heads as well as
other parts of the plant, making this pest particularly problematic on roses grown for cut flowers (Venette et al., 2003).

Consequently, FCM is a major threat to food security, supply of raw material for manufacturing, foreign exchange
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and employment in many countries (Blomefield et al., 1989; Gillaga et al., 2011). FCM is widely distributed across
Africa and has been reported in over 40 Africa countries , including Kenya (Venette et al., 2003; Stibick. 2008). The
FCM is not considered to be established outside of Africa (Venette et al., 2003). However, it is commonly intercepted
during quarantine inspections in Europe and United States (Gianni et al., 2014).

Consignments of roses from Kenya to Europe have been intercepted in recent years due to the presence of FCM. When
a single living individual of FCM is found within a consignment at any stage of development, the entire consignment
is rejected (FPEAK, 2021). This is because FCM is on the European Commission’s (EC) list of harmful organisms
that should be regulated as quarantine pests to prevent its introduction into Europe, where it could harm a variety of
outdoor and greenhouse crops (Moore, 2012; Mkiga et al., 2019). Therefore, FCM is a pest of phytosanitary concern
and it impedes export in most international markets, as it is endemic to sub-Saharan Africa (Hofmeyr et al., 1998;
Moore, 2012 ).

False codling moth is now a quarantine pest on all crops according European Union (EU) plant health (phytosan-
itary) regulations (EU 2016/2031). Special measures have been introduced for crops that are a known pathway into
the EU for serious pests that could damage Europe’s agriculture or environment. These measures include stringent
new requirements covering the export of roses to prevent the introduction of FCM into the EU (FPEAK, 2021). The
number of FCM interceptions on Kenyan roses has been extremely high (36 in 2018, 36 in 2019, and 24 up to June
2020). This high level of interceptions has been attributed to increased inspection levels, which have risen from 5%
in 2011 to 10% now. In 2021, a drastic increase to 50% or even 100% checks for roses from Kenya is expected as a re-
sult of the numbers observed in the previous three years. By the end of 2020, this will be determined (FPEAK, 2021).

Planning efficient and cost-effective FCM control is a real challenge, which explains why most experimental FCM
control strategies fail (Anguelove et al ., 2016). This is because certain parameters can be changed to make biological
systems unstable or stable, i.e., if their values pass through bifurcation values. (Murray, 2002; Sergio, 2014; Savary,
2006). Therefore, there is need for more scientific studies on FCM interaction with the host for effective management
of the pest.

The demand for reliable pest infestation models is increasing because they are helpful in defining problems, organizing
thoughts, identifying areas to investigate, making predictions, generating hypotheses, and supporting pest manage-
ment decision-making. They also serve as standard comparisons and offer strategies to improve decision-making on
effective pest control (Byers, 1993 & Anguelov et al., 2016). Predicting population dynamics and evaluating pest
control scenarios by agro-ecosystem under a variety of environmental conditions can reduce the number and cost of
pest control interventions, improving crop yields and quality, as well as health and sustainability (Galilio et al., 2014).

Conventional population growth models have been used and modified over time to provide an intuitive foundation
for understanding the results of more complex eco-epidemiology modeling (Anderson and May, 1978; Ludwig, 1978;
Anderson and May 1979). Recently, these models have been extended to explain the dynamics of human infectious
diseases such Malaria, Tuberculosis (TB), Human Immunodeficiency Virus (HIV) and Acquired Immune Deficiency
Syndrome (AIDS) and crop diseases (Okongo, 2016). However, very little attention have been given to host- pest
interactions particularly in insect pest management. This study attempt to develop the host pest interaction model
to simulate stage structure ofFCM interaction with the host.

Demographic models with stage structures have been used to describe changes in population abundance over time
and across generations. Since population abundance is the major driving force acting on the host plants, this provides
an opportunity to interpret the impact of pest populations on both natural and cultivated plants. (Barclay, 2016 &
Galilio et al., 2014).

Several differential equations have been used to explain empirical data sets for single species pest population
fluctuation over time, both in continuous and discrete forms. Ikemoto et al, (2009) developed a mathematical model
for caste differentiation in termite colonies via hormonal and pheromonal regulation to aid in the discovery of primer
pheromones and inferring their roles in termite caste differentiation. Barclay and Hariotakis, (1991) developed age-
structured population dynamic model combining pheromone baited and food baited traps for insect pest control.
Similar models of mating disruption and mass trapping were also developed by Byers, (2007). Sterile release models
were developed by Anguelove et al, (2012) to control anopheles mosquito and Barclay (2016) to determine the rate of
sterile release. However, most of these mathematical models do not address the population dynamics of FCM and its
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interaction with the host which this study is seeking to address. In this study, a mathematical model of host -FCM
interactions is developed and numerically analysed and results presented in graphical form.

2 Model development

In the absence of pest, the susceptible Sh host grows logistically to maturity at the rate αSh(t)
(

1− Sh(t)
K

)
, with α

as the intrinsic growth rate and K as the environmental carrying capacity. Hosts can only be infected by the FCM
after the fertilized fertile female (Fff ) deposit egg which successfully hatch into larvae and burrow into rind the host
(Stibick, 2006). Once the host fruit is infected by the larvae (Lf ) it never recovers and gives no yield (Alemneh et
al., 2019 ), it can then be removed from the farm or fall on the ground. It is assumed that the host invasion follows

Holling-type II functional response
ξSh(t)Lf (t)

m+Sh(t)
, where ξ is the invasion rate of the host by the larvae and m is the half

saturation constant (Tazerouni et al., 2019). Once healthy host grows to maturity, they are harvested at the rate µ1.
Then, from the above assumptions, the equation that governs the susceptible host compartment is given by equation
1:

dSh(t)

dt
= α

(
1− Sh(t)

Kh

)
Sh(t)− ξSh(t)Lf (t)

m+ Sh(t)
− µ1Sh(t) (1)

It is important to note that the total population of FCM consists of Egg (Ef ), Larvae (Lf ), Pupae (Pf ) and
Adult( Fertile female (Ff ), Fertile male (Mf ) and Fertilized fertile female (Fff )). Each developmental stage is de-
pendent on temperature and availability of food (Stibick et al., 2008).

