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Abstract

The paper contains an investigation on the special properties of the zeros of the analytic
Representations of Finite Quantum Systems.
These zeros and its paths define the completely the finite quantum system.
The present paper study Construction of the analytic representation from its zeros.
A brief introduction to analytic representation of finite quantum systems is given. The zeros
of this function and there evolution time are considered.
The analytic function f(z) have exactly d zeros.
The analytic function have been constructed from its zeros.
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1. Introduction

This Paper is devoted to discuses some problem related to the zeros in analytic representation of finite
quantum systems on a torus. Analytic functions are considered from [1, 2, 3] and used in various places in
physic sciences.
Recently, there has been a lot of work on quantum systems where the position and momentum take values
in Zd (the integers modulo d). Ref [15] has used the Zak transform [16, 17] to introduce an analytic
representation.

Ref [12, 13] has considered analytic representations of finite quantum systems on a torus. The analytic
function has exactly N zeros which zeros define uniquely the quantum state.
Ref [13] has been studied the motion of the zeros.In some cases N of the zeros follow the same path and in
other cases each zero follow its own path.

How to cite this paper: M.Tabuni (2021) Special Properties of the Zeros of the Analytic
Representations of Finite Quantum Systems. Journal of Progressive Research in Mathematics, 18(2),
69-83. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2063

1

http://www.scitecresearch.com/journals/index.php/jprm
mona_{-}bashat@yahoo.co.uk
M.Tabuni@uot.edu.ly
http://creativecommons.org/licenses/by/4.0/


M. Tabuni

Ref. [15, 14] have constructed the function f(z) from its zeros.
In The present work we discuss the constructino of this function from its zeros.
We suppose that d zeros ζn in the cell S are given, and that they satisfy the constraint of Eq. (46). In other
words, d− 1 zeros are given and the last is found through the constraint of Eq. (46).
We provr that the analytic representation have Constructed from its zeros.
We interduced Position and Momentum States.
We discussed briefly Displacement Operators. We considred the Zak transform.

several examples are considered.

2 Finite Quantum Systems

We consider a quantum system with a d−dimensional Hilbert space H, where position and momentum take
values in Zd.
We use the notation |f〉 for the states in this particular Hilbert space L2(Zd).

2.1 Position and Momentum States

An orthonormal basis in this system consists of the position states |X ;m〉 and momentum states |P;m〉,
where m ∈ Zd.

〈X ;m|X ;n〉 = δmn, 〈P;m|P;n〉 = δmn, (1)

d−1∑
m=0

|X ;m〉〈X ;m| =
d−1∑
m=0

|P;m〉〈P;m| = 1. (2)

δmn in Eq. 1 is the Kronecker Delta satisfying

δmn =


0 if m 6= n;

1 if m = n.
(3)

The Fourier operator is a unitary operator defined as

F = d−1/2
d−1∑
m,n=0

ω(mn)|X ;m〉〈X ;n| =
d−1∑
m=0

ω(mn)|P;m〉〈X ;m|. (4)

where

ω(α) = exp(
2πiα

d
); F4 = 1. (5)

The position and momentum states are related to each other through the finite Fourier transformation

|P;n〉 = d−1/2
d−1∑
m=0

ω(mn)|X ;m〉. (6)

|X ;m〉 and |P;m〉 are the eigenstates of the position and momentum operators, which are given by

x̂ =

d−1∑
n=0

m|X ;m〉〈X ;m|; p̂ =

d−1∑
n=0

m|P;m〉〈P;m| (7)

where
F̂ x̂F̂ † = p̂; F̂ p̂F̂ † = −x̂. (8)
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2.2 Displacement Operators

In the finite quantum system, the position and momentum are both integers modulo d, therefore, the phase
space is the toroidal lattice Zd × Zd.

The displacement operators in this particular phase space are defined as

Ẑ = exp(i
2π

d
x̂); X̂ = exp(−i2π

d
p̂). (9)

They are unitary operators and perform displacements along the P and X axes in the Zd ×Zd phase space,
obeying the relations

X̂d = Ẑd = 1̂; X̂βẐα = ẐαX̂βω(−αβ). (10)

where α, β are integers in Zd.

