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Abstract

Model estimate and their functions are affected by wrong choice of the infectious period
distribution, TI when the actual one is unknown. This is a misspecification problem which
is often accompanied with biased and imprecise estimates as discussed in [16], which may be
taking for misclassification of the final size epidemic data . This work, examined these problems
using simulations by assuming constant infectious period, TI ≡ 4.1 and then estimated with TI
infectious period distribution, assumed as Γ(2, 2.05) for the household epidemic and vice versa
under. This is extended to cases when the final size data is misclassified, as studied in [16].
The maximum likelihood estimates and the model fitness to the final size data are examined
and compared under these conditions. We found that, in the two cases, the estimates are
biased and imprecise. Thus, model that fit poorly to the final size data is often obtained.
However, the choice of appropriate model that fit better to the final size data, given these
scenarios are suggested.
Keywords:

Final size epidemic, infectious period distribution, misspecification, misclassification probabil-
ities.

1. Introduction

This work examined two scenarios namely, model estimates when the final size data is misclassified and
the infectious period distribution is misspecified in parameter estimation. We investigate these behaviours
and provide suggestions on possible choice of appropriate model which fit the final size data better. We do
this using simulations with large population size and appropriate choice of the theoretical parameters which
allows global infection. The computation methods is can be found in [1], [10], [13], [12]and [14] with starting
values proposed by [10] also discussed in [15]. This is done by constructing the approximate likelihood
function, which uses the final size probabilities, found in [1], [7], [8, 2] and [15]. The model assume the
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household structure in [7], [8, 2]. Other properties of this model are examined in [3], [4], [5], [6] and [15].

1.1. Misspecification of the Infectious period distribution

Misspecification often occur when a different infectious period distribution from that used in simulation
is employed in estimation. This may wrongly be assumed as a misclassification problem, as model estimates
are often biased and imprecise as observed in [16], hence model that does not fit significantly well to the
final size data is obtained. There is therefore, the need to study the effects of this scenario on the model
estimates and also compare them with situation when the final size data is misclassified. We examined these
problems, using simulations as in sections 2 and 3 respectively hence can be compared with the behaviours
in [16]. Plots of the estimates, their mean, standard deviation and root mean square error are presented to
give further insights into the model fitness to the final size epidemic data, under these scenarios.

1.2. Misclassified final size epidemic data.

Measurement error occurs when the real variable is unavailable and replaced by its surrogate often referred
to as naive [11]. For example, in a regression analysis with explanatory variable X and response Y, either
of the variables can be subject to mismeasurement. On categorical data, mismeasurement occurs when the
actual and recorded categories for subjects differ. Here, the surrogate variable cannot be expressed as sum
of the true variable plus a noise variable, rather they are expressed in terms of classification probabilities
called misclassification probabilities.

Let x and y be the observed false and true positives in a household of size n, then the probability of
observing x+ y = i positives, given that the true number of positives is j can be written as,

Pi,j(n) = P (x+ y = i |True infect = j, household size = n). (1)

The probability of observing i ∈ Z+ ≤ n infectives in a household of size n, has been shown in [17] to be,

Pr,j(n) =

r∑
k=0

(
j

r − k

)(
n− j
k

)
εj−r+k
FN (1− εFN )r−kεkFP (1− εFP )n−j−k (2)

where, εFP and εFN , are the false positive and negative probabilities.
Alternatively, written as,

Pr,j(n) =

r∑
k=0

(
j

k

)(
n− j
r − k

)
εj−k
FN (1− εFN )kεr−k

FP (1− εFP )n−j−r+k. (3)

Where
n∑

i=0

Pi,j(n) = 1, ∀j ∈ Z+ ≤ n.