The number of eggs produced is determined by the oviposition rate rFff , where r is the intrinsic egg laying rate
and Fff is the number of fertilized fertile female of FCM. Since eggs are constrained to the carrying capacity of the

host, the effective egg production rate is given by rFff
(

1− Ef (t)

A

)
φSh(t), where

(
1− Ef (t)

A

)
φSh(t) is the available

capacity of the host to receive eggs from fertilized fertile female, with A being the carrying capacity of the host and
φ is eggs conversion rate. If the transfer rate of egg to larvae is λ1 and ω1 is natural mortality rate of egg stage at
temperature τ1 then, the general equation that describes the egg stage is given by equation 2:

dEf (t)

dt
= rFff (t)

(
1− Ef (t)

A

)
Sh(t)− (λ1 + τ1ω1)Ef (t) (2)

Larval stage is the most damaging stage of FCM, since larvae can burrow into the fruit and cause damage inside
the fruit with few symptoms being displayed on the fruit. The damaged fruit can became vulnerable to secondary
pest such as fungal organisms and scavengers (Boardman et al., 2012). If ω2 is the natural mortality rate of larvae
at temperature τ2, and λ2 is the rate at which larvae turn to pupae. Then, by letting a to denote the conversion
efficiency of the larvae, that is the contribution of larval population from susceptible host. Then, the process that
describe the fertile larval stage compartment is given by equation 3:

dLf (t)

dt
= λ1Ef (t) +

aξSh(t)Lf (t)

m+ Sh(t)
− (λ2 + τ2ω2)Lf (t) (3)

Once the final instar larva is ready to pupate, it drops to the ground, spins a cocoon and pupates in the top layer
of the soil (Boardman et al., 2012). At early pupal stage it becomes inactive and can take longer time in development
depending on the temperature and humidity of the area (Stibick et al., 2008). After maturity at the pupal stage, the
male pupae and female pupae can be distinctively identified (Blomefield et al., 1989; Stibick et al., 2008). Since the
transfer rate from larval stage to pupal stage is λ2, then, by letting ω3 to be the mortality rate at the pupal stage
at temperature τ3 and λ3 to be the transfer rate from pupal stage to adult FCM. Then, the equations describing the
pupal stage is given by equation 4:

dPf (t)

dt
= λ2Lf (t)− (ω3 + τ3λ3)Pf (t) (4)

After emergence from pupal stage, it is assumed that the fertile female FCM can mate successfully with fertile
male FCM in order to move to fertilized fertile female compartment at a rate of λ4 and after mating, the fertilized
fertile female return to fertile female FCM compartment at the rate denoted by δ1 in order to mate again. Since the
transfer rate from larval stage to pupal stage is λ3, and, by letting κ to be the fraction of pupal population that move
to fertile female stage (Ff ), and assuming that the natural mortality of fertile female is ω4 at temperature τ4 , then,
the equation that describes the fertile female compartment is modeled as in equation 5:
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dFf (t)

dt
= κλ3Pf (t) + δ1Fff (t)− [λ4 + τ4ω4]Ff (t) (5)

If the transfer rate of pupal stage to fertile male FCM is λ4 and (1− κ) is the fraction of pupal population that
move to the fertile male stage. Assuming that the natural mortality of the fertile male FCM at temperature τ5 is
given by ω5 and in fertile male compartment there is no further transfer and the only population reduction of fertile
male is due to natural death. Then, the equation that governs adult male compartment is described by equation 6:

dMf (t)

dt
= (1− κ)λ3Pf (t)− τ5ω5Mf (t) (6)

For mating to occur female FCM calls the male FCM through pheromone release starting several hours after
dark (Stibick et al., 2008), the sex pheromone helps the male FCM to allocate themselves in space and time for the
available mate (Witzgall et al., 2010). Since mating of FCM is a complex process, it is assumed that male FCM can
mate several times per day and throughout all its life time. Typically, fertilized fertile female is the one responsible for
causing direct damage to the host after laying fertile eggs that hatch and burrow into the host fruit. It is also assumed
that fertile female FCM need to mate with a fertile male FCM in order to pass into the fertilized fertile female FCM
compartment. If λ4 is the number of female FCM that move to fertilized fertile female FCM compartment and δ1 the
number of fertilized fertile females that goes back to fertile female compartment for mating again and if the natural
mortality rate of fertilized fertile female at temperature τ6 is given by ω6. Then, the equation that describes the rate
of change at the fertilized fertile female FCM compartment is given equation 7:

dFff (t)

dt
= λ4Ff (t)− (δ1 + τ6ω6)Fff (t) (7)

2.1 Model Flow Chart

Figure 1: Model Flow Chart
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2.2 Model Equation

Taking into account the above considerations, we have the schematic flow diagram shown in Figure 1 (Model Flow
Chart). From figure 1, the model will be governed by the following system of equations 8:

dSh(t)

dt
= α

(
1− Sh(t)

Kh

)
Sh(t)− ξSh(t)Lf (t)

m+ Sh(t)
− µ1Sh(t)

dEf (t)

dt
= rFff (t)

(
1− Ef (t)

A

)
φSh(t)− (λ1 + τ1ω1)Ef (t)

dLf (t)

dt
= λ1Ef (t) +

aξSh(t)Lf (t)

m+ Sh(t)
− (λ2 + τ2ω2)Lf (t)

dPf (t)

dt
= λ2Lf (t)− (ω3 + τ3λ3)Pf (t)

dFf (t)

dt
= κλ3Pf (t) + δ1Fff (t)− [λ4 + τ4ω4]Ff (t)

dMf (t)

dt
= (1− κ)λ3Pf (t)− τ5ω5Mf (t)

dFff (t)

dt
= λ4Ff (t)− (δ1 + τ6ω6)Fff (t)

(8)