Ẑα|P ;m〉 = |P ;m+ α〉; Ẑα|X;m〉 = ω(αm)|X;m〉; (11)

X̂β |P ;m〉 = ω(−mβ)|P ;m〉; X̂β |X;m〉 = |X;m+ β〉. (12)

The general displacement operators are defined as

D̂(α, β) = ẐαX̂βω(−2−1αβ) = X̂βẐαω(2−1αβ). (13)

with
D̂† = D̂(−α,−β). (14)

It is easy to see that
D̂(α, β)|X;m〉 = ω(2−1αβ + αm)|X;m+ β〉; (15)

D̂(α, β)|P ;m〉 = ω(−2−1αβ − βm)|P ;m+ α〉. (16)

3 Zak Transform

We introduce a map between states in the infinite dimensional harmonic oscillator Hilbert space H and the
d-dimensional Hilbert space H.
Let |g〉 be a state in H with (normalized) wavefunction in the x-representation g(x) = 〈x|g〉.
Using the map we define the corresponding state |f〉 in H as

fm = N−1/2
∞∑

ω=−∞

g[(
2π

d
)1/2(m+ dω)]; (17)

f̃m = N−1/2
∞∑

ω=−∞

g̃[(
2π

d
)1/2(m+ dω)], (18)

where m ∈ Zd. N is a normalization factor given by

N =

d−1∑
m=0

{
∞∑

ω=−∞

g∗[(
2π

d
)1/2(m+ dω)]}

{
∞∑

ω′=−∞

g[(
2π

d
)1/2(m+ dω′)]}. (19)

This map is a special case of the Zak transform [16, 17]. Through this map a state |f〉 in L2(Zd) is
constructed from the state |g〉 in L2(R).
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3.1 Example

We consider the number eigenstates |n〉 whose wave function is

g(x, n) = 〈x|n〉 = (
1√
π22n!

)1/2exp(
−x2

2
)Hn(x), (20)

following ref. [15, 14], we use Eq. 17 to find

fm(n) = N (n)−1/2
∞∑

ω=−∞

g[(
2π

d
)1/2(m+ dω), n]; (21)

f̃m(n) = N (n)−1/2
∞∑

ω=−∞

g̃[(
2π

d
)1/2(m+ dω), n], (22)

3.2 Example

We consider the coherent states |α〉 whose wave function is

g(x, α) = 〈x|α〉 = π−1/4exp(−1

2
x2 + αx− 1

2
αRα), (23)

where α = αR + iαI .
Following ref. [15, 14], we use Eq. 17 to find

fm(α) =
1√

N (α)d
√
π
exp(

i

2
αIα)ϑ3[

πm

d
− α(

√
π

2d
);
i

d
], (24)

where ϑ3 is the Jacobi Theta functions which is defined as

ϑ(u; v) =

∞∑
n=−∞

exp(iπτn2 + i2nu), (25)

and τ is a complex number with positive imaginary parts.

4 Analytic Representation

4.1 Definition of an Analytic Representation

We consider an arbitrary pure normalised state |F 〉

|F 〉 =

d−1∑
m=0

Fm|X;m〉
d−1∑
m=0

|Fm|2 = 1. (26)

We will use the notation

|F ∗〉 =

d−1∑
m=0

F ∗m|X;m〉; 〈F | =
d−1∑
m=0

F ∗m〈X;m|

|F ∗〉 =

d−1∑
m=0

Fm〈X;m|. (27)

Following ref. [15], we define the analytic representation of |F 〉 as:

f(z) = π−1/4
d−1∑
m=0

Fmϑ3[
πm

d
− z( π

2d
)1/2;

i

d
] (28)
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The function f(z) satisfies
f [z + (2πd)1/2] = f(z), (29)

f [z + i(2πd)1/2] = f(z)exp[πd− i(2πd)1/2z]. (30)

f(z) is defined on a square area S on the complex plane

S = [a, a+ (2πd)1/2)× [b, b+ (2πd)1/2); a, b ∈ R. (31)

The scalar product is given by

〈F ∗|G〉 = (2π)−1/2d−3/2

∫
S

d2zexp(−z2I )f(z)g(z∗); (32)

where
z = zR + izI ; z = dzRdzI . (33)

The orthogonality relation

1

π
√

2d3

∫
S

d2z exp(−z2I )Θ3[
nπ

d
− z

√
π

2d
; id−1]

×Θ3[
mπ

d
− z∗π1/2(2d)−1/2; id−1] = δ(m,n), (34)

where m,n ∈ Zd.
Follows from the theory presented in ref. [15]. We provide direct proof:

4.2 Proof

Using the definition of Theta functions:

Θ3(u; τ) =

∞∑
n=−∞

exp(iπτn2 + i2nu), (35)

we rewrite the right-hand side R of Eq. (34) as:

R =
1

π
√

2d3

∑
k,`

exp[
i2π(km+ `n)

d
]R1

×
∫ √2πd

0
dzI exp[−z2I +

√
2π

d
(k − `)zI − (

π

d
)(k2 + `2)]; (36)

where

R1 =

∫ √2πd

0
dzR exp[−i

√
2π

d
(k + `)zR]

= (2πd)1/2δ(k,−`) (37)

Inserting Eq. (37) into Eq. (36), we get:

R = π−1/2d−1
∞∑

k=−∞
exp[

i2πk(m− n)

d
]

×
∫ √2πd

0
dzI exp{−[zI −

√
2π

d
k]2} (38)

We can rewrite k as k = k0 + dN , where 0 ≤ k0 ≤ d− 1 and N is an integer. Then

R = π−1/2d−1
d−1∑
k=0

exp[
i2πk0(m− n)

d
]

×
∞∑

N=−∞

∫ √2πd

0
dzI exp−[zI −

√
2π

d
(Nd+ k0)]2. (39)
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However
∞∑

N=−∞

∫ √2πd

0
dzI exp−[zI −

√
2π

d
(Nd+ k0)]2

=

∫ ∞
−∞

dzI exp−[zI −
√

2π

d
k0]2} = π1/2. (40)

Therefore

R = d−1
d−1∑
k=0

exp[
i2πk0(m− n)

d
] = δ(m,n).

Using this, we can prove that

Fm =
1

π
√

2d3

∫
S
d2zexp(−z2I )ϑ3[

πm

d
− z(

π
√

2d
);
i

d
]f(z∗). (41)

Following ref. [15], we derive the analytic representations of position eigenstates |X ;m〉 and momentum
eigenstates |P;m〉 are

f(z) = π−1/4ϑ3[
πm

d
− z( π

2d
)1/2;

i

d
] (42)

f(z) = π−1/4exp(−1

2
z2)ϑ3[

πm

d
− zi( π

2d
)1/2;

i

d
] (43)

correspondingly.

5 Zeros of the functions f(z)

We shall now denote as ζn the zeros of f(z), i.e. f(ζn) = 0.
Let f(z) be an analytic function. We consider the integrals

J0 =

∮
`

dz

2πi

∂zf(z)

f(z)
; J1 =

∮
`

dz

2πi

∂zf(z)

f(z)
z. (44)

J0 is equal to the number of zeros of this function (with the multiplicities taken into account), inside the
contour `.
J1 is equal to the sum of these zeros.
The analytic function f(z) satisfies the quasi-periodicity of Eq. (30).
Using the quasi-periodicity of Eq. (30) we prove that the integral J0, for a contour along the boundary of
the cell S, is equal to d.
Therefore the analytic functions f(z) have exactly d zeros, within each cell S.
Using the quasi-periodicity of Eq. (30) we also prove that∮

`

dz

2πi

∂zf(z)

f(z)
z = (2π)1/2d3/2(M + iN) + (

π

2
)1/2d3/2(1 + i) (45)

In the plane which acts as the covering surface of the torus, each cell is characterised by a pair of integers
(M,N).
Integration on the contour along the boundary of the cell characterised by (0, 0), gives

(
π

2
)1/2d3/2(1 + i)

Integration on the contour along the boundary of the cell characterised by (M,N), gives

(
π

2
)1/2d3/2(1 + i) + (2p)1/2d3/2(M + iN)

Therefore, the sum of the zeros ζn of f(z) is

d∑
n=1

ζn = (2π)1/2d3/2(M + iN) + (
π

2
)1/2d3/2(1 + i). (46)

Eq. (45) has been discussed in [18, 15].
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5.1 Example

• In Fig. (1) we show the distributions of zeros for
cased = 3, and the |F (t)〉 at t = 0 is described through the coefficients

F0(0) = 0.23 + i0.13;F1(0) = 0.67− i0.04; ;F2(0) = 0.67− i0.09. (47)

• In Fig. (2) we show the distributions of zeros for
case d = 3, and the |F (t)〉 at t = 0 is described through the coefficients

F0(0) = 0.84;F1(0) = 0.33;F2(0) = 0.18;

F3(0) = 0.18;F4(0) = 0.33; (48)

where we see only one zero( because the five zeros are identical).

