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Abstract  

This study  

 

 

 

 

 

 

1. Introduction 

Classes of  cohomology are obtained to the representation of basic properties of smooth manifolds. These results a 

useful tool to the study of differential operators that compose the different field equations from the differential 

forms, which can be represented these differential operators. However, we want cohomology groups of sheaves 

whose germs are these differential operators and that considering to a complex Riemannian manifold as the best 

adequate to model the space-time including the microscopic effects and singularities, can be worked generalizations 

of curvature and other observables. However, in the invariant studies between homology and curvature [1], is very 

important the relations that can be given to start of a good integrals theory to explore a complex Riemannian 

manifold on the base of the  cohomology and the holomorphic functions that can be used to reconstruct this 

 cohomology. 

Then images of integral transforms are geometrical invariants to reconstruct the Riemannian manifold, considering 

that cohomology classes determine integral kernels on the complex spaces as ,nC or even .nCP  But the inversion 

formula, that is to say, the reconstruction problem of the cohomology class from the integral transform establishes 

the problem of that many forms represent the same cohomology class. In this situation the natural solution for this 
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last problem is consider an integral transform by a differential operator, considering the pertinent parity of space 

dimension where the inversion has place.  

 

In the sheaves context, where the differential operators are their germs, there are many ways to define cohomology 

groups for a sheaf and such groups are eventually all isomorphic.  

Likewise, is punctually important consider some facts on de Rham cohomology and its extension in the complex 

domain through Dolbeault cohomology.  

In a de Rham complex, we consider the exterior differential forms on some smooth manifold ,M with the exterior 

derivative ,d as the differential, then this complex stays written as: 

     

)1(,)()()(0 210  MMM  

 

where ),(Mk is the differential k form space. The de Rham cohomology will help to classify these different 

types of closed forms on a manifold M
1
. 

However, if these object spaces are sheaf spaces, as we want establish to give a direct classification of the 

differential operators seen, then as germs of these sheaves satisfy to a de Rham cohomology that: 

 

)2(,0 210 
ddd

DDD R  

 

In addition, we can write to the Dolbeault cohomology
2
 that: 

 

)3(,0 2,1,0, 


 pppp

X DDD  

 

from which de Rham cohomology group and Dolbeault group can be defined. 

Then their cochain complex to de Rham cohomology is: 

 

)4(,'''0 210 
ddd

DDD R  

 
and the corresponding to Dolbeault cohomology: 

 

)5(,'''0 2,1,0, 


 pppp

X DDD  

 

We want to prove that the new cohomology groups are isomorphic to the old ones. 

From (2)-(5), if we regard ,R as a sheaf group of constant real-valued function; it gives different resolutions
3
. The 

question is whether these different resolutions give the same cohomology group. 

 

There are many ways to define cohomology groups for a sheaf and such groups are eventually all isomorphic.  

                                                           
1
 This classification is realized through two closed forms, for example , and ),(Mk which are cohomologous if these 

differ for an exact form. Likewise, if ,  is exact. Then is defined the thk de Rham cohomology group ),(MH k

dR
to be 

the set of equivalence classes, that is to say, the set of closed forms in ),(Mk modulo the exact forms.  

Note that, for any manifold ,M with ,n connected components  .)(0 n

dR MH R  

This follows from the fact that any smooth function on ,M with zero derivative (i.e. locally constant) is constant on each one 

the connected components of .M  

 
2
 This cohomology is the complex analogous of the de Rham cohomology, that is to say, is the corresponding analogous of the 

de Rham cohomology to complex manifolds.  
3
 Recall that given a sheaf ,F over a manifolds ,X a resolution of ,F is a complex ,0 10  FF together with a 

homomorphism  ,10
FF  such that 

,0 210 FFF   

is an exact complex of sheaves. 
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We consider the Čech cohomology 
4
 and the resolution of flasque sheaves [2] 

5
 then any sheaf ,F on ,X admits a 

resolution ,0 10  FF such that all schemes ,0, ii
F are flasque. If ,F is a sheaf of Abelian groups over 

a manifold ,X then ,F admits a resolution of flasque sheaves ,FF so that the thj cohomology group 

),,( FXH j of the sheaf ,F is the thj cohomology of the complex which is defined by: 

 

)6(,
)))()(:Im(

))()(:ker(
:),(

11

1

XX

XX
XH

jjj

jjj
j

FF

FF
F












  

This definition of cohomology is independent of the chosen flasque resolution. If the manifold ,X is para-compact
6
, 

then the above two groups are isomorphic, that is to say, ).,(),( FF XHXH qq 


 

Remember that the Flasque sheaves are soft and acyclic. Thus, we will be interested in their resolution.  