Parameter Values
Symbol Parameter Value Source
α Intrinsic growth rate of the host 2.76 mm per Month Verreynne, (2009)
Kh Environmental carrying capacity 1000-1500 fruits per

tree
Assumed

A Fruit carrying capacity of eggs 3-8 eggs per fruit Mondaca et al., (2020)
β1 Infestation rate of the pest 0.417-0.5417 Mondaca et al., (2020)
λ1 Transfer rate of Ef to Lf 0.06-0.217 Potgieter, (2013)
λ2 Transfer rate from L stage to Pm 0.01031-0.05025 Potgieter, (2013)
λ3 Transfer rate from P to fertile

adult moth
0.026-0.164 Potgieter, (2013)

λ5 Transfer rate of Ff to fertile Fff 0.33 Anguelove et al., (2016)
ω1 Mortality rate of fertile E 0.03 Potgieter, (2013)
ω2 Mortality rate of fertile L 0.009-0.115 Potgieter, (2013)
ω3 Mortality rate of fertile Pupa 0.007 Potgieter, (2013)
ω4 Mortality rate of Ff 0.5 Patinvoh and Susu, (2014)
ω5 Mortality rate of Mf 0.2 Potgieter, (2013)
ω6 Mortality rate of Fff 0.2 Potgieter, (2013)
ξ Harvesting rate of the host 0.06 Assumed
r Intrinsic egg laying rate 4.725day−1female−1 Potgieter, (2013)
m Half saturation constant 0.8 Bhattacharyya and

Mukhopadhyay (2014)

Table 1: Parameter values of FCM

3 Equilibria Analysis

All the feasible solutions of model system enters the region Ω = {(Sh(t), Ef (t), Lf (t), Pf (t), Ff (t),Mf (t), Fff(t))R7
+ :

N(t)κ/q(α + 1) + ξ for all ξ > 0 and t → 0. Therefore the system 8 is considered to be positively invariant and
attracting and it is sufficient to consider solutions in Ω . The existence, uniqueness and continuation results of system
8 hold in the region and all solutions starting in Ω remain in there for all t ≥ 0. Hence system 8 is considered to
be mathematically well posed and it’s sufficient to consider the dynamics the flow generated by the model system
11 in Ω. Also all parameter and state variables for the model system 8 in Ω are assumed to be non-negative since
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it monitors plants and pests populations. In this study, we consider three equilibrium point of interest: pest free
equilibrium (E0), coexistence equilibrium (E2) and host free equilibrium (E1).

3.1 Pest Free Equilibrium Point

At the pest-free equilibrium points (E0), it is assumed that there is no pest prevalence in the system hence the
population of the host grows logistically to maturity till harvesting time. To analyse pest-free equilibrium point (PFE)
the system model 8 the pest components is set to zero, such that: E∗

f = 0, L∗
f = 0, P ∗

f = 0, F ∗
f = 0,M∗

f = 0, F ∗
ff = 0.

This is achieved by setting the right-hand sides of the host pest interaction model 8 equations to zero, given by:

E0 =
(
S∗
h, E

∗
f , L

∗
f , P

∗
f , F

∗
f ,M

∗
f , F

∗
ff

)
If (E∗

f = 0, L∗
f = 0, P ∗

f = 0, F ∗
f = 0,M∗

f = 0, F ∗
ff = 0, then, the equations representing the pest compartment

reduces to zero. We now solve the first equation of the system model 8 which reduces to equation 9:

0 = α

(
1− S∗

h(t)

Kh

)
S∗
h(t)−

ξS∗
h(t)L∗

f (t)

m+ S∗
h(t)

− µ1S
∗
h(t) (9)

It is important to note that when S∗
h(t) = 0, then we have a trivial solution. Therefore we settle for the second

solution S∗
h = Kh(α−µ1) to represent the solution of S∗

h in the absence of pest. Consequently, the pest free equilibrium
points is given by equation 10:

E0 = (Kh(α− µ1), 0, 0, 0, 0, 0) (10)

Figures 2 and 3 show numerical simulations used to verify the analytical result of PFE point in equation 10. In
Figure 2 the susceptible host population increases sharply to the susceptible host carrying capacity (Kh = 1000).
This clearly indicates that in the absence of pest and when the harvesting term is set to zero there exist an equilibrium
point at the carrying capacity of the susceptible host.
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Figure 2: Pest Free Equilibrium with Zero Harvesting Term (µ1 = 0)

When the harvesting term is introduced in the system, The numerical simulations shows the PFE points is
disturbed, and lowers slightly near the susceptible host carrying capacity as illustrated in Figure 3. This further
reveals that PFE point is not static and can easily be affected by other human and environmental factors.
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Figure 3: Pest Free Equilibrium with Harvesting Term (µ1 = 0.9)

3.2 Host Free Equilibrium Points

At this equilibrium point E2, it is assumed that that the host is absent with the existence FCM pest in the presence
of pheromone traps and sterile insect such that, S&

h = 0, E&
f 6= 0, L&

f 6= 0, P&
f 6= 0, F&

f 6= 0,M&
f 6= 0, F&

ff 6= 0.

0 = (λ1 + τ1ω1)E&
f (t)

0 = λ1E
&
f (t)− (λ2 + τ2ω2)L&

f (t)

0 = λ2L
&
f (t)− (λ3 + τ3ω3)P&

f (t)

0 = κλ3P
&
f (t) + δ1F

&
ff (t)− [λ4 + τ4ω4]F&

f (t)

0 = (1− κ)λ3P
&
f (t)− [τ5ω5]M&

f (t)

0 = λ4F
&
f (t)− (δ1 + τ6ω6(t))F&

ff (t)

(11)

Solving first equation of the equation system 11, it is easy to see that E&
f = L&

f = P&
f = F&

f ,M
&
f = F&

ff = 0.
Therefore, the host free equilibrium can be given by equation 12:

E2 = (0, 0, 0, 0, 0, 0, 0) (12)

From equation 12 it is evidence that at host free equilibrium the pest population become zero. Numerical simulation
illustrated in Figure 4, from the Figure it is shown that the total population of reduces to zero irrespective of the
initial FCM population showing that the population of FCM become extinct because their survival depends on the
availability of the susceptible host.
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Figure 4: FCM Population against Time at Host Free Equilibrium

In this study, the host free equilibrium point is considered trivial, therefore it is not subjected to stability analysis.