6 Construction of the analytic representation from its zeros

Ref. [15, 14] have constructed the function f(z) from its zeros. We suppose that d zeros ζn in the cell S are
given, and that they satisfy the constraint of Eq. (46). In other words, d− 1 zeros are given and the last is
found through the constraint of Eq. (46).
The function f(z) is given by

f(z) = C exp[−i(
2π

d
)1/2Nz]

d∏
n=1

Θ3[wn(z); i];

wn(z) = (
π

2d
)1/2(z − ζn) +

π(1 + i)

2
(49)

where N ∈ Z is the constraint of Eq. (46), and C is a constant determined by the normalisation condition.
We can prove the equality of Eqs. (28) and (49) using Jacobi’s triple product identity.
We consider the jacobi triple product identity

∞∑
m=−∞

xm
2
z2m =

∞∏
n=1

(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) (50)

The Jacobi Theta functions is defined as

ϑ(z; τ) =

∞∑
m=−∞

exp(iπτm2 + i2mz), (51)

=

∞∑
m=−∞

(
eiπτ

)m2 (
eiz
)2m

, (52)

=

∞∏
n=1

(1− (eiπτ )2n)(1 + (eiπτ )2n−1(eiz)2)

(1 + (eiπτ )2n−1(eiz)−2).

We now consider the function

ϑ3((z − zj + ω)

√
π

2d
; i) =

∞∑
m=−∞

exp(iπim2 + 2mi(z − zj + ω)

√
π

2d
), (53)

=
∞∑

m=−∞
(e−π)m

2
(e
iz

√
2π
d )2m(e−i(zj−ω)

√
π
2d )2m. (54)

Let

x = e−π; y = exp[−i(2π

d
)1/2z];
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bj = (zj − ω)(
π

2d
)1/2. (55)

Then Eq. (53) is rewritten as

h(y) =

∞∏
n=1

(1− x2n)(1 + x2n−1y−1e−2bji)(1 + x2n−1ye2ibj ). (56)

We define

F (y) =

∞∏
n=1

(1 + x2n−1ye2bji)(1 +
x2n−1

ye2ibj
), (57)

= (1 + xye2ibj )(1 +
x

ye2ibj
)(1 + x3ye2ibj )

×(1 +
x3

ye2ibj
)(1 + x5ye2ibj )(1 +

x5

ye2ibj
)...

F (x2y) = (1 + x3ye2ibj )(1 +
1

xye2ibj
)(1 + x5ye2ibj )

×(1 +
x

ye2ibj
)(1 + x7ye2ibj )(1 +

x3

ye2ibj
)...

F (x2y)

F (y)
= (1 +

1

xye2ibj
)(

1

1 + xye2ibj
),

=
xye2ibj + 1

xye2ibj

1

1 + xye2ibj
,

=
1

xye2ibj
,

F (y) = xye2ibjF (x2y). (58)

It is easily seen that

h(y) = F (y)

∞∏
n=1

(1− x2n), (59)

and

h(x2y) = F (x2y)

∞∏
n=1

(1− x2n). (60)

From Eq. (58), we see

h(x2y) =
F (y)

xye2ibj

∞∏
n=1

(1− x2n) =
h(y)

xye2ibj

h(y) = xye2ibjh(x2y). (61)

Then Eq. (49) is rewritten as

g(y) = cyN
d∏
j=1

∞∏
n=1

(1 + x2n−1y−1e−2bji)(1 + x2n−1ye2bji), (62)

= cyN
d∏
j=1

h(y). (63)

g(x2y) = cx2NyN
d∏
j=1

h(x2y), (64)

from Eq. (61) we get

= cx2NyN
d∏
j=1

x−1y−1e−2ibjh(y), (65)
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= x−dy−dx2N
d∏
j=1

e−2ibj g(y);

where
d∏
j=1

e−2ibj = x−2N ,

g(x2y) = x−dy−dg(y). (66)

Expand g in a Laurent Series:

g(y) =
∞∑

n=−∞
any

n, (67)

∞∑
n=−∞

any
n = xdyd

∞∑
n=−∞

an(x2y)n =

∞∑
n=−∞

anx
2n+dyn+d, (68)

This can be re-indexed with n′ = n− d on the left side of Eq. (68) to get

∞∑
n=−∞

any
n =

∞∑
n=−∞

anx
2n−dyn, (69)

an = an−dx
2n−d, (70)

so
ad = a0x

d;

ad+1 = x2(d+1)−dad+1−d = xd+2a1;

a2d = x2(2d)−da2d−d = x3dad = x3d(a0x
d) = x4da0;

a2d+1 = x2(2d+1)−da2d+1−d

= x3d+2−dad + 1 = x3d+2−d(xd+2a1) = x4d+da1.