If εFN = εFP = ε, then Pi,j(n), i, j = 0, 1, . . . , (2) simplifies to

Pi,j(n) =

i∑
k=0

(
j

i− k

)(
n− j
k

)
εj−i+2k(1− ε)n−j+i−2k, i, j = 0, 1, . . . , n. (4)

Alternatively,

Pi,j(n) =

i∑
k=0

(
j

k

)(
n− j
i− k

)
εj+i−2k(1− ε)n−j−i+2k, i, j = 0, 1, . . . , n. (5)

satisfying,
n∑

i=0

Pi,j(n) = 1, ∀j ∈ {0, 1, . . . , n}.
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The approximate likelihood function has the form,

L(λL, π, εFP , εFN ) ∝
max∏
n=1

n∏
i=0

qn,i(λL, π, εFP , εFN )xn,i . (6)

where max is the maximum household size.
Expressed using log likelihood function as,

`(λL, π, εFP , εFN ) =

max∑
n=1

n∑
i=0

xn,i loge

 n∑
j=0

Pi,j(n)Pj(n)

 , i, j = 0, 1, · · · , n. (7)

Where log(L(λL, π, εFP , εFN )) = `(λL, π, εFP , εFN )
For the three dimensional model, εFP =εFN in the approximate function.

2. Inference of Misspecification with Misclassified Final Size epi-
demic Data.

We studied the problems using large population size and theoretical parameters which allows global
infection in our simulations as in [15], by considering the pair of theoretical parameters, (λL, λG) = (0.1, 0.29)
and a range of misclassification probabilities, ε = 0.01, 0.02, 0.2.

Plots of the estimates with the two scenarios, in which the epidemic data is estimated with a different
infectious period from that used in simulating the data are presented as follow.

2.1. When the epidemic data is simulated with exp(4.1) and estimated with
Gamma(2, 4.1/2) infectious period distributions.

Here we simulate the epidemic data with exp(4.1) infectious period distribution and estimate the model
parameters with Gamma(2, 4.1/2) infectious period distribution as follow.
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Figure 1: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(4.1) infectious period distribution and ε = 0.01.
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Figure 2: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(4.1) infectious period distribution and ε = 0.02.
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Figure 3: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(4.1) infectious period distribution and ε = 0.2.

65



A.M. Umar

Model
2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim Theor.

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 Par.

λ̂L 0.087924 0.087965 0.093676 0.083014 0.083485 0.089956 0.029568 0.082831 0.10262 0.1

λ̂G 0.28989 0.28987 0.26986 0.29261 0.29234 0.27534 0.32819 0.29288 0.27823 0.29
π̂ 0.43114 0.43115 0.4721 0.43014 0.43025 0.46311 0.43059 0.4303 0.46004 0.4199
ẑ 0.70788 0.70792 0.67864 0.70323 0.70367 0.6823 0.62622 0.70248 0.68729 0.7298
ˆεFN N/A N/A 0.0014387 N/A N/A 0.0062863 N/A N/A 0.19136 N/A
ˆεFP N/A N/A 0.092036 N/A N/A 0.077538 N/A N/A 0.2094 N/A
ε̂ N/A 8.33E-05 N/A N/A 0.0010209 N/A N/A 0.18576 N/A N/A

R̂∗ 2.1115 2.1117 2.0115 2.0863 2.0887 2.0198 1.7083 2.0823 2.0392 2.2166

Table 1: Mean of the parameter estimates with Gamma(2, 4.1/2) infectious period distribution when the
data is simulated with exp(4.1) infectious period distribution.

Model
2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2

λ̂L 0.0014051 0.0014386 0.0040913 0.001363 0.0018231 0.0066354 0.00093879 0.0097516 0.065447

λ̂G 0.0025843 0.0026028 0.0086708 0.0024284 0.002515 0.010904 0.0020427 0.0061165 0.045795
π̂ 0.005432 0.0054391 0.017883 0.0049548 0.0049653 0.020602 0.0036992 0.0063326 0.084384
ẑ 0.0047356 0.0047228 0.012985 0.0042594 0.0044268 0.013337 0.0031339 0.010575 0.047823
ˆεFN N/A N/A 0.0039525 N/A N/A 0.008371 N/A N/A 0.02099
ˆεFP N/A N/A 0.036955 N/A N/A 0.044611 N/A N/A 0.1174
ε̂ N/A 0.00062226 N/A N/A 0.0026397 N/A N/A 0.014962 N/A

R̂∗ 0.018951 0.018903 0.043454 0.016555 0.017794 0.043505 0.0079267 0.053799 0.16304

Table 2: Standard deviation of the parameter estimates with Gamma(2, 4.1/2) infectious period distribu-
tion when the data is simulated with exp(4.1) infectious period distribution.