3.3 Coexistence Equilibrium Points

In the presence of FCM and the host, we assume that Sh ≥ 0, Ef ≥ 0, Lf ≥ 0, Pf ≥ 0, Ff ≥ 0,Mf ≥ 0, Fff ≥ 0. The
system model has an equilibrium point called coexistence equilibrium point denoted by E2 = (S∗&

h , E∗&
f , L∗&

f , P ∗&
f , F ∗&

f ,M∗&
f , F ∗&

ff .
E2 is the steady state solution where FCM coexist naturally in the population of susceptible host. This is achieved
by setting the right-hand sides of the host pest interaction model 8 equations to zero as shown in equation 13, and
solving for the values of S∗&

h , E∗&
f , L∗&

f , P ∗&
f , F ∗&

f ,M∗&
f , F ∗&

ff .

0 = α

(
1− S∗&

h (t)

Kh

)
S∗&
h (t)−

ξS∗&
h (t)L∗&

f (t)

m+ S∗&
h (t)

− µ1S
∗&
h (t)

0 = rF ∗&
ff (t)

(
1−

E∗&
f (t)

A

)
S∗&
h (t)− (λ1 + τ1ω1)E∗&

f (t)

0 = λ1E
∗&
f (t) +

aξS∗&
h (t)L∗&

f (t)

m+ S∗&
h (t)

− (λ2 + τ2ω2)L∗&
f (t)

0 = λ2L
∗&
f (t)− (λ3 + τ3ω3)P ∗&

f (t)

0 = κλ3P
∗&
f (t) + δ1F

∗&
ff (t)− [λ4 + τ4ω4]F ∗&

f (t)

0 = (1− κ)λ3P
∗&
f (t)− τ5ω5M

∗&
f (t)

0 = λ4F
∗&
f (t)− (δ1 + τ6ω6(t))F ∗&

ff (t)

(13)
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Solving first equation of the equation system 13, we proceed as shown in equation 14:

α

(
1− S∗&

h (t)

Kh

)
S∗&
h (t)−

ξS∗&
h (t)L∗&

f (t)

m+ S∗&
h (t)

− µ1S
∗&
h (t) = 0

α

(
1− S∗&

h (t)

Kh

)
−

ξL∗&
f (t)

m+ S∗&
h (t)

− µ1 = 0

α

(
1− S∗&

h (t)

Kh

)
(m+ S∗&

h (t))− ξL∗&
f − µ1(m+ S∗&

h (t)) = 0

(S∗&
h )2 +

(
µ1 +

m

Kh
− α

)
KhS

∗&
h + (ξL∗&

f + µm− αm)Kh = 0

(14)

Therefore, the solution of S∗&
h (t) is given in equation 15:

S∗&
h (t) = −1

2

[(
µ1 +

m

Kh
− α

)
Kh ±

√(
µ1 +

m

Kh
− α

)
− 4(ξL∗&

f + µm− αm)Kh

]
(15)

Similarly, solving the second equation of equation 13, we proceed as shown in equation 16:

rF ∗&
ff (t)

(
1−

E∗&
f (t)

A

)
S∗&
h (t)− (λ1 + τ1ω1)E∗&

f (t) = 0

rF ∗&
ff (t)S∗&

h (t)−
rF ∗&

ff (t)S∗&
h (t)

A
E∗&
f (t)− (λ1 + τ1ω1)E∗&

f (t) = 0

(16)

Therefore, the solution of E∗&
f (t) is given in equation 17:

E∗&
f (t) =

ArF ∗&
ff (t)S∗&

h (t)

rF ∗&
ff (t)S∗&

h (t) +A(λ1 + τ1ω1)
(17)

Similar procedure can be followed to get the solutions of L∗&
f , P ∗&

f , F ∗&
f ,M∗&

f , F ∗&
ff as given in equation 18 :

L∗&
f =

λ1E
∗&
f

(λ2 + τ2ω2)
(

(λ2 + τ2ω2)− aξS∗&
h

m+S∗&
h

)
P ∗&
f =

λ2L
∗&
f

(λ3 + τ3ω3)

F ∗&
f =

κλ3P
∗&
f + δ1F

∗&
ff

τ4ω4 + λ4

M∗&
f =

(1− κ)λ3P
∗&
f

τ5ω5

F ∗&
ff =

λ4M
∗&
f F ∗&

f

(δ1 + τ6ω6)

(18)

The analytical solution for equation 18 is not easy to find. Therefore, we adopt numerical solutions from MATLAB
software illustrated in Figures 5 and 6. Figure 5 illustrates the dynamic of susceptible host population with time at
the coexistence equilibrium. From the Figure is seen that the equilibrium point is reached at a value lower than the
carrying capacity of the susceptible host. This shows the effect of FCM infestation on the susceptible host population.
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Figure 5: Susceptible Host Population against Time at Coexistence Equilibrium

Figure 6 shows an illustration of total pest population against time in the absence of the control measure at
coexistence equilibrium point using the parameter values in Table 1. Using 600 as initial FCM population. From the
Figure it is observed that the population in FCM increases sharply to the maximum value, then drops and eventually
stabilizes at a value higher than zero.

Time (Days)
0 1 2 3 4 5 6 7 8 9 10

 T
o

ta
l 
F

C
M

 P
o

p
u

la
ti
o

n

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 6: Total FCM Population against Time at Coexistence Equilibrium without control
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4 Basic Offspring Number

In this study, we define offspring reproduction number as the average number of fertile eggs laid by a fertilized
fertile female in its lifetime when introduced in a completely susceptible host environment with the susceptible host
at its carrying capacity. We calculate the basic offspring number following the method used to calculate the basic
reproduction number as proposed by Anguelove et al. (2016) and Lui and Dai, (2018). Assuming that the FCM is
resident within the host population, and since the larval stage is the attacking stage. Using the method of van den
Driessch and Watmough (Anguelove et al., 2016; Okongo, 2016; Van den Driessche & Watmough, 2002), the offspring
reproduction number for the model system 8 can be computed using next generation matrix method. In this case,
we consider FCM compartments which are responsible for reproduction of offspring, in such a case the system model
8 is reordered and reduces to equation 19:

dLf (t)

dt
= λ1Ef (t) +

aξSh(t)Lf (t)

m+ Sh(t)
− (λ2 + τ2ω2)Lf (t)

dPf (t)

dt
= λ2Lf (t)− (λ3 + τ3ω3)Pf (t)

dFf (t)

dt
= κλ3Pf (t) + δ1Fff (t)− [λ4 + τ4ω4]Ff (t)

dMf (t)

dt
= (1− κ)λ3Pf (t)− τ5ω5Mf (t)

dFff (t)

dt
= λ4Ff (t)− (δ1 + τ6ω6(t))Fff (t)

dEf (t)

dt
= rFff (t)

