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Abstract

The paper contains an investigation of the notion of Q-algebras. A brief introduction to
quantum mechanics is given.
A brief introduction to BCI/BCK/BC H-algebra are given. A new generalization of Q-algebra
has been introduced. The Q- quantum algebra has been studied.
Various examples have been given.
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1. Introduction

The basic structure of quantum mechanics is quite different, the state of a system is given by a point in
a space”, It is can be thought of equivalently as the space of solutions of an equation of motion, or as the
space of coordinates and momenta.
The quantities are just functions on this space. There is one distinguished observable, the energy or Hamil-
tonian. This functions determines how states evolve in time through Hamilton’s equations.
B(CT-algebra and BC K-algebra have been introduced by Y. Imai and K. Isé ([6, 8, 9]).
The former was raised in 1966 by Imai and Iseki.
Several generalizations of a BCI/BC K-algebra were introduced by many researchers, ([14, 15, 17, 18, 20,
21, 22, 24, 2)]).
In the present paper we extend this work. We give a new generalization of Q-algebra and some there prop-
erties.
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2  Quantum mechanics

In quantum mechanics, stats refers to physical state of quantum system. The state of a quantum mechanical
system is given by a nonzero vector in a complex vector space H with Hermitian inner product (.,.) .

H may be finite or infinite dimensional, we may want to require H to be a Hilbert space, A Hilbert space
H consists of a set of vectors and a set of scalars. We will use the notation introduced by Dirac for vectors
in the state space H such a vector with a label ¢ is denoted 1.

The Hamiltonian H. Time evolution of states 1(t) € H is given by the Schrodinger equation

d 7
00 = ZHU()

The Hamiltonian observable H will have a physical interpretation in terms of energy, with the boundless-
ness condition necessary in order to assure the existence of a stable lowest energy state. h is a dimensional
constant, called Planck’s constant.

2.1 Group representations

The mathematical framework of quantum mechanics is closely related to what mathematicians describe as
the theory of group representations.

A standard definition of a Lie group is as a smooth manifold, with group laws given by smooth maps.
Most of the finite dimensional Lie groups of interest are matrix Lie groups, which can be defined as closed
subgroups of the group of invertible matrices of some fixed dimension.

A Lie algebra is a vector space g over a field F' with an operation
[]:gxg—yg
which we call a Lie bracket, such that the following axioms are satisfied
o It is bi linear.
o It is skew symmetric [z, 2] = 0 which implies [z,y] = [y, 2] for all =,y € g.
o It satisfies the Jacobi Identity [z, [y, 2]] + [y, [z, z]] + [z, [z, y]] = 0.
An action of a group G on a set M is given by a map

(g,2) EGXM —g-x € M. (1)

such that
and

where e is the identity element of G
An action of the group G; = R3 on Rj3 by translations.

An action of the group Gy = O(3) of three dimensional orthogonal transformations of R3. These are the
rotations about the origin (possibly combined with a reflection).
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Given a group action of G on M, functions on M come with an action of G by linear transformations, given

by
(g- ) =flg~"-x)

where f is some function on M.
A group G is a set with an associative multiplication, such that the set contains an identity element, as well
as the multiplicative inverse of each element.

3 (-algebra

A Q-algebra [1] is a nonempty set X with a constant 0 and a binary operation “x” satisfying the following
axioms:

(Q1) zxx =0,

(Q2) O0xx =0,

(Q3) (xxy)xz=(xx2)x*y,

In Q-algebra X we can define a partial order by putting z < y if and only if x xy = 0.

Let X =0,1,2,3be a set with the following table:

W N = O %
w N~ oo
w o O Ol
w O O O
OO O oW

Then (X, x,0) is a Q-algebra.

4 BCH/BCI/BCK-algebra

By a BC'I-algebra we mean an algebra X with a constant 0 and a binary operation “x” satisfying the fol-
lowing axioms for all z,y,z € X:

(BCILy) ((xxy)*(x*x2))*(z2xy) =0,
(BCILy) x*0 =z,
(BCI3) z+y =0 and y*x =0 imply that x = y,

In BCTI-algebra X we can define a partial order by putting x < y if and only if z x y = 0.

Proposition 1. Let be a BCI-algebra. A subset S of X called sub algebra of X if the constant 0 of X in
S, and (S, *,0) itself forms a BCI-algebra.

suppose that (X, %,0) is a BCI-algebra. Define a binary relation < on X by z <y if and only if z xy =0
for any x,y € X then (z, <) is partially ordered set with 0 as a minimal element in the meaning that x <0
implies x = 0 for any x € X .
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If a BCI-algebra X satisfies 0« x = 0, for all x € X, then we say that X is a BCK-algebra.
Every BClI-algebra satisfying 0« x = 0 for all x € X is a BCK-algebra.
Any BCK -algebra X satisfies the following axioms for all x,y,z € X :
(1) (z*xy)xz=(r*z)*xy
(2) ((@x2)*(yxz)*(xxy)=0
3) zx0==x
(4) zxy=0= (x*x2)x(yx2)=0,(zxy)*(zxz) =0.