2.2. Plots of the estimates and table of mean, standard deviation, root mean
square error when the epidemic data is simulated with Gamma(2, 4.1/2) and esti-
mated with exp(4.1) infectious period distributions.

We examined the properties of the estimates under these scenarios, presented their plots and tables of
mean standard deviation and root mean square error.

3. Misspecification in the face of different Misclassification Proba-
bilities.

Here, we studied the effect of misspecification on the estimate of the model parameters, when the epidemic
data is misclassified with different misclassification probabilities, such that the infectious period distribution
used in estimation is different from that used in simulating the epidemic data.

We examined this problem by simulating epidemic with theoretical parameters (λL, λG) = (0.1, 0.29),
Gamma(2, 4.1/2) infectious period distribution for a range of {(εFN , εFP ) : εFN ∈ [0, 1], εFP ∈ (0, 1) and
then estimate the models with exp(4.1) infectious period distributions.

3.1. Plots of the estimates and table of mean, standard deviation, root mean
square error when the epidemic data is simulated with exp(4.1) and estimated
with Gamma(2, 4.1/2) infectious period distributions.

We simulate epidemic data with exp(4.1) infectious period distribution and estimate the model with
Gamma(2, 4.1/2) infectious period distribution. We present plots of the estimates and table of the mean,
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Model
2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2

λ̂L 0.012157 0.012121 0.0075297 0.01704 0.016615 0.012035 0.070438 0.01974 0.065434

λ̂G 0.002584 0.0026035 0.0075297 0.0035642 0.0034355 0.012035 0.038244 0.0067555 0.065434
π̂ 0.012492 0.012504 0.055177 0.011382 0.011484 0.047868 0.011316 0.012178 0.093372
ẑ 0.022415 0.022377 0.052767 0.026896 0.02649 0.049329 0.10362 0.029289 0.063947
ˆεFN N/A N/A 0.0094462 N/A N/A 0.016062 N/A N/A 0.022678
ˆεFP N/A N/A 0.009428 N/A N/A 0.072779 N/A N/A 0.11766
ε̂ N/A 0.0099362 N/A N/A 0.019161 N/A N/A 0.020643 N/A

R̂∗ 0.10678 0.10658 0.20961 0.13136 0.12914 0.20151 0.50835 0.14461 0.24079

Table 3: Root mean square error of the parameter estimates with Gamma(2, 4.1/2) infectious period
distribution when the epidemic data is simulated with exp(4.1) infectious period distribution.

Model
2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim Theor.

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 Par.

λ̂L 0.10058 0.1274 0.12439 0.094141 0.12782 0.12418 0.030468 0.12778 0.14371 0.1

λ̂G 0.29647 0.28606 0.29078 0.29931 0.28595 0.29154 0.333 0.28622 0.28769 0.29
π̂ 0.41465 0.41957 0.41156 0.41355 0.41959 0.41022 0.41912 0.41963 0.42183 0.4291
ẑ 0.72426 0.74059 0.74488 0.71956 0.74085 0.74575 0.63694 0.74022 0.74092 0.7117
ˆεFN N/A N/A 0.030553 N/A N/A 0.040032 N/A N/A 0.21275 N/A
ˆεFP N/A N/A 0.010832 N/A N/A 0.01722 N/A N/A 0.18887 N/A
ε̂ N/A 0.032266 N/A N/A 0.042179 N/A N/A 0.21254 N/A N/A

R̂∗ 2.1617 2.2509 2.2698 2.1356 2.2522 2.2738 1.73 2.2486 2.2593 2.1106

Table 4: Mean of the parameter estimates with exp(4.1) infectious period distribution when the epidemic
data is simulated with Gamma(2, 4.1/2) infectious period distribution.