(
1− Ef (t)

A

)
φSh(t)− (λ1 + τ1ω1)Ef (t)

(19)

Let Fi(y) be recruitment rate of new individuals in compartment i, V−
i (y) the transfer of individuals out of the

compartment i and V+
i (y) the transfer of individuals into the compartment i. Then, the system model 19 can be

rewritten as shown in equation 20:
dy

dt
= Fi(y)− Vi(y) (20)

Where i = 1, ....6 and Vi(y) = V−
i (y)− V+

i (y). With Fi(y) and Vi(y) forms the matrices 21 and 22 respectively:

Vi =



(λ2 + τ2ω2)Lf (t)
−λ2Lf (t) + (λ3 + τ3ω3)Pf (t)

−κλ3Pf (t)− δ1Fff (t) + [λ4 + τ4ω4]Ff (t)
−(1− κ)λ3Pf (t) + τ5ω5Mf (t)
−λ4Ff (t) + (δ1 + τ6ω6(t))Fff (t)

−rFff (t)
(

1− Ef (t)

A

)
φSh(t) + (λ2 + τ2ω2)Lf (t)


(21)

and

Fi =


λ1Ef (t) +

aξSh(t)Lf (t)

m+Sh(t)

0
0
0
0
0

 (22)

To obtain the next generation operator, we compute the Jacobian Matrices of Fi and Vi and solve it at the PFE
with E0 = (Kh(α− µ1), 0, 0, 0, 0, 0, 0) denoted by F and V respectively. Consequently, the basic offspring number of
the system model 8 is obtained by determining the spectral radius of the matrix FV −1 as given in the equation 23:

R0 =
aξKh(α− µ1)

(m+Kh(α− µ1))(λ2 + τ2ω2)
(23)

It measures the mean number of new offspring produced by fertilized fertile female in the completely susceptible
host population at its carrying capacity. By substituting the parameter values from Table 1 in the equation 23, the
basic reproduction number is found to be less than unity. Since the basic reproduction number R0 is less than unity,
there is likelihood of pest infestation in the susceptible host reducing.
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5 Stability Analysis

In this section, the local stability of the equilibrium points of the model system 8 is investigated. In order to perform
the local stability analysis of the model system 8 around the equilibrium points E0 and E2.

5.1 Local Stability Analysis

To perform the local stability analysis of the model system 8, we proceed by constructing the Jacobian matrix of the
model system 8 and solving it at the equilibrium points. If the eigenvalues are positive real parts then the equilibrium
points are unstable, but if the eigenvalues are negative real parts then, the equilibrium points are stable. The system
8 can be written in vector form as given in equation 24:

dy

dt
= f(y) (24)

where:
y = (Sh(t), Ef (t), Lf (t), Pf (t), Ff (t),Mf (t), Fff (t))

Then, the function y can be written in matrix form as shown in equation 25:

f(y) =



α
(

1− Sh(t)
Kh

)
Sh(t)− ξSh(t)Lf (t)

m+Sh(t)
− µ1Sh(t)

rFff (t)
(

1− Ef (t)

A

)
φSh(t)− (λ1 + τ1ω1)Ef (t)

λ1Ef (t) +
aξSh(t)Lf (t)

m+Sh(t)
− (λ2 + τ2ω2)Lf (t)

λ2Lf (t)− (λ3 + τ3ω3)Pf (t)
κλ3Pf (t) + δ1Fff (t)− [λ4 + τ4ω4]Ff (t)

(1− κ)λ3Pf (t)− [τ5ω5]Mf (t)
λ4Ff (t)− (δ1 + τ6ω6(t))Fff (t)


(25)

Clearly, the right hand side of equation 25 is continuous and locally Lipschitz, so uniqueness and local existence
of the solution is guaranteed. By computing the Jacobian matrix of equation 25 yields equation 26:

Jf =



x1 0 x2 0 0 0 0
x3 x4 0 0 0 0 x5
x6 x7 x8 0 0 0 0
0 0 x9 x10 0 0 0
0 0 0 x11 x12 0 x14
0 0 0 x17 0 x19 0
0 0 0 0 x21 0 x23


(26)

Where: x1 = α− 2Sh
Kh
− ξLf (m+Sh)−ξShLf

(m+Sh)2
−µ1, x2 = − ξSh

m+Sh
, x3 = rFff

(
1− Ef

A

)
φ, x4 = − rFffSh

A
−(λ1 +τ1ω2),

x5 = rSh, x6 =
aξLf

(m+Sh)2
, x7 = λ1, x8 = aξSh

m+Sh
− (λ2 + τ2ω2), x9 = λ2, x10 = −(λ3 + τ3ω3), x11 = κλ3, x12 =

−(λ4 − τ4ω4), x13 = 0, x14 = δ1, x17 = (1 − κ)λ3, x19 = −τ5ω5, x20 = 0, x21 = λ4, x23 = −(δ1 + τ6ω6). The
Jacobian matrix 26 is evaluating at both the pest free and coexistence equilibrium points that is E0 and E1, if the
eigenvalues are found to be all positive then, the equilibrium point is said to be unstable equilibrium point but if all
the eigenvalues are negative then then, the equilibrium point is said to be stable equilibrium point.