 

2. Considering Resolutions of Acyclic Sheaves 

Let ,F be a resolution of a sheaf ,F for sheaves .F  We say that the resolution ,F is acyclic on ,X if 

,0),( qs XH F ,0q and .0s The following theorem said that resolution of “flasque” sheaves can be 

replaced by acyclic sheaves.  

 

Theorem 2. 1 (de Rham-Weil isomorphism theorem).  If ,F is a resolution of a sheaf ,F by sheaves ,F such 

that ,F is acyclic on ,X then there is a functorial isomorphism 

 

)7(),,,())(( dXHXH pp
FF 

  

 

Proof. [2].   

 

To determine which sheaf is acyclic we need the following definition. 

 

Def. 2. 1. A sheaf ,F  is called soft if the restriction  

 

)8(),,(),( FF KX   

 

                                                           
4
 For any sheaf ,F of an Abelian group over a topological space, the Čech cohomology group is the cohomological space 

).,( FXH p
This cohomology is a cohomological theory based on the intersection properties of open covers of a topological 

space. The Čech cohomology of ,U (let ,U be an open cover of X ) with the values in ,F is defined to be the cohomology of 

the cochain complex ).),,(( FU
C Thus the thq Čech cohomology is given by  

),,(/),())),,(((:),( FUFUFUF
qqqq BZCHXH   


 

The Čech cohomology of ,X is defined by considering refinements of open covers. If ,V is a refinement of ,U then there is a 

mapping in cohomology  

),,(),( FVFU
 HH


 

The open covers of ,X form a directed set under refinement, so the above mapping leads to a direct system of Abelian groups. 

The Čech cohomology of X with values in ,F  is defined as the direct limit 

),,(lim:),( FVF
U




 HXH

  

 of this system. 
 
5
 A flasque sheaf (also called a flabby sheaf) is a sheaf ,F  with the following property: if  ,X is the base topological space on 

which the sheaf is defined and 

,XVU   

Are open subsets, then the restriction mapping  

),,(),(: FF UVVU   

 Is surjective as a mapping of groups (rings, modules, etc).  
 
6
 A para-compact space is a topological space in which every open cover admits an open locally finite refinement. 
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is surjective for any closed subset ,XK  that is to say, every section of ,F on a closed subset ,K can be extended 

to .X We consider the following proposition. 

 

Proposition 2. 1. Soft sheaves are acyclic. Any sheaf of modules over a soft is soft and hence acyclic.  

 

Proof. [3].   

 

This is frequently applied to the sheaf of continuous (or differentiable) functions on a manifold, which is easily 

shown to be soft. Notice that the sheaf of holomorphic functions on a complex manifold is not soft.   

We consider the following example.  

 

)6(,
)))()(:Im(

))()(:ker(
:),(

11

1

XX

XX
XH

jjj

jjj
j

FF

FF
F












  

This definition of cohomology is independent of the chosen flasque resolution. If the manifold ,X is para-compact
7
, 

then the above two groups are isomorphic, that is to say, ).,(),( FF XHXH qq 


 

Remember that the Flasque sheaves are soft and acyclic. Thus, we will be interested in their resolution.  

 

3. Considering Resolutions of Acyclic Sheaves 

Let ,F be a resolution of a sheaf ,F for sheaves .F  We say that the resolution ,F is acyclic on ,X if 

,0),( qs XH F ,0q and .0s The following theorem said that resolution of “flasque” sheaves can be 

replaced by acyclic sheaves.  

 

Theorem 2. 1 (de Rham-Weil isomorphism theorem).  If ,F is a resolution of a sheaf ,F by sheaves ,F such 

that ,F is acyclic on ,X then there is a functorial isomorphism 

 

)7(),,,())(( dXHXH pp
FF 

  

 

Proof. [2].   

 

To determine which sheaf is acyclic we need the following definition. 

 

Def. 2. 1. A sheaf ,F  is called soft if the restriction  

 

)8(),,(),( FF KX   

 

is surjective for any closed subset ,XK  that is to say, every section of ,F on a closed subset ,K can be extended 

to .X We consider the following proposition. 