Therefore

akd+j = (x)(k
2d+2kj) aj ; j = 0, ..., d− 1. (71)

On the other hand, we consider Eq. (28),

f(z) = π
−1
4

d−1∑
m=0

fmϑ3(
πm

d
− z
√

π

2d
;
i

d
)

= π
−1
4

d−1∑
m=0

fm

∞∑
n=−∞

(e−π)
n2

d exp(
inmπ

d
)exp(−i2nz

√
π

2d
), (72)

Let

x = exp(−π); y = exp(−i2z
√

π

2d
)

Then Eq. (72) is rewritten as

g′(y) = π
−1
4

d−1∑
m=0

∞∑
n=−∞

x
n2

d yne(
i2nmπ
d

)fm, (73)

= π
−1
4

∞∑
n=−∞

(x)n
2/dyn

d−1∑
m=0

fmexp(
2πimn

d
), (74)

= π
−1
4

∞∑
n=−∞

(x)n
2/dynf̃n, (75)

=

∞∑
n=−∞

(π
−1
4 (x)n

2/df̃n)yn, (76)
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where f̃n+d = f̃n is the finite Fourier transform of fm.
If we let

an = π
−1
4 (x)n

2/d f̃n, (77)

Eq. (70) is satisfied and therefore g(y) = g′(y). The equality of Eq. (28) and Eq. (49) is proved.
Using Eq. (41) we can calculate the coefficients Fm.
Numerically, we insert d arbitrary values z0, ..., zd−1 and solve the system of d equations with d unknowns:

f(zj) = π−1/4
d−1∑
m=0

Fm Θ3[πmd−1 − zjπ1/2(2d)−1/2; id−1]. (78)

We take the normalisation coefficients equal to one, and after the calculation we normalise the vector Fm.

6.1 Example

let d = 3 and ζ0; ζ1 be given as follows:

ζ0 = 0.26 + 2.95; ζ1 = 2.16 + 2.22i. (79)

Using Eq. (46), we get ζ2 = 4.09 + 1.34i.
We choose three arbitrary values 0, 1,−1 and insert them with ζ0; ζ1; ζ2 in Eq. (49). We then find f(0), f(1), f(−1)
to insert them in Eq. (78) and solve the system of three equations with three unknowns, in which case we
get  F0

F1

F2

 =

 0.2349 + 0.1301i
0.6778− 0.0490i
0.6760− 0.0952i

 .

7 Paths of the Zeros

Using the Hamiltonian H, the state
F (0) =

∑
Fm(0)X;m at t = 0 evolves at time t into

F (t) = exp(itH)F (0) =

d−1∑
m=0

Fm(t)X;m. (80)

Let f(z; t) be the analytic function corresponding to exp(itH)f (wheref(z; 0) = f(z)) and ζn(t) the zeros.
Ref [13] has been studied the motion of the zeros. In some cases N of the zeros follow the same path and in
other cases each zero follow its own path.
An important special case is periodic systems, i.e., systems with Hamiltonians with commensurate eigenval-
ues. In this case, the paths of the zeros are closed paths.
In some cases M of the d zeros follow the same path and we say that this path has multiplicity M.
Ref [13] has been considerd several examples and showed that after a period the zeros exchange their positions.

7.1 Exampe

• In Fig. 3 we consider the case where d = 3 and the state F (0) at t = 0 are described through the
coefficients

F0(0) = 0.84 + 0.09i;F1(0) = 0.36− 0.04i;

F2(0) = 0.36− 0.04i. (81)
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We calculate the coefficients Fm(t) for the Hamiltonian

HD =

 1 1− i 0
1 + i 1 0

0 0 2.5

 (82)

which has the eigenvalues −0.41, 2.41, 2.5 and we calculate the corresponding f(z; t) using Eq. (28).