Theorem 1. The PFE point E0 is locally asymptotically stable if R0 < 1 and otherwise unstable

Proof. The local stability analysis of the model system 8 can be determined by solving the jacobian matrix 26 at the
pest free equilibrium points (E0 = (Kh(α− µ1), 0, 0, 0, 0, 0, 0), which yields equation 27:

Jf |E0 =



x1 0 x2 0 0 0 0
0 0 x4 0 0 0 x5
0 x7 x8 0 0 0 0
0 0 x9 x10 0 0 0
0 0 0 x11 x12 0 x13
0 0 0 x14 0 x15 0
0 0 0 0 x16 0 x17


(27)

12
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Where: x1 = µ1 − α, x2 = − ξKh(α−µ1)
m+Kh(α−µ1)

= −R0
(λ2+τ2ω2)

a
, x4 = −(λ1 + τ1ω2), x5 = rKh(α − µ1), x7 = λ1,

x8 = aξKh(α−µ1)
m+Kh(α−µ1)

− (λ2 + τ2ω2) = (λ2 + τ2ω2)(R0 − 1), x9 = λ2, x10 = −(λ3 + τ3ω3), x11 = κλ3, x12 = −τ4ω4,

x13 = δ1, x14 = (1− κ)λ3, x15 = − [τ3ω3], x16 = λ4, x17 = −(δ1 + τ6ω6). The matrix 27 is solved using the Wolfram
mathematica software, an extract of the solution is as given by the following equation:

s1 = x1, s2 = x15, s3 = s4 = s6 = s7 = [x10x13x16x4x8 − x10x12x17x4x8 − x11x16x5x7x9 + (−x10x13x16x4 +
x10x12x17x4 − x10x13x16x8 + x10x12x17x8 + x10x12x4x8 − x13x16x4x8 + x10x17x4x8 + x12x17x4x8) + (x10x13x16 −
x10x12x17 − x10x12x4 + x13x16x4 − x10x17x4 − x10x12x4 − x10x12x8 + x13x16x8 − x10x17x8 − x12x17x8 − x10x4x8 −
x12x4x8 − x17x4x8) + (x10x12 − x13x16 + x10x17 + x12x17 + x10x4 + x12x4 + x17x4 + x10x8 + x12x8 + x17x8 + x4x8) +
(−x10 − x12 − x17 − x4 − x8)] Since all the eigenvalues of the pest free equilibrium are negative, such that if R0 < 1
then the pest free equilibrium point is said to be a stable equilibrium point but if R0 > 1 then the equilibrium point
would be unstable . The system 8 is therefore locally asymptotically stable around the pest free equilibrium point
(E0 = (Kh(α− µ1), 0, 0, 0, 0, 0, 0).

Theorem 2. The coexistence equilibrium point E1 is locally asymptotically stable if R0 < 1 and otherwise unstable

Proof. The local stability analysis of the model system 8 can be established by solving the Jacobian matrix 26 at the
coexistence equilibrium points (E1) which yields equation 28 :

Jf =



y1 0 y2 0 0 0 0
y3 y4 0 0 0 0 y5
y6 y7 y8 0 0 0 0
0 0 y9 y10 0 0 0
0 0 0 y11 y12 0 y14
0 0 0 y17 0 y19 0
0 0 0 0 y21 0 y23


(28)

Jf |E1 =



y1 0 y2 0 0 0 0
0 x3 x4 0 0 0 x5
x6 x7 x8 0 0 0 0
0 0 x9 x10 0 0 0
0 0 0 x11 x12 0 x13
0 0 0 x14 0 x15 0
0 0 0 0 x16 0 x17


(29)

Where: y1 = α− 2S∗&
h
Kh
− ξL∗&

f (m+S∗&
h )−ξS∗&

h L∗&
f

(m+S∗&
h

)2
− µ1, y2 = − ξS∗&

h

m+S∗&
h

, y3 = rF ∗&
ff

(
1− E∗&

f

A

)
, y4 = − rF

∗&
ff S

∗&
h

A
−

(λ1 + τ1ω2), y5 = rS∗&
h , y6 =

aξL∗&
f

(m+S∗&
h

)2
, y7 = λ1, y8 =

aξS∗&
h

m+S∗&
h

− (λ2 + τ2ω2), y9 = λ2, y10 = −(λ3 + τ3ω3),

y11 = κλ3, y12 = −τ4ω4, y14 = δ1, y17 = (1 − κ)λ3, y19 = −τ5ω5, y21 = λ4, y23 = −(δ1 + τ6ω6), With the values
of S∗&

h , E∗&
f , L∗&

f , P ∗&
f , F ∗&

f ,M∗&
f , F ∗&

ff are as given in equations 15, 17 and 18. The matrix 28 is solved using the
Wolfram mathematica software, which yields the eigenvalues as: s1 = y15, s2 = s3 = s4 = s5 = s6 = s7 = s8 =
[x10x13x16x2x4x6 − x10x12x17x2x4x6 − x10x13x16x2x3x7 + x10x12x17x2x3x7 − x1x10x13x16x4x8 + x1x10x12x17x4x8 +
x1x11x16x5x7x9+. . .]. Since all the eigenvalues of the coexistence equilibrium points are negative, then the coexistence
equilibrium point is a stable equilibrium point. The system 8 is therefore locally asymptotically stable around the
the coexistence equilibrium points E1.

6 Global Stability Analysis

For population models, global stability should be used in a restricted sense, that is, the definition must be restricted
to the feasible region. Such that if a disturbance shift the state of the system to any other feasible state and the
system is thereafter left alone, then, the natural dynamics of the system would move the state back into a small
neighborhood of the equilibrium. If the disturbance caused the extinction of one species or invasion by a new species,
mathematically and biologically the system should be thought of as a new system. Consequently, the equilibrium
points, and the stability of the new system will be examined (Goh Nedlands, 1976).
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6.1 Global Stability of PFE

To study the global asymptotic stability of the PFE, one common approach is to construct an appropriate Lyapunove
function as proposed by Van Den Driessche & Watmough, (2002). However, its simpler to apply the method intro-
duced by Catillo-Chevez et al. (2002) and adopted Bhunu and Mushayabasa, (2014). Therefore, we study the global
stability of the system model 8 around pest free equilibrium point (E0). Assuming the system is cooperative on R7