 

Proposition 2. 1. Soft sheaves are acyclic. Any sheaf of modules over a soft is soft and hence acyclic.  

 

Proof. [3].   

 

This is frequently applied to the sheaf of continuous (or differentiable) functions on a manifold, which is easily 

shown to be soft. Notice that the sheaf of holomorphic functions on a complex manifold is not soft.   

We consider the following example. 

 

Example 2. 1. Let ,X be a real smooth manifold of dimension .n We consider the resolution of sheaves 

 

)9(,00 110   n
d
qq

dd

EEEEE R  

 

                                                           
7
 A para-compact space is a topological space in which every open cover admits an open locally finite refinement. 
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Since ),(0 XCX

 EE is soft, all sheaves ,p
E are XE modules so that ,p

E are acyclic. Then de Rham 

cohomology groups of ,X are precisely 

 

)10(),,,(),( dXHXH pp

DR

 ER  

 

As was mentioned in the applications of finite refinements over sheaves, we need define also a fine sheaf, as the 

object created over ,X with “partitions of unity”. Likewise, for any open cover of the space ,X we can find a 

family of homeomorphisms from the sheaf to itself with sum ,1 such that each homomorphism is ,0 outside of some 

element of the open cover. 

Fine sheaves are usually and uniquely used over paracompact Hausdorff spaces .X Typical examples is the sheaf of 

continuous real functions over such space, or smooth functions over a smooth (para-compact Hausdorff) manifold, 

or modules over these sheaves of rings [4]. 

Fine sheaves on para-compact Hausdorff spaces are soft and acyclic. 

 

3. Some on XD  Shemes [4, 5] 

 

A XD scheme is a XE scheme, since their connection of the XD scheme is defined over smooth scheme. The 

specific term as XD scheme is because we consider their connection. 

Fix a base field k , and a smooth scheme X , over k . A XD scheme is a scheme equipped with a flat connection over 

X . For an affine scheme, this is equivalent to being the spectrum of an XD algebra. For example, affine XD

schemes of finite type have the form: 

 

(11)),)/  Spec((Sym
Xx IF

O
D  

for some coherent XO sheaf ,F and some XD ideal sheaf I . Throughout this research, we will often pass freely 

from XD algebras to affine XD schemes and vice-versa (the two categories are opposite in the usual sense) The 

integral transforms arise as a solution in geometrical analysis, if is the case, for example analyzing vector 

holomorphic bundles. 

A very important example of an affine XD scheme is ) Spec(Sym M , for any XD module M . This suggests that 

XD algebras are generalizations of XD modules, which is supported by the following fact: XD modules 

parameterize solutions of linear differential equations, while XD algebras parameterize solutions of nonlinear 

differential equations. The difference implies the use of the quotient corresponding algebra, related with (11). More 

precisely, suppose we take the XD )chemes(Sym n

XD , where the ideal I , is generated (locally) by “polynomials”

n

XDSymP,...,P k 1  . 

Then giving a map of XD modules: 

 

)12(,/)(Sym n

X xI OD  

 

is the same as to give a collection of functions ,,...,1 nff  which satisfy the system of nonlinear differential equations: 

 

)13(,0),...,(P 11 nff  

 

A map of XD schemes is a morphism of XD algebras at the level of coordinate rings. A more involved notion is 

the following: 

 

Def. 3. 1. Given a morphism of XD schemes  ,Z Y  the functor of horizontal sections  ),HorHom( Y Z, is given 

by: 

 

(14) ),HorHom(Sch Y S,ZS   

 

HorHom,consists of horizontal morphisms, i.e. morphisms of XD schemes. 
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The above definition is completely analogous to that of the functor Sect,  replacing XO  with 
XD  . Note that for a 

morphism of XO  −algebras to be a morphism of XD algebras is a closed condition. Since the functor of sections 

is representable, it follows that the functor of horizontal sections is also representable.  

Moreover  ),,Sect(),(HorSect Y ZY Z  is a closed embedding. 

