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Abstract

Suppose that the state of a system at time t is described by an Itô process Xt of the form

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt, t > s > 0, (1)

where Xt ∈ Rn, b : R×Rn ×U → Rn, σ : R×Rn ×U → Rn×m and Bt is an m-dimensional Brownian
motion. Here ut ∈ U ⊂ Rk is a parameter whose value we can choose in a given Borel set U
at any instant t in order to control the process Xt. Thus ut = u(t, w) is a stochastic process.
Since our decision at time t must be based upon what has happened up to time t, the function

w −→ u(t, w) must (at least) be measurable with respect to F (m)
t , i.e. the process ut must be

{F (m)
t , t > 0}-adapted.

Keywords

Stochastic process, Brownian motion, Markov processes, stochastic differential equation and
Stochastic Control.

1 Introduction

Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent
theory of integration to be defined for integrals of stochastic processes with respect to semi-martingales. It
is used to model systems that behave randomly. These include stochastic differential equation (SDEs). In
1944 Kiyosi Itô, a Japanese mathematician (1915-2008), introduced the stochastic integral and a formula,
known since then as Itô’s formula. The best-known stochastic process to which stochastic calculus is applied
is the Brownian motion / Wiener process (named in honor of Norbert Wiener), which is used for modeling
Brownian motion, as described by Louis Bachelier in 1900 and by Albert Einstein in 1905, and other physical
diffusion processes in space of particles subject to random forces. Since 1970s, Brownian motion has been
widely applied in financial mathematics and economics to model the evolution in time of stock prices, options,
and bond interest rates.

Stochastic analysis, involving analytical nature, which is an infinite dimensional analysis has become
nowadays one of the most important and attractive fields due to its applications in different fields such as
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PDEs, differential geometry, finance, Malliavin calculus and potential theory. We refer the reader to [1], [4],
[7], [8] and [11] for more information and applications.

Kiyosi Itô and Henry P. Mckean (see [6]) wrote in 1974 a nice book in diffusion processes and Markov
processes and gave examples and properties of these processes. An Itô diffusion is, in fact, a solution to a
specific type of stochastic differential equation, driven particularly, by a Brownian motion. This point of
view of diffusion processes is what we focuss on in our work here. Precisely, in this dissertation we aim
to study SDEs and time-homogenous Itô diffusion, try to establish some of their properties such as having
solutions being Markov, and then provide their applications to PDEs and stochastic optimal control theory
when we have a control problem governed by a certain forward SDE. We study two approaches for this latter
applications. The first one is dynamic programming via the so-called Hamilton-Jacobi-Bellman equations
as we are dealing with Markov processes. The second approach is the maximum principle, which does not
require the solution of our controlled SDE to be a Markov process. .

2 Application to Stochastic Control

2.1 Statement of the Problem

Suppose that the state of a system at time t is described by an Itô process Xt of the form

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt, t > s > 0, (2)

where Xt ∈ Rn, b : R×Rn×U → Rn, σ : R×Rn×U → Rn×m and Bt is an m-dimensional Brownian motion.
Here ut ∈ U ⊂ Rk is a parameter whose value we can choose in a given Borel set U at any instant t in
order to control the process Xt. Thus ut = u(t, w) is a stochastic process. Since our decision at time t must
be based upon what has happened up to time t, the function w −→ u(t, w) must (at least) be measurable

with respect to F (m)
t , i.e. the process ut must be {F (m)

t , t > 0}-adapted. Thus the right hand side of (2) is
well-defined as a stochastic differential, under suitable assumptions on the function b and σ. At the moment
we will not specify the conditions on b and σ further, but simply assume that the process Xt satisfying (2)
exists.

Let Xs,x
h h > s be the solution of (2) such that Xs,x

s = x, i.e.