+,
such that the growth in any compartment impact positively on the growth of all other compartment. We investigate
the global asymptotic stability of the pest free equilibrium using the theorem of Catillo-Chevez et al. (2002), by
rewriting the system 8 in the form shown in equation 29:

dX

dt
= F (X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0

(30)

Where: X = (Sh) ∈ R1
+ denotes noninfectious compartments and Z = (Ef , Lf , Pf , Ff ,Mf , Fff , ) ∈ R6

+ denotes
the infectious pest compartments. E0 = (X∗, 0) represents the pest free equilibrium of the system. If this points
satisfies the following conditions: (i) for dX

dt
= F (X, 0), where X∗ is globally asymptotically stable, (ii) dZ

dt
=

DzG(X, 0)Z − G(X,Z), G(X,Z) ≥ 0 for all (X,Z) ∈ Ω, then, we can conclude that E0 is globally asymptotically
stable if the following theorem 29 holds:

Theorem 3. The equilibrium point E0 = (X∗, 0) of the system 29 is globally asymptotically stable if R0 ≤ 1 and the
conditions (i) and (ii) are satisfied.

Proof. To prove this, we start by defining new variables and dividing the system 8 into sub systems X = (Sh) and
Z = (Ef , Lf , Pf , Ff ,Mf , Fff ). From equation 29, we have two vector valued functions G(X,Z) and F (X,Z) given
by equations 30 and 31:

F (X,Z) =
(
α
(

1− Sh(t)
Kh

)
Sh(t)− ξSh(t)Lf (t)

m+Sh(t)
− µ1Sh(t)

)
(31)

and

G(X,Z) =



rFff (t)
(

1− Ef (t)

A

)
Sh(t)− (λ1 + τ1ω1)Ef (t)

λ1Ef (t) +
aξSh(t)Lf (t)

m+Sh(t)
− (λ2 + τ2ω2)Lf (t)

λ2Lf (t)− (λ3 + τ3ω3)Pf (t)
κλ3Pf (t) + δ1Fff (t)− (λ4 + τ4ω4)Ff (t)

(1− κ)λ3Pf (t)− τ5ω5Mf (t)
λ4Ff (t)− (δ1 + τ6ω6(t))Fff (t)


(32)

Now, let consider the reduced system, dX
dt

= F (X, 0) from condition (i) yields:

dSh
dt

=α

(
1− Sh(t)

Kh

)
Sh(t)− µSh(t) (33)

We note that this is asymptomatic dynamics system, independence of the initial conditions in D, therefore the
convergence of the solutions of the reduced system 32 is global in D. We then compute:

G(X,Z) = DzG(X∗, 0)− Ĝ(X,Z)

and show that
Ĝ(X,Z) ≥ 0

Now, we let B = DzG(X∗, 0), which is the Jacobian of Ĝ(X,Z) taken in (Ef , Lf , Pf , Ff ,Mf , Fff ) and evaluated at
(X∗, 0). Such that the matrix B is given by the equation 33:

B =


x1 0 0 0 0 x2
x3 x4 0 0 0 0
0 x5 x6 0 0 0
0 0 x7 x8 0 x9
0 0 x11 0 x12 0
0 0 0 0 0 x13

 (34)

Where: x1 = −(λ1 + τ1ω1), x2 = −rKh(α − µ1), x3 = λ1, x4 = aξKh(α−µ1)
m+Kh(α−µ1)

− (λ2 + τ2ω2), x5 = λ2, x6 =

−(λ3 + τ3ω3), x7 = κλ3, x8 = −τ4ω4, x9 = δ1, x10 = δ2, x11 = (1 − κ)λ3, x12 = −[ε1 + τ5ω5, x13 = −(δ1 + τ6ω6),
x14 = λ4, x15 = −(δ2 + τ7ω7).
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The value for Ĝ(X,Z) is given by equation 34:

Ĝ(X,Z) =



rFff (t)
(

1− Ef (t)

A

)
(Kh(α− µ1)− Sh(t)

aξLf (t)( (Kh(α−µ1)
m+(Kh(α−µ1)

− Sh
m+Sh

)

0
0
0
0


(35)

Since Kh ≥ Sh. it is clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ D, then, the pest-free equilibrium will be globally
asymptotically stable. We also notice that the matrix B is an M-matrix since all its off-diagonal elements are non-
negative. Therefore, this proves that PFE is globally asymptotically stable.

The implication of this results is that the pest free equilibrium will be globally asymptotically stable. However,
whenever the FCM undergo diapausing the PFE may not be necessarily globally asymptotically stable which is not
true from the values of Ĝ(X,Z) ≥ 0 everywhere in D which suggests the existence of multiple coexistence equilibria.

6.2 Global Stability Analysis of Coexistence Equilibrium

Theorem 4. For host-pest interactions model, sufficient condition for global stability are (i) coexistence equilibrium
point is feasible, (ii) the equilibrium is a local asymptomatic stable solution.

Proof. Global stability of coexistence equilibrium points can be constructed using a suitable Lyapunov function an
approach adopted by Korobeinikor (2004a) and ullah et al. (2013). In this approach Lyapunov function is constructed
basing on equation 35:

L =
∑

ai(xi − x∗&i lnxi) (36)

Where ai is the constant selected such that ai > 0, xi is the population of the ith compartment and x∗&i is the
coexistence equilibrium point. Therefore, consider the Lyapunove function in equation 36:

L =a1(Sh − S∗&
h lnSh) + a2(Ef − E∗&

f lnEf ) + a3(Lf − L∗&
f lnLf ) + a4(Pf − P ∗&

f lnPf )

+ a5(Ff − F ∗&
f lnFf ) + a6(Mf −M∗&

f lnMf ) + a7(Fff − F ∗&
ff lnFff )

(37)
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Differentiating 4.7.8 with respect to time yields equation 37:

dL

dt
=a1

(
1− S∗&

h

Sh

)
dSh
dt

+ a2

(
1−

E∗&
f

Ef

)
dEf
dt

+ a3

(
1−

L∗&
f

Lf

)
dLf
dt

+ a4

(
1−

P ∗&
f

Pf

)
dPf
dt

+ a5

(
1−

F ∗&
f

Ff

)
dFf
dt

+ a6

(
1−

M∗&
f

Mf

)
dMf

dt
+ a7

(
1−

F ∗&
ff

Fff

)
dFff
dt

= a1

(
1− S∗

h

Sh

)[
α

(
1− Sh(t)