 

4. de Rham and Dolbeault Theorems for Currents  
 

A basic observation is that the Poincaré and Dolbeault-Grothedieck lemmas still hold for currents. These open big 

possibilities on the application of currents as scrutiny (as test function) and classes element determination in a 

resolution cohomology.  If  ), ,( dqD and  ), ,'(  , dqpD denote the complex of schemes of degree  -q currents (respectively 

of ) ,( qp -currents we still have de Rham and Dolbeault sheaf resolutions 

)15(,'''
~

0: 210 
ddd

deRhamCch  DDDR  

 

 

 

and 

 

)16(,'''0: 2,1,0, 


 pppp

XDolbeaultCch DDD  

 

Since the sheaves p'D , are all XE modules, they are acyclic so that we have the canonical isomorphisms 

 

)17(,
)))(')(':Im(

))(')(':ker(
),',(),(

1

1

XXd

XXd
dXHXH

qq

qq
qq

DR DD
DD

D










R  

and the Dolbeault corresponding  

 

)18(,
))(')(':Im(

))(')(':ker(
),',(),(

,1,

1,,
,

XX

XX
XHXH

qpqp

qpqp
pqqp

DD

DD
D











R  

 

In other words, we can attach a cohomology class ),,(}{ RMH q

DR  to any closed current ,  of degree ,q or 

respectively a cohomology class ),(}{ , MH qp to any  closed current of bi-degree ).,( qp  

In general, a current ),('1 MDT  is called a distribution or generalized function (e.g. we take test functions instead 

of test forms). 

 

5. Cohomologies by DX-Schemes [4, 5]   
 

The Verdier duality implies the following natural bijection for XD modules: 

 

)19(),),,(H(Hom),(Hom n

dR VXVkX MOM 
xD

 

 

for any XD module M , and any vector space V . By definition, ),,(HdR MX  are the cohomology groups of the 

complex of sheaves of -k vector spaces: 

 

)20(,** 1    XTXT ii

XX OO
MM  

 

These cohomology groups coincide with ),(M

R where ,ptX :  is the projection to a point. Note that (20) 

implies that 

 

)21(),,(SymH)Sym,(H n

dR MM XX 
 

 

The shift by n happens when we pass from XD modules to quasi-coherent 
xO −modules, as we will be doing now. 

This induces a long exact sequence on cohomology: 
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(22), ),-(),(),-( dR

1-

dRx

1-

dR MMMM xXHXHxXH nnn    

 

We affirm that the last group is 0 . To see this, recall that Lichtenbaum’s theorem says that the Čech cohomological 

dimension of x-X , is at most 1,-n that is to say, 0,),-( FxXH n for any quasi-coherent F . As the XD module 

M  , is a quotient of the form: 

 

(23)M,F
O


XXD  

 

for some quasi-coherent F , and 

 

)24(,0),(),(Hn

dR  FF
x

O
xXHxX n

XD  

it also follows that 0),(Hn

dR  MxX . Therefore, (21) and (22) imply: 

 

)25(),Im/ (Sym) Sym,(H x MM  X  

 

 

6. Results: Integral Geometry   
 

We consider the before tools. Then we have the following results with applications in geometrical analysis [7]. 

Let ,M be a complex holomorphic manifold (or complex Riemannian manifold [8]). We consider its corresponding 

reductive homogeneous space determined by the flag manifold ,/ PG
C

F  with ,P a parabolic subgroup of .
C

G  We 

consider an open orbit given by the Stein manifold ,/ HGD F with ,H a compact subgroup of the real form G , of 

.
C

G  

In general, let ),('1 MDT  be the current in a complex holomorphic manifold  .M  Likewise, let be ,M and ,N two 

complex holomorphic manifolds, then the holomorphic mapping  

 

),(')(': ,, NDMDT qpqp 


 

 

defines a current where the rules of complex differential calculus can be easily extended to this case.  

Let ,nM C and we consider linearly concave domains
8
 (or more yet )n

CP . ,D has structure of complex vector 

space. Let ,/1 DD n
C be a holomorphic linearly convex domain conformed for holomorphic hyperplanes ),(Di

with ,2,1i  in .1D Let ),( 1DH the holomorphic complex functions space defined on 
1D [9]. Let ,MD  a fibered 

vector bundle seated in the complex holomorphic manifold .M  Let ),(, DA qp the space of ),( qp forms on ,M with 

values in D (that is to say, the space of global sections of the fibered tangent bundle DMTqp  )(, ).  