A nonempty subset I of X is called an ideal of X if it satisfies
(I)0el and
(II)zxyel andy € I implyx € 1.
A non-empty subset I of X is said to be an H-ideal of X if it satisfies (I) and
(I xx(yxz)el andy €I implyx*z €I, for all z,y,z € X.
A BC1T-algebra is said to be associative if (x xy) xz =x x (y x 2), for all x,y,z € X.

[16] Let (X;#,0) be a BCI-algebra. Then the following hold:
(i) 2z =0,
(if) 0% (0*z) ==,
(iil) (zxy)*xz=(z*x2z)*y,

for all z,y,z € X.
BCH-algebra [1] is a nonempty set X with a constant 0 and a binary operation “+” satisfying the
following axioms:

(i) xxxz =0,
(ii) z*y =0 and y *x z = 0 imply that z =y,
(iil) (zxy)*xz=(zx2z)*y,
for all z,y,z € X.
Every BCI-algebra is a BCH -algebra.

Let X =0,1,2,3be a set with the following table:

*10 1 2 3
00 0 0 O
111 0 0 0
212 0 0 O
313 3 3 0

Then (X, *,0) is not a BCH/BCI/BCK-algebra.

Theorem 2. [1] Every Q-algebra (X, *,0) satisfying the associative law is a group under the operation \ x”.
Theorem 3. [1] Every BC H-algebra X is a Q-algebra.

Every Q-algebra X satisfying (z xy) * (x x 2) = zxy for all x,y,z € X is a BCH-algebra.

Theorem 4. [1] Every Q-algebra satisfying condition (z *y) % (z*z) = z and x xy = 0 and y xz = 0 imply

that © =y for all z,y,2z € X is a BCI-algebra.

Theorem 5. [1] Every Q-algebra X satisfying conditions (x xy)*xz =z * (2% (0)), z*xy=0and yxx =0
imply that z =y and (z*xy) *xxz =0 for all z,y,z € X is a BCK-algebra.
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5 (- quantum algebra

Wy ”

By a @- quantum algebra we mean a vector space V over a field F' with an operation “x” satisfying the
following axioms for all u,v,w € V:

(Q1) uxu=0,
(Q2) 0xu=0,

(Qs) (uxv)xw=(ux*xv)*w,

. for all u,v,w e V.

consider the flowing table

*x|10 1 a b c
0/]0 0 a a a
1/1 0 a a a
ala a 0 0 0°
b|b a 1 0 0
clc a 1 1 0

a 0 b 0 c 0
wv=[5 o]-[o 0o o]

And will defined

Also (V, x,0) satisfies BCI5,

(s sllo s s ol (vl o))l

Also (V, x,0) satisfies BCI3,

o o
o o
_ 1
N
| — |
oo
o o
—_
| — |
o o
o o
—_
N———
| — |
(oY
o o
—_

Or

this means zy = 0 or yz = 0 from the table z = y.
Then (V,%,0) is BCI- algebra , now we have that every BCI-algebra is a BC H-algebra, hence (V,x,0) is
BCH- algebra and by theorem 3 (V,*,0) is Q- algebra.
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5.1 Representations and quantum mechanics

A representation (w, V') of a group G is a homomorphism
€ G —n(g) € GL(V)

where GL(V ) is the group of invertible linear maps V. — V, with V' a vector space.
Saying the map 7 is a homomorphism means

m(g1)7(92) = 7(9192)

for all g1,92 € G.
We call a map f: (Xq;%1,51) — (Xa; %2, 52) between two BCK-algebras an homomorphism, if f is for any
r,y € X1

flaxy) = f(z) = f(y).

If the mapping f is onto and one- to-one then f called isomorphism.

Consider the flowing table

;o V=0,1,a,b,c

QO TR O %
o "R = OO
Q Q2 OO
o oQ Qs
S OO Qo

— = o Q 9|2

Here (V, ,0) is Q- algebra
We defined

forall x € V.
The map 7 is a homomorphism
m(x1)m(xe) = m(x122)

for all z1,20 € V.
Also the mapping f is onto and one- to-one, hence 7 is isomorphism.

6 Discussion

We have introduced the quantum mechanics. The basic structure of quantum mechanics is quite different,
the state of a system is given by a point in a space”,It is can be thought of equivalently as the space of
solutions of an equation of motion, or as the space of coordinates and momenta.The Group representations
has been , the definition of Lie algebra is given. The Representations and quantum mechanics have been
discussed.

We have introduced the @-algebra. A brief introduction to BCI/BCK/BC H-algebra are given.A new
generalization of Q-algebra has been introduced.

The Q- quantum algebra has been defined. Various examples have been given.
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