Kh

)
Sh(t)− ξSh(t)Lf (t)

m+ Sh(t)
− µ1Sh(t)

]
+ a2

(
1−

E∗&
f

Ef

)[
rFff (t)

(
1− Ef (t)

A

)
Sh(t)− (λ1 + τ1ω1)Ef (t)

]

+ a3

(
1−

L∗&
f

Lf

)[
λ1Ef (t) +

aξSh(t)Lf (t)

m+ Sh(t)
− (λ2 + τ2ω2)Lf (t)

]

+ a4

(
1−

P ∗&
f

Pf

)
[λ2Lf (t)− (λ3 + τ3ω3)Pf (t)]

+ a5

(
1−

F ∗&
f

Ff

)
[κλ3Pf (t) + δ1Fff (t)− [λ4 + τ4ω4]Ff (t)]

+ a6

(
1−

M∗&
f

Mf

)
[(1− κ)λ3Pf (t)− τ5ω5Mf (t)]

+ a7

(
1−

F ∗&
ff

Fff

)
[λ4 Ff (t)− (δ1 + τ6ω6(t))Fff (t)]

(38)

Where: Sh(t) = S∗&
h , Ef (t) = E∗&

f , Lf (t) = L∗&
f , Pf (t) = P ∗&

f , Ff (t) = F ∗&
f ,Mf (t) = M∗&

f , Fff (t) = F ∗&
ff .

Following McClusky’s (2010) approach, and assuming that system model 8 is positively invariant, equation 37 is
non-positive. Hence dL

dt
≤ 0∀Sh, Ef , Lf

, Pf , Ff ,Mf , Fff > 0 and is zero when Sh(t) = S∗&
h , Ef (t) = E∗&

f , Lf (t) = L∗&
f , Pf (t) = P ∗&

f , Ff (t) = F ∗&
f ,Mf (t) =

M∗&
f , Fff (t) = F ∗&

ff . Therefore, the largest invariant set in {(S∗&
h , E∗&

f , L∗&
f , P ∗&

f , F ∗&
f ,M∗&

f , F ∗&
ff ) ∈ D} such that

dL
dt

= 0 is the singleton {E1} which is the coexistence equilibrium point. According to the invariant principle
put forward by Lasalles, (1976), E1 is globally asymptotically stable in D, if R0 ≤ 1 the interior of D, otherwise
unstable.

This results implies that the elimination of FCM is possible irrespective of the initial sizes of the sub-populations
of FCM of the model, whenever the threshold parameter R0 is less than unity. Therefore, from Lyapunov-LaSella
invariance principle, the system model 8 is uniformly persistence.

7 Numerical Simulation

The impact of FCM on the susceptible host is obtained by performing numerical simulations of the system model 8
using parameters on Table 1 and setting the temperature at 200. Graphical illustration of the impact of FCM on
the susceptible host is shown in Figures 7, 8 and 9. A graph of susceptible host against time for a period of 30 days
is illustrated in Figure 7. From the graph the population of the susceptible grows from the FCM initial population
of 100 logistically and level off at 428. Since the carrying capacity Kh of the susceptible host is set at 1000, the
presence of the FCM pest clearly makes the susceptible host to grow below its carrying capacity. When the FCM
initial population is increased to 500 the susceptible host population drops exponentially and again levels off at 428,
this is due to the effect of FCM on the population of the susceptible host.
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Figure 7: A plot of Susceptible Host against Time

Figure 8 illustrates a graph of FCM total population with time in a period of 30 days. From the graph its observed
that the FCM population first sharply increase from the initial population of 1500 to a maximum population of 372099,
then starts to drops gradually and levels off at a population of 4272 after 30 day. If the initial population of FCM
in the field is reduced to about 100, the population of FCM is observed to rise to a maximum value of 30575, then
drops gradually and levels at the minimum value of 1757. The first increase is due to the availability of food for
the FCM pest as time goes by the available number of susceptible host starts to decline leading to the decline of
the FCM population in the field. The population of the FCM does not drop to zero because the susceptible host is
continuously being introduced in the field, under no control.
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Figure 8: A plot of Total FCM Population against Time

Figure 9 shows a plot of susceptible host with time in the presence of FCM under different susceptible host
recruitment rate that is α = 0.2, 1.0, 2.0, 2.5 while leaving other parameters in Table 1 constant. From the Figure
it observed that the number of susceptible hosts decrease from the initial number 100 with time and levels off at 0
when the α = 0.2, but when α = 2.5 the susceptible host increase gradually and level off at a values lower than the
host’s carrying capacity. This shows that at very low α the FCM feeds on the available host until all the host are
completely depleted from the population.
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Figure 9: A plot of the Susceptible host with time in the presence of the FCM
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8 Discussion and Conclusions

In this paper, deterministic model of FCM interaction with susceptible host is developed and carefully analysed to
bring insight into its dynamical features of FCM interaction with the hosts. The model is considered is considered to
be biologically and mathematically well posed. Using next generation matrix method the basic reproduction number
is obtained. the model was analysed qualitatively and the local and global stability of their associated equilibria.
The dynamics of the FCM infestation on the susceptible host population showed that in the absence of any control
measures the population of FCM would increase. Consequently leading to decrease of susceptible host population.
As the host population reduces FCM at the larval stage continue to lose food, hence their population also starts to
decline as illustrated by numerical simulation in Figure 7. From the numerical simulation it can be seen that the
presence of FCM in a farm greatly affects the population of susceptible host, hence there is a need to control FCM
for better farm produce. This can be done using biological control, or chemical control strategies. Therefore, in our
next paper we will by introduce control strategies in our model.

9 Recommendations

In this study, we have only concentrated on the FCM interaction with the susceptible host without including any
control measure. Therefore, in our next study area, we shall extend the model to include FCM control strategies.
There should be more enlightenment campaign on the economic effects of FCM to crops and identification method
of FCM on crops by the farmers.
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