By this way, the bi-graded algebra is the space  

 

),()( , DADA qp

pmn   

 

Theorem. 4. 1 (F. Bulnes). We consider the current  

 

)26(),()(: DLDHT 


 

 

where ),(DH is a space of holomorphic complex functions, ),(DL is a co-cycles space (in this case linearly concave 

domains). Then (26) on a Dolbeault cohomology is a Dolbeault cohomology of the current, that is to say 

 

)27(),()( DTDT   

 

Note. Here the current can be viewed as generalized function of cycles in a complex vector space D. 

 

                                                           
8
 A domain ,D in ,n

C (or n
CP ) is linearly concave if ,)( DD

i

i  with ,2,1i (holomorphic planes). 
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Proof. We consider the diagrams of complexes
9
 

 

*)(*)(*

)28(

)()(

*

FunctionalFunctionalFunctional

DLDHD

DLDHD

T

Tf













 

 

and the corresponding to the bi-graded algebra 

)29(*),(*)(*)(0

~
?

))(()()(

1,01,00,0

1,01,0'0,0

*

DBDBDB

TT

DADADA

T

T



















 

 

where ),(D is a subspace of co-dimension 1 in D 10
. We fix the satellites  ,'T and ,1T from (29) and we compose 

the diagram (29) with the diagram (28). Indeed, due to that ,T  is injective in ),(DH then 

 

)30(,0)()(0  DLDHD  

 

is an exact succession then 

 

)31(,0))(()()(0 1,01,00,0   DBDBDB   

 

is exact for each .1,0i Then to the composition ),(' fT ),(DHf   we have that 

 

)32()),(()()( 1,01,00,0   DADADA   

 

is an epimorphism ).0)('(  fT


  

Of this result, we have an unique homomorphism ),()(: 0,00,0 


 DBDAT  such that inserted in the diagram (29) 

leaves commutative to (28). Let ),()(:2

 DHDH  and we consider (22), the exact succession to define )).(( DLT


 

Then we have that 

 

*)(*)(*

)33(     

)()(

*

321

DLDHD

DLDHD

T

Tf















 

 

where through the composition (29) we have: 

 

),())((

)('))((

)())((

))(())((

))(())(())(()(

3

0,0

0

3

0,,0

12

1,0

12

0,0

012

0,0

03

0,0





















ADLT

ADHT

ADHT

DHTDB

DLTDBDLTB

 

 

Since ),()(: 1,00,0   DBDB has null kernel, we obtain: 

 

),())(())(()( 3

0,0

003

0,0   ADLTDLTB  

 

Then ,T is independent of the choosing of the auxiliary succession (30) to define )).(( DLT To demonstrate that ,T

commutes with the connected homomorphisms, we consider the exact succession 

                                                           
9
 ),(DH is a space of holomorphic complex functions, and *),(DH is their analogous in current images. ),(DL is a co-cycles 

space under current. 
10

 The hyperplane of equation in ,D is of the form .,,),( 2211 C zzzzzh nn    
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 )34(,0')'()()'(0   DLDHDL  

 

and let,  

 

)35(,0')'(')'(''0   DLDHD  

 

exact with the space ,')'(DH as projectivized by .T Then exist mappings 

 

)36(,)'('':),(')'(:   DLDDHDH   

such that the following diagram  

 

 

0'*)'(*)(*)'(0

)37(

0')'(')'(''0

*

                     











DLDLDL

DLDHD

T

Tf




 

 

is commutative. This gives the commutative diagram: 

 

)38(*),(*)(*)(0

'
~

''''
~

))(()()(    

1,01,00,0

1,01,0'0,0

*

DBDBDB

TTT

DADADA

T

T



















 

 

then is implied the identity (27).   

 

 
Fig 1: Tomography of a n dimensional Stein manifold. 

Lemma 4. 1 (F. Bulnes). ,


T is the Radon transform of the  cohomology in a thq projection  )1(n

dimensional of the complex Riemannian manifold. 