Xs,x
h = x+

∫ h

s

b(r,Xs,x
r , ur)dr +

∫ h

s

σ(r,Xs,x
r , ur)dBr; h > s,

and let the probability law of Xt starting at x for t = s be denoted by Qs,x, so that

Qs,x [Xt1 ∈ F1, . . . , Xtk ∈ Fk] = P
[
X
s,x

t1 ∈ F1, . . . , X
s,x
tk
∈ Fk

]
(3)

for s 6 ti, Fi ⊂ Rn; 1 6 i 6 k, k = 1, 2, . . . Let f : R × Rn × U → R (the ”utility rate” or ”profit rate”
function) and g : R×Rn → R (the ”bequest” function) be given continuous functions, let G ( the ”solvency”

set ) be a fixed domain in R × Rn and let T̂ (the ”bankruptcy” time) be the first exit time after s from G
for the process {Xs,x

r }r>s , i.e.

T̂ = T̂ s,x(w) = inf {r > s; (r,Xs,x
r (w)) /∈ G} 6∞. (4)

Suppose

Es,x
[∫ T̂

s

|fur (r,Xr)|dr + |g(T̂ ,XT̂ )|χ{T̂<∞}

]
<∞ ∀ s, x, u, (5)

where fu(r, z) = f(r, z, u). Define the performance function Ju(s, x) by

Ju(s, x) = Es,x
[∫ T̂

s

fur (r,Xr)dr + g(T̂ ,XT̂ )χ{T̂<∞}

]
. (6)
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To obtain an easier notation we introduce

Yt = (s+ t,Xs,x
s+t) for t > 0, Y0 = (s, x),

and we observe that, if we substitute this in (2), we get the equation

dYt = dY ut = b(Yt, ut)dt+ σ(Yt, ut)dBt. (7)

With slightly some abuse of notation, the probability law of Yt starting at y = (s, x) for t = 0 is also denoted
by Qs,x = Qy. Note that∫ T̂

s

fur (r,Xr)dr =

∫ T̂−s

0

fus+t(s+ t,Xs+t)dt =

∫ τG

0

fus+t(Yt)dt,

where
τG = inf{t > 0;> Yt /∈ G} = T̂ − s. (8)

Moreover,
g(T̂ ,XT̂ ) = g(YT̂−s) = g(YτG).

Therefore the performance function may be written in terms of Y with y = (s, x), as follows:

Ju(y) = Ey
[∫ τG

0

fut(Yt)dt+ g(YτG)χ{τG<∞}

]
. (9)

Strictly speaking this ut is a time shift of the ut in (7).

The problem is - for each y ∈ G - to find the number Φ(y) and a control u∗ = u∗(t, w) = u∗(y, t, w) ∈ A
such that

Φ(y) = sup
u(t,w)

Ju(y) = Ju
∗
(y), (10)

where the supremum is taken over a given family A of admissible controls, contained in the set of all

{F (m)
t , t > 0}-adapted processes {ut} with values in U.
Such a control u∗ - if it exists - is called an optimal control and Φ is called the optimal performance or

the value function.
There are various types of such controls. We shall concentrate here on functions u(t, w) of the form

u(t, w) = u0(t,Xt(w)) for some function u0 : Rn+1 −→ U ⊂ Rk. In this case we assume that u does not
depend on the starting point y = (s, x) : the value we choose at time t only depends on the state of the
system at this time. These are called Markov controls.

2.2 Dynkin’s Formula

Recall that an (time-homogeneous) Itô diffusion is a stochastic process Xt(w) = Xt(t, w) : [0,∞)×Ω→ Rn
satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t > s, Xs = x, (11)

where Bt is m-dimensional Brownian motion and b : Rn −→ Rn, σ : Rn −→ Rn×m are Lipschitz. Let
{Xt, t > 0} be a time-homogeneous Itô diffusion in Rn. The (infinitesimal) generator A of {Xt, t > 0} is
defined by

Af(x) = lim
t↓0+

Ex[f(Xt)]− f(x)

t
; x ∈ Rn.