Model
2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2

λ̂L 0.0017218 0.0064309 0.0076548 0.0016489 0.0068501 0.0087742 0.00098638 0.016316 0.070344

λ̂G 0.0024134 0.0033416 0.0069713 0.0023772 0.0033419 0.0082493 0.0019164 0.0061721 0.04847
π̂ 0.0047786 0.0052086 0.012119 0.004571 0.0050424 0.014044 0.0033002 0.0065439 0.083907
ẑ 0.0040338 0.0051911 0.007914 0.0037568 0.0053171 0.008631 0.0027658 0.010044 0.044281
ˆεFN N/A N/A 0.0064402 N/A N/A 0.0069957 N/A N/A 0.015604
ˆεFP N/A N/A 0.027343 N/A N/A 0.031997 N/A N/A 0.12798
ε̂ N/A 0.0063887 N/A N/A 0.0065142 N/A N/A 0.011181 N/A

R̂∗ 0.017093 0.025695 0.037354 0.01539 0.026481 0.040686 0.0074831 0.052057 0.19753

Table 5: Standard deviation of the parameter estimates with exp(4.1) infectious period distribution when
the epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution.
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Figure 4: Plots of the estimates with exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution and ε = 0.01.
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Figure 5: Plots of the estimates with exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution and ε = 0.02.
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Figure 6: Plots of the estimates with exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution and ε = 0.2.
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Model
2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2

λ̂L 0.0018158 0.028146 0.025563 0.0060862 0.028645 0.025722 0.069539 0.032211 0.082761

λ̂G 0.006906 0.0051639 0.025563 0.009607 0.0052508 0.025722 0.043042 0.0072334 0.082761
π̂ 0.015189 0.010833 0.021286 0.016179 0.010735 0.023495 0.01048 0.011482 0.084135
ẑ 0.013232 0.0294 0.034151 0.008749 0.02967 0.035171 0.074762 0.030281 0.053042
ˆεFN N/A N/A 0.021537 N/A N/A 0.021216 N/A N/A 0.020137
ˆεFP N/A N/A 0.027328 N/A N/A 0.032086 N/A N/A 0.12833
ε̂ N/A 0.023163 N/A N/A 0.023114 N/A N/A 0.016796 N/A

R̂∗ 0.053869 0.14262 0.16354 0.02936 0.14404 0.16818 0.38065 0.14746 0.24705

Table 6: Root mean square error of the parameter estimates with exp(4.1) infectious period distribution
when the epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. Theo.
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. Param.

λ̂L 0.077163 0.077248 0.087328 0.018492 0.12408 0.11088 0.1

λ̂G 0.30254 0.3025 0.27016 0.32022 0.23888 0.28331 0.29
π̂ 0.39733 0.39734 0.46066 0.48234 0.53371 0.45364 0.4199
ẑ 0.7264 0.7265 0.68375 0.55535 0.64279 0.69246 0.7298
ˆεFN N/A N/A 0.0068771 N/A N/A 0.29176 N/A
ˆεFP N/A N/A 0.14662 N/A N/A 0.18414 N/A
ε̂ N/A 0.00019064 N/A N/A 0.30141 N/A N/A

R̂∗ 2.1701 2.1707 2.0246 1.5303 1.8966 2.0626 2.2166

Table 7: Table of mean of the parameter estimates when the epidemic is simulated with exp(4.1) and
estimated with Gamma(2, 4.1/2) infectious period distributions.

standard deviation and root mean square error.

3.2. Plots of the estimates and table of mean, standard deviation, root mean
square error when the epidemic data is simulated with Gamma(2, 4.1/2) and esti-
mated with exp(4.1) infectious period distributions.

We simulate epidemic data with Gamma(2, 4.1/2) infectious period distribution and estimate the model
with exp(4.1) infectious period distribution. We then present plots of the estimates and table of mean,
standard deviation and root mean square error.
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Figure 7: Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(4.1) infectious period distribution and εFN = 0.02, εFP = 0.1.
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Figure 8: Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(4.1) infectious period distribution and εFN = 0.3, εFF = 0.2.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2.
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0013641 0.0014384 0.0075362 0.00083274 0.098363 0.085154

λ̂G 0.0025697 0.0025712 0.0025712 0.0018798 0.017461 0.06154
π̂ 0.0050036 0.005004 0.026227 0.003523 0.019542 0.11398
ẑ 0.0042381 0.0042876 0.017032 0.0029415 0.017353 0.06668
ˆεFN N/A N/A 0.0089027 N/A N/A 0.022678
ˆεFP N/A N/A 0.0089027 N/A N/A 0.022678
ε̂ N/A 0.0010166 N/A N/A 0.02093 N/A

R̂∗ 0.018388 0.018763 0.055725 0.0054852 0.051097 0.23005

Table 8: Table of standard deviation the parameter estimates when the epidemic is simulated with exp(4.1)
and estimated withGamma(2, 4.1/2) infectious period distributions.
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Figure 9: Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(4.1) infectious period distribution and εFN = 0.2, εFF = 0.2.