 

Proof. The Radon transform can be viewed as the cohomological spaces mapping or mapping of cohomology 

classes: 

 

)39(),,(),( 1,, VDHVDH npnp   

 

Thus only is necessary to demonstrate that )),,(( , VDHT np


is the hqt projection  )1(n dimensional

11
 of 

),,(, VDH np in ),,(,0 VDH q that is ).,(,0 VDH n  Indeed, the Radon transform in the complex context ,D is the analytic 

and continuous mapping  

 
),()( DLDH   

 

because, remember that the Radon transform is a generalized function in a distribution space [10], even exist other 

extensions of the Radon transform to the Boehmians, which are defined as sequences of convolution quotiens and 

                                                           
11

 Cycles or  )1( qn linearly concave domains, which in a particular case can be   )1( qn hyperplanes (for example 

when )),(( CDHD L ) . 
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include Schwartz distributions and other regular operators [11]. Then in the complex case, and to complex 

coordinates systems }{ iz and }{ i we have: 

 

)40(,,,,)],,(),,,[([),,(
2

),,,( 11111

1

1 







 





nn

M

nnn

n

n zdzddzdzzzpzzf
i

pf    

).(DHf   Let , the complex scalar co-boundary operator   

 

)41(,))(())((: 1 , ,

CC
VMTVMT qpqp  

EE  

 

Let ),),(( CDHD L the set of corresponding hyperplanes to .D  Let the mapping: 

 

)42(,)),((: CC DHev f L  

 

the evaluation of ),(DHf  in the complex hyperplane ),(z of ,D with rule of correspondence 

 

)43(,),()(  fzfz   

 

By the theorem 4. 1, we have ),()( TfTf  ),(DLf   then we have: 

 

)44(,)()()()())(( 1,   qpfTzzfzfzf  

 

where in particular the exterior algebra ),( *,0

CVMTq A is generated by elements of the form )).)((()( zfTz   Then 

 

)45(,)(,)()( 


TffzevfT f   

 

Therefore .0p Thus ).()( ,0 VAevfT q

f 


Then 

 

)46(),,(),/( 1

,0,0 VDHVDH qnq C  

which is a Dolbeault cohomology.   

 

Now we establish a generalizing of the relations established in the proposition 4. 1, to the derived category level.  

 

Theorem 4. 2. A XD scheme to the geometrical problem of complex cycle decomposition by ,


T (using the 

theorem of Appendix A,) is: 

 

)47(),),((Hom)))((Spec,(Hom q p,'

CAlg(Sp)

q p,'

Moduli GDDX
n

DD   

 

We consider a Koszul duality application and the relative details on the inverse limits to obtain Spf, in the context of 

“CRings”, CAlg(Sp) , 
12

then we obtain the validity of the identity inside of the space  CAlg(Sp) in the scheme (A. 

1). In particular in the XD scheme to geometrical problem subjacent that is tomography the manifold M, through 

complex vector spaces, ,G is a space of co-cycles obtained by Radon transform on M.  However, these co-cycles 

could represent loops or contours as certain residues of the tomography, which are consider through Koppelman’s 

formula in  cohomology.  

Likewise, by Koszul duality we can consider the functor between geometrical aspects in moduli problems (in this 

case cycles of manifold tomography) and the XD algebra that generalize the D modules in XD  schemes (in this 

case, k  modules) and consider the scheme of  CRings,  

 

)48(),Spec,(Hom),(Hom Alg ABA JXJ
kXD   

 

where ,AJ is a XD algebra generated by .A  

                                                           
12

  CAlg(Sp), is an enlargement of the ordinary category of commutative rings. In one it is defined the identity (27). 



                                                                                                                                     Journal of 

                                                                                                                                         ISSN  
 

Volume 18, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                       57| 

Journal of Progressive Research in Mathematics 

                                          E-ISSN: 2395-0218 

Studies of Gindikin and Henkin [9], showed how one can construct kernels on a complex manifold given a 

holomorphic connection on a complex vector bundle over the manifold. However, appear certain terms that are 

called "parasitary terms", which depend on the curvature of the connection. This could be related with other 

frameworks of the Radon transform and its spectrum. However, is very interesting in curvature studies and 

generalizations of curvature where the curvature is obtained as tempered distributions
13

 [7, 12, 13] and could be 

used to obtain in the  cohomology context a generalization of curvature. In this sense was obtained an important 

generalization in the local context of the complex Riemannian manifold using versions of Radon transform and 

orbital integrals on homogeneous spaces considering the G structure K invariant of the complex Riemannian 

manifold [14].   

A particular case in certain sense, in complex analysis, could be a factorization of the cycle of a bounded complex 

of vector bundles in terms of certain associated differential forms (in this case complex forms) and residue currents. 

The residue currents are the Cauchy integrals values of the contours (projections obtained in the M ).   