The set of functions f : Rn → R such that the limit exists at x is denoted by DA(x), while DA denotes
the set of functions for which the limit exists for all x ∈ Rn. It is not difficult (see [8, Theorem 7.3.3]) to
see that

Af(x) =

n∑
i=1

bi(x)
∂f

∂xi
+

1

2

n∑
i.j=1

(σσtr )ij(x)
∂2f

∂xi∂xj
(12)
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for all f ∈ C2
0 (Rn) (and so f ∈ DA), and σtr is the transpose of the matrix σ. (Dynkin’s Formula) Keep

the proceding notation on X given by the unique solution of (11). Let f ∈ C2
0 (Rn). Suppose τ is a stopping

time, Ex[τ ] <∞. Then

Ex[f(Xτ )] = f(x) + Ex
[∫ τ

0

Af(Xs)ds

]
.

Proof. Apply Itô’s formula to compute f(Xt), 0 6 s 6 t, and take the expectation to find E[f(Xt)]|t=τ..
Then apply (12).

2.3 Hamilton-Jacobi-Bellman Equation

Let us go back to the information we recorded in Section 5.1. We shall consider only Markov controls

ut = u(t,Xt(w)).

Introducing Yt = (s+ t,Xs+t) (as explained earlier) the system equation becomes

dYt = b(Yt, u(Yt))dt+ σ(Yt, u(Yt))dBt. (13)

For v ∈ U and φ ∈ C2
0 (R×Rn) define

(Lvφ)(y) =
∂φ

∂s
(y) +

n∑
i=1

bi(y, v)
∂φ

∂xi
+

n∑
i,j=1

aij(y, v)
∂2φ

∂xi∂xj
(14)

where aij =
1

2
(σσT )ij , y = (s, x) and x = (x1, . . . , xn). Here C2

0 (R×Rn) denotes the subspace of C2(R×R)

consisting of mappings f ∈ C2(R×R) having compact support. Then, for each choice of the function u, the
solution Yt = Y ut is an Itô diffusion with generator A given by

(Aφ)(y) = (Lu(y)φ)(y) for f ∈ C2
0 (R× Rn).

For v ∈ U define fv(y) = f(y, v). The first fundamental result in stochastic control theory is the following.
[The Hamilton-Jacobi-Bellman (HJB) Equation (I)] Define

Φ(y) = sup{Ju(y);u = u(Y ) Markov control}.

Suppose that Φ ∈ C2(G) ∩ C(G) satisfies

E
[
|Φ(Y yα )|+

∫ α

0

|LvΦ(Y yt )|dt
]
<∞,

for all bounded stopping times α 6 τG, all y ∈ G and all v ∈ U. Moreover, suppose that an optimal Markov
control u∗ exists and that ∂G is regular for Y u

∗

t . Then

sup
v∈U
{fv(y) + (LvΦ)(y)} = 0 ∀y ∈ G, (15)

and
Φ(y) = g(y) ∀y ∈ ∂G. (16)

The supremum in (15) is obtained if v = u∗(y) where u∗(y) is optimal. In other words,

f(y, u∗(y)) + (Lu
∗(y)Φ)(y) = 0 ∀y ∈ G. (17)
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Proof. We show first the last two statements are easy to prove: Since u∗ = u∗(y) is optimal we have

Φ(y) = Ju
∗
(y) = Ey

[∫ τG

0

f(Ys, u
∗(Ys))ds+ g(YτG).χ{τG<∞}

]
. (18)

If y ∈ ∂G then τG = 0 a.s. Qy (since ∂G is regular), and so YτG = y and Φ(y) = g(y), which is (16). It is
not difficult to see that

(Lu
∗(y)Φ)(y) = −f(y, u∗(y)) ∀y ∈ G,

which is (17).

In fact one can relate (17) and (16) as combined stochastic Dirichlet Poisson problem, which is known
(see [8, Theorem 9.3.3]) to have a unique solution (since Φ ∈ C2(G)) in the form given by (18). We proceed
to prove (15). Fix y = (s, x) ∈ G and choose a Markov control u. Let α 6 τG be abounded stopping time.