74



A.M. Umar

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2.
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.022877 0.022797 0.014742 0.081513 0.10122 0.085804

λ̂G 0.012802 0.01276 0.023996 0.030277 0.054021 0.085804
π̂ 0.0077887 0.0077836 0.063068 0.062538 0.11547 0.11881
ẑ 0.019558 0.019481 0.064056 0.17446 0.088712 0.076388
ˆεFN N/A N/A 0.015855 N/A N/A 0.024118
ˆεFP N/A N/A 0.070549 N/A N/A 0.13442
ε̂ N/A 0.059818 N/A N/A 0.0555 N/A

R̂∗ 0.1225 0.12201 0.27237 0.68633 0.32402 0.27674

Table 9: Table of root mean square error of the parameter estimates when the epidemic is simulated with
exp(4.1) and estimated with Gamma(2, 4.1/2) infectious period distributions.
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Figure 10: Plots of the estimates using exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution and εFN = 0.02, εFP = 0.1.

4. Results and Discussion.

In figures 1 (a)-(e), the estimates are biased and imprecise with less variability from the two and three
dimensional models as shown in figures 1 (b) and (c) owing to misspecification. The three dimensional model
is better than the two and four dimensional models.

Similar pattern of behaviours in figures 1 (a)-(c) can be seen in figures 2 (a)-(c). The three dimensional
model is better than the two and four dimensional models.

In figures 3 (a)-(e), we see large variability of the estimates of the four dimensional model around their
true values compared to those of the three dimensional model. While those of the two dimensional model are
biased and imprecise. In general the three dimensional model is better than the two and four dimensional
models.

In figure 8 (c), the estimates of the two dimensional model are more precise with less variability than the
three and four dimensional models in figures 8 (a) and (b) owing to misspecification.

Similar behaviours in figures 8 (a)-(e) can be seen in figures 9 (a)-(e).
In figures 6 (a)-(e), the estimates of the three and four dimensional models are centered at their true

values with more variability for the four dimensional model than those of the three dimensional model. While
those of the two dimensional model are imprecise and biased.

In general the three dimensional model is better than the two and four dimensional models
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Figure 11: Plots of the estimates using exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution and εFN = 0.3, εFP = 0.2.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2. Theo.
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. Param.

λ̂L 0.0899 0.11325 0.12146 0.018857 0.20678 0.17525 0.030476 0.12636 0.14328 0.1

λ̂G 0.31604 0.3072 0.29637 0.32328 0.22549 0.28042 0.33295 0.28666 0.28834 0.29
π̂ 0.38268 0.38487 0.403 0.47353 0.53291 0.43831 0.41922 0.41955 0.42131 0.4291
ẑ 0.74134 0.75816 0.74916 0.564 0.68191 0.7314 0.63686 0.73928 0.74019 0.7117
ˆεFN N/A N/A 0.035793 N/A N/A 0.31001 N/A N/A 0.21176 N/A
ˆεFP N/A N/A 0.073987 N/A N/A 0.19614 N/A N/A 0.18777 N/A
ε̂ N/A 0.031352 N/A N/A 0.32081 N/A N/A 0.21156 N/A N/A

R̂∗ 2.2213 2.3271 2.2885 1.5441 2.0035 2.221 1.7299 2.2436 2.2554 2.1106

Table 10: Table of mean of the parameter estimates when the epidemic is simulated with Gamma(2, 4.1/2)
and estimated with exp(4.1) infectious period distributions..
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Figure 12: Plots of the estimates using exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution and εFN = 0.2, εFP = 0.2.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2.
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0016924 0.0066428 0.01531 0.00088043 0.10474 0.33149 0.0010178 0.016721 0.079516