For example, we consider a cousin Dolbeault cohomology to arrive to that the filtration of ,/BGM  by ,B orbits of 

co-dimension major that ,k that carry to an exact sequence (newly the differentials of the Cousin complex arise as 

the connecting homomorphism) is a sophisticated tomography of the Radon transform as the Penrose transform 

[15]. 

Indeed, we consider the XE modules exact sequence: 

 

)49(,0),(),(),(0 ]/[][][ 1 1 
 












LLL MMM  n,

XX

 n,

X

 n,

X  kKk k
EEE  

 

If ,1kX is defined in ,kX  by the vanishing of a single function then the connecting homomorphism is once again 

defined by the residue theorem. We consider
L , as the homogeneous line bundle determined by the character ,  of 

B. Then in the cohomological context the corresponding integration is the given by the field geometrical integration 

 

)50(),,(),( 1

][]/[ 



  LL MHMH m n,m n,

X  k

 

 

Indeed, to calculate the cohomology of 
L , is necessary and sufficient that the Cousin complex ),,(]/[ 1 




LM n,

XX  kK
E

has cohomology only in degree ,k and this cohomology forms the thk term of the Cousin complex
14

. Thus we have 

the following exact sequence using the cycles of single point about ,k  (these, characterized in the flatness and 

conformaly in the orbits language of ,/ BG comes given by the points ,Bw of  B, that are characterization of 

invariants proper in the category ),(ModCoh LD [5] to the -G/HD modules G invariant):   

)51(,0),(),(),(0 ]/[][][ 1 1 
 












LLL MHMHMH   ,n,

XX

  ,n

X

  ,n

X  kKk k

 

                                                           
13

 Theorem on generalization of curvature as tempered distribution on a differentiable manifold obtained by Dr. Francisco 
Bulnes.  
14 Given a filtration of a complex manifold ,M by closed analytic sub-varieties and a line bundle ,L we filter the Dolbeault 

complex of currents with values in ,L by their algebraic supports in these manifolds. Let us consider the filtered complex 

,0)()()( ][X

n,

][X

n,n,

n1
  MMM LLL EEE   

We will call the Cousin double complex associated to this filtered complex the (meromorphic) Cousin Dolbeault complex. 

Consecutive terms of the filtration give rise to the short exact sequences 

,0)(

)()(

]/X[X

n,

][X

n,

][X

n,

1kk

k1k













M

MM ki

L

L L

E

EE
 

The vertical complexes of the Cousin Dolbeault complex are the cones mapping of the injections ,ki shifted down by k , 

degrees. Their cohomology is the cohomology of the complexes ].)[(]/X[X

n,

1kk
kM


 LE   
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Then the co-cycles of (51) are the images under the corresponding integrals, consequence of compute (considering 

the changing to the coordinate ,
1

x
w  centrated on , in the section t ):  

)52(,)(
1

)( 2dwtww
w

fdxsfT n

CC rr



 







 

15
 

 

., WwTt  Then in the cohomological context the corresponding integration is the given by the field 

geometrical integration (50). Then we can give the following cohomology and connecting homomorphism (50) 

taking an element ,fdzs from ),,(]/[  LMH m n,

X  k

and lift in back to an element ,T  in ).,( LMm  ,nE  Then we have the 

Penrose transform [15] 

)53(,0),(

),(),(

]/[

][Cw]/[













L

LL

MH

MM

m ,n,

X

m  ,nm  ,n

Cw

T

K

EE  

 

with the correspondence rules  , given by the current 

 

)54(,)(
1

 

P
szddzfzdT   

 

where ),,(Cw]/[  LMH m n,

Cw
is a Verma module depending of the weight of .  For example, consider the points of Lie 

algebra (differential operators)  .) (2,Csl Their Verma modules to the weight ,n of  , are the cohomological 

spaces ),)(,( 101

]/1[

nH  ,
OP

P 

 and ),)(,( 111

][ nH  ,
OP

 where ),(nO is the corresponding sheaf of homogeneous line 

bundle of degree n . The current determined in (54) is .


T  

 

Appendix 

Theorem (F. Bulnes, I. Verkelov) A. 1. Considering the functors  ,  , with the properties given in [3], we have 

the following scheme  

)1.(),,(Hom))(Spec,(Hom CAlg(Sp)Moduli ABBX
n

S  

Proof. [5].   
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