Since

Ju(y) = Ey
[∫ τG

0

fu(Yr)dr + g(YτG).χ{τG<∞}

]
,

we get by the strong Markov propety

Ey[Ju(Yα)] = Ey
[
Eyα

[∫ τG

0

fu(Yr)dr + g(YτG)χ{τG<∞}

]]

= Ey
[
Ey
[
θα

(∫ τG

0

fu(Yr)dr + g(YτG)χ{τG<∞}

)
|Fα
]]

= Ey
[
Ey
[∫ τG

0

fu(Yr)dr + g(YτG)χ{τG<∞}

]
|Fα
]

= Ey
[∫ τG

0

fu(Yr)dr + g(YτG)χ{τG<∞} −
∫ α

0

fu(Yr)dr

]
= Ju(y)− Ey

[∫ α

0

fu(Yr)dr

]
.

So

Ju(y) = Ey
[∫ α

0

fu(Yr)dr

]
+ Ey[Ju(Yα)]. (19)

Now let W ⊂ G be of the form W = {(r, z) ∈ G; r < t1 where s < t1}. Put α = inf{t > 0;Yt /∈ W}.
Suppose that an optimal control u∗(y) = u∗(r, z) exists, and choose

u(r, z) =

{
v if (r, z) ∈W

u∗(r, z) if (r, z) ∈ G \W,

where v ∈ U is arbitrary. Then
Φ(Yα) = Ju

∗
(Yα) = Ju(Yα), (20)

and therefore, combining (19) and (20) we obtain

Φ(y) > Ju(y) = Ey
[∫ α

o

fv(yr)dr

]
+ Ey[Φ(Yα)]. (21)

Since Φ ∈ C2(G) we get by Dynkin’s formula

Ey[Φ(Yα)] = Φ(y) + Ey
[∫ α

0

(LuΦ)(Yr)dr

]
,
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which substituted in (21) gives

Φ(y) > Ey
[∫ α

0

fv(Yr)dr

]
+ Φ(y) + Ey

[∫ α

0

(LvΦ)(Yr)dr

]
or

Ey
[∫ α

0

fv(Yr) + (LvΦ)(Yr))dr

]
6 0.

So
Ey[
∫ α

0
(fv(Yr) + (LvΦ)(Yr)]dr]

Ey[α]
6 0 for all such W.

Letting t1 ↓ s we obtain, since fv(.) and (LvΦ)(.) are continuous at y, that fv(y) + (LvΦ)(y) 6 0, which
combined with (17) gives (15). Thus the proof is complete.

The HJB(I) equation states that if an optimal control u∗ exists, then we knew that its value v at the
point y is a point v where the function

v → fv(y) + (LvΦ)(y); v ∈ U

attains its maximum (and this maximum is 0). [The HJB (II) Equation - A Converse of HJB (I)]
Let φ ∈ C2(G) ∩ C(G) such that, for all v ∈ U,

fv(y) + (Lvφ)(y) 6 0, y ∈ G, (22)

with boundary values
lim
t→τG

φ(Yt) = g(YτG).χ{τG<∞} a.s. Qy, (23)

and such that
{φ−(Yτ ); τ stopping time, τ 6 τG} (24)

is uniformly Qy-integrable for all Markov controls u and all y ∈ G. Then

φ(y) > Ju(y), (25)

for all Markov controls u and all y ∈ G. Moreover, if for each y ∈ G we have found u0(y) such that

fu0(y)(y) + (Lu0(y)φ)(y) = 0, (26)

and

{φ(Y u0); τ stopping time, τ 6 τG} (27)

is uniformly Qy-integrable, for all y ∈ G, then u0 = u0(y) is a Markov control such that

φ(y) = Juo(y)

and hence, if u0 is admissible (i.e. u0 means u0(Yt)), then u0 must be an optimal control and φ(y) = Φ(y).