λ̂G 0.0025711 0.0033824 0.017484 0.0018071 0.013616 0.060984 0.0020738 0.0064708 0.048072
π̂ 0.0044885 0.0047762 0.029084 0.0031539 0.016093 0.10675 0.0035174 0.0069734 0.083025
ẑ 0.0034881 0.0055627 0.015519 0.0025597 0.014854 0.057308 0.0027811 0.010356 0.043984
ˆεFN N/A N/A 0.0096162 N/A N/A 0.017639 N/A N/A 0.01552
ˆεFP N/A N/A 0.0096162 N/A N/A 0.013944 N/A N/A 0.01552
ε̂ N/A 0.0070962 N/A N/A 0.32081 N/A N/A 0.19768 N/A

R̂∗ 0.015789 0.032068 0.070022 0.0051863 0.042476 0.24985 0.0071748 0.05349 0.19768

Table 11: Table of standard deviation the parameter estimates when the epidemic is simulated with
Gamma(2, 4.1/2) and estimated with exp(4.1) infectious period distributions.
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εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2.
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.01024 0.014822 0.026358 0.081148 0.14954 0.33976 0.069531 0.031216 0.090497

λ̂G 0.026164 0.01753 0.018601 0.033325 0.065926 0.061702 0.043003 0.00728 0.048076
π̂ 0.046586 0.044434 0.01860 0.044594 0.1051 0.1071 0.010441 0.011785 0.083343
ẑ 0.029886 0.046832 0.04058 0.14768 0.033251 0.060585 0.07485 0.029491 0.052406
ˆεFN N/A N/A 0.018487 N/A N/A 0.0202759 N/A N/A 0.019465
ˆεFP N/A N/A 0.073775 N/A N/A 0.13298 N/A N/A 0.12738
ε̂ N/A 0.029513 N/A N/A 0.072166 N/A N/A 0.016198 N/A

R̂∗ 0.11175 0.21884 0.19116 0.56651 0.11525 0.27301 0.3808 0.14333 0.24492

Table 12: Table of root mean square error of the parameter estimates when the epidemic is simulated with
Gamma(2, 4.1/2) and estimated with exp(4.1) infectious period distributions.

With misclassification error in the data and misspecification, the estimates of the three dimensional model
are biased with less variability around their true values than those of the four dimensional model. Those of
the two dimensional model are biased and imprecise.

In general, the three dimensional model is better than the two and four dimensional models on three
dimensional epidemic data with model misspecification.

In figures 7 (a)-(c), the estimates of the three models are biased and imprecise.
In figures 8 (a) and (b), we see large variability of the estimates of the three and four dimensional models

around their true values. While those of the two dimensional model are biased and imprecise. The three
and four dimensional models are better than the two dimensional model.

In figures 9 (a) and (b), the scatter plots of the estimates of the four and three dimensional models are
centered around their true values but with more variability from those of the four dimensional model. While
those of the two dimensional model are biased and imprecise. Given this scenario, the three dimensional
model is significantly better than the two and four dimensional models as theoretically expected.

In figures 10 (a)-(c), the scatter plots of the estimates of λL and λG from the three and four dimensional
models are close to their true values with more variability from those of the four dimensional model. While
those of the two dimensional model are biased.

In figures 11, (a)-(e), similar behaviours in figures 10 (a)-(c) are shown with less variability.
Also, similar behaviours in figures 9 (a)-(d) are repeated in figures 12 (a)-(d)
From the scatter plots (a)-(e) in figures 7 , 8 and 9 and tables 7, 8 and 9, we see that estimates of the

four dimensional model are more precise than those of the two and three dimensional models in the face
of misspecification when the epidemic data is four dimensional data. While in figures 10-12, (a)-(e), with
misspecification the three and four dimensional models are better than the two dimensional models, when
the data are both misclassified and misspecified.

5 Conclusion.

From the scatter plots (a)-(e) in figures 7 , 8 and 9 and tables 7, 8 and 9, we see that estimates of the
four dimensional model are more precise than those of the two and three dimensional models in the face
of misspecification when the epidemic data is four dimensional data. While in figures 10-12, (a)-(e), with
misspecification and misclassification of the final size data, the three and four dimensional models are give
better estimates than the two dimensional models. These behaviours are similiar to those observed in [16],
iin which with misspecification of the infectious period distribution, the estimates are biased, with model
that does not fit well to the final data, which is indicative of the model behaviour with misclassified final
data. Thus, further studies are often required to identify whether these behaviours are attributable to
misspecification of the infectious period distribution or misclassification of the final size epidemic data. in
model estimation.
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