• In Fig. 4 we consider the case where d = 4 and the state F (0) at t = 0 are described through the
coefficients

F0(0) = 0.03 + 0.25i;F1(0) = 0.53 + 0.05i;

F2(0) = 0.74− 0.22i;F3(0) = 0.12− 0.16i. (83)

We calculate the coefficients Fm(t) for the Hamiltonian

HE =


1 −i 0 0
i 1 0 0
0 0 1/2 0
0 0 0 1/2

 (84)

which has the eigenvalues 0, 0.5, 0.5, 2 and we calculate the corresponding f(z; t) using Eq. (28).
Periodic finite quantum systems
In Ref [13] we study the periodic systems, and we discuss some examples where two or more zeros follow

the same path.
During a period the zeros follow a closed paths. In some cases M of the zeros follow the same path.
We present the following examples

7.2 Example

� We consider the Hamiltonian

H =

(
1 −i
i 1

)
(85)

which has the eigenvalues 0, 2 and the period T = π.
Let ζ0(t), ζ1(t) be the paths of the zeros. We assume that at t = 0

ζ0(0) = 0.39 + 2.27i; ζ1(0) = 3.15 + 1.27i. (86)

These zeros obey the constraint of Eq. (46) and they are on a torus (i.e., they are defined modulo
(4π)1/2).
During a period the zeros ζ0, ζ1 follow a closed paths.
In Fig. 5 we present the paths of these zeros.

� We consider the Hamiltonian

H =

 1 1 0
1 1 0
0 0 1

 (87)

which has the eigenvalues 0, 1, 2 and the period T = 2π. Let ζ0(t), ζ1(t), ζ2(t) be the paths of the three
zeros. We assume that at t = 0

ζ0(0) = 1.34 + 2.27i;

ζ1(0) = 2.15 + 2.32i;

ζ2(0) = 3.01 + 1.91i. (88)
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These zeros obey the constraint of Eq. (46) and they are on a torus (i.e., they are defined modulo
(6π)1/2).

In this case we found numerically that

ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ1(t). (89)

Here two of the zeros follow the same path (which by definition has multiplicity M = 2) and the third
one follows a different path.

In Fig. 6 we present the paths of these zeros. Here after a period

ζ1(T ) = ζ2(0); ζ2(T ) = ζ1(0); ζ0(T ) = ζ0(0) (90)

During a period the zero ζ0 follows a closed path. The other two zeros exchange position after a period.
These zeros comes to their original position after 2 periods

ζ1(2T ) = ζ1(0); ζ2(2T ) = ζ2(0). (91)

8 Conclusion

We have studied the basic properties of the zeros of analytic theta functions. We discussed briefly the
analytic representation of finite quantum systems. We reviewed briefly the zeros of analytic theta function
and there time evolution.
Quantum states have been represented with the analytic function of Eq. (28) on a torus, which has exactly
d zeros and obeys the constraint of Eq. (46).
This zeros and there evolution time are discussed.
We have considered the construction of the analytic function of state from its zeros.
We have proved this construction. We gave several examples to demonstrate these ideas.
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Figure 1: The zeros of function f(z) for case d = 3. The |F (t)〉 at t = 0 is described through the coefficients
in Eq. (47).
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Figure 2: The zeros of function f(z) for case d = 5. The |F (t)〉 at t = 0 is described through the coefficients
in Eq. (48).
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Figure 3: The zeros ζn(t) for the state F (t), which at t = 0 are described in Eq. (81). We consider the
Hamiltonian HD of Eq. (82).
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Figure 4: The zeros ζn(t) for the state F (t), which at t = 0 are described in Eq. (83). We consider the
Hamiltonian HE of Eq. (84).

82



M. Tabuni

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Z
R

Z
I

Figure 5: The paths of the zeros ζ0(t), ζ1(t) for the system with the Hamiltonian of Eq. (85). The zeros
ζ0(t), ζ1(t) follow a closed path. At t = 0 the zeros ζ0(0), ζ1(0) are given in Eq. (86) and they are indicated
in the diagram. After a period T the zeros ζ0, ζ1, ζ2(t) return in there initial positions.
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Figure 6: The paths of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the Hamiltonian of Eq. (87). The
zeros ζ1(t), ζ2(t) follow the same path and the zero ζ1(t) follows a different path. At t = 0 the zeros ζ0(0),
ζ1(0), ζ2(0) are given in Eq. (88) and they are indicated in the diagram. After a period T the zeros ζ1, ζ2
exchange positions as described in Eq. (90) while ζ1 returns in its initial position.
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