Proof. Assume that φ satisfies (22) and (23). Lat u be a Markov control. Since Luφ 6 −fu in G we have
by Dynkin’s formula

Ey[φ(YTR)] = φ(y) + Ey
[∫ TR

0

(Luφ)(Yr)dr

]

6 φ(y)− Ey
[∫ TR

0

fu(Yr)dr

]
,
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where
TR = min{R, τG, inf{t > 0; |Yt| > R}} (28)

for all R <∞. This gives, by (5), (23), (24) and Fatou’s lemma (see for instance [4]

φ(y) > lim
R−→∞

Ey
[∫ TR

0

fu(Yr)dr + φ(YTR)

]

> Ey
[∫ τG

0

fu(Yr)dr + g(YτG)χ{τG<∞}

]
= Ju(y)

which proves (25). If u0 is such that (26) and (27) hold, then the calculations above give equality and the
proof is complete.

The HJB equations (I), (II) provide a nice solution to the stochastic control problem in the case where
only Markov controls are considered. One might feel that considering only Markov controls is too restrictive,
but fortunately one can always obtain as good performance with a Markov control as with an arbitrary

F (m)
t -adapted control, at least if some extra conditions are satisfied. For more details on this issue we refer

the reader to [8]. One can see also [14] for such work on dynamic programming as well as the maximum
principle, which is the subject of our coming section. Consider the optimal control problem

Ψ(s, x) = inf
u

Es,x
[∫ ∞

s

e−αt(θ(Xt) + u2
t )dt

]
where α > 0 is constant, and the underling SDE is the following 1−dimensional equation.

dXt = utdt+ dBt, X0 ∈ R.

The function Θ : R → R is a given bounded and continuous function. We claim that if Ψ satisfies the
conditions of Theorem 2.2, then

u∗(t, x) = −1

2
eαt

∂Ψ

∂x
.

To write down the HJB equation for this control denote

F v(t, x) =

∫ ∞
t

e−αs(φ(x) + v2)ds = e−αt(φ(x) + v2),

and H = Ψ.

(AvH)(t, x) =
∂H

∂t
+ v

∂H

∂x
+

1

2

∂2H

∂x2
.

Consequently, over Borel set V ⊆ R, we have our HJB:

0 = inf
v∈V
{F v(t, x) +AvH(t, x)}

= inf
v∈V

{
∂H

∂t
+ e−αt(φ(x) + v2) + v

∂H

∂x
+

1

2

∂2H

∂x2

}
.

Let

η(v) =
∂H

∂t
+ e−αt(φ(x) + v2) + v

∂H

∂x
+

1

2

∂2H

∂x2
.

Then

η′(v) = e−αt(2v) +
∂H

∂x
= 0,

which is equivalent to

v = −1

2
eαt

∂H

∂x
.
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Hence, if H is C2 and u∗ exists then u∗(t, x) = −1

2
eαt

∂H

∂x
, as claimed. Consider the stochastic control

problem

Ψ0(s, x) = inf
u

Es,x
[∫ ∞

s

e−ρtf0(ut, Xt)dt

]
,

where
dXt = dXu

t = b(ut, Xt)dt+ σ(ut, Xt)dBt, Xt ∈ Rn, ut ∈ Rk, Bt ∈ Rm,

for all t, f0 is a given bounded continuous real function, ρ > 0 and the inf is taken over all time-homogeneous
Markov controls u, i.e. controls u of the form u = u(Xt). We want to prove that

Ψ0(s, x) = e−ρsξ(x),

where
ξ(x) = Ψ(0, x).

Let us = u(Xs). Then if we let s = r + t, by using Fubini theorem and the Markov property attained
here by the diffusion {Xt, t > 0}.

Ψ0(t, x) = inf
u

Et,x
[∫ ∞

t

e−psf0(us, Xs)ds

]

= inf
u

Et,x
[∫ ∞

t

e−psf0(u(Xs, Xs)ds

]
= inf

u
Et,x

[∫ ∞
0

e−p(t+r)f0(u(Xt+r), Xt+r)dr

]
= e−pt inf

u
Et,x

[∫ ∞
0

e−prf0(u(Xt+r), Xt+r)dr

]
= e−pt inf

u

∫ ∞
0

e−prEt,x [f0(u(Xt+r), Xt+r)] dr

= e−pt inf
u

∫ ∞
0

e−prE
[
f0(u(Xt,x

t+r), X
t,x
t+r)

]
dr

= e−pt inf
u

∫ ∞
0

e−prE
[
f0(u(X0,x

r ), X0,x
r )

]
dr

= e−pt inf
u

E
[∫ ∞

0

e−prf0(u(X0,x
r ), Xo,x

r )dr

]
= e−pt inf

u
E0,x

[∫ ∞
0

e−prf0(u(Xr), Xr)dr

]
= e−pt inf

u
E0,x

[∫ ∞
0

e−prf0(ur, Xr)dr

]
= e−ptΨ0(, x)

= e−ptξ(x).

Define
dXt = rutXtdt+ αutXtdBt; Xt, ut, Bt ∈ R

and

Φ(s, x) = sup
u

Es,x
[∫ ∞

s

e−ρtf0(Xt)dt

]
,
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where r, α, ρ are constats, ρ > 0 and f is a bounded continuous real function.
Assume that Φ satisfies the conditions of Theorem 2.3 and that an optimal Markov control u∗ exists.
a) We want to show that

sup
v∈R

{
e−ρtf(x) +

∂Φ

∂t
+ rvx

∂Φ

∂x
+

1

2
α2v2x2 ∂

2Φ

∂x2

}
= 0,

and
∂2Φ

∂x2
6 0.

b) Assuming that
∂2Φ

∂x2
< 0, we shall show that following that

u∗(t, x) = −
r ∂Φ
∂x

α2x∂
2Φ
∂x

and that

2α2

(
e−ρtf0(x) +

∂Φ

∂t

)
∂2Φ

∂x2
− r2(

∂Φ

∂x
)2 = 0.

Let us now proving a) and b). For a) observe that V = −Φ

AvΦ(t, x) =
∂Φ

∂t
+ rvx

∂Φ

∂x
+

1

2
α2v2x2 ∂

2Φ

∂x2

F v(t, x) = −
∫ ∞
t

e−ρsf0(x)ds = −e−ρtf0(x).

The HJB equation now becomes
inf
v∈R
{AvV (t, x) + F v(t, x)} = 0,

with V = −Φ. Hence in particular, we deduce

sup
v∈R
{e−ρtf0(x) +

∂Φ

∂t
+ rvx

∂Φ

∂x
+

1

2
α2v2x2 ∂

2Φ

∂x2
} = 0. (29)

Let

η(v) = e−ρtf0(x) +
∂Φ

∂t
+ rvx

∂Φ

∂x
+

1

2
α2v2x2 ∂

2Φ

∂x2
.

Then

η′(v) = rx
∂Φ

∂x
+ α2x2v

∂2Φ

∂x2
(30)

η′′(v) = α2x2 ∂
2Φ

∂x2
then

∂2Φ

∂x2
6 0.

But v is the supremum (maximum) of the function η. Thus η′′(v) 6 0, whence ∂2Φ
∂x2 6 0.

Next we show b). If
∂2Φ

∂x2
< 0 then from (30) we get

u∗(t, x) =
−rx∂Φ

∂x

α2x2 ∂2Φ
∂x2

=
−r ∂Φ

∂x

α2x∂
2Φ
∂x2

.
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Hence by substituting u∗(t, x) in HJB equation (29) we qet

e−ρtf0(x) +
∂Φ

∂t
−
r2 ∂Φ

∂x

2

α2 ∂2Φ
∂x2

+
1

2

r2 ∂Φ
∂x

2

α2 ∂2Φ
∂x2

= 0.

Therefore by multiplying both svdes by 2α∂
2Φ
∂x2 we get

2α2(e−ρtf0 +
∂Φ

∂t
)
∂2Φ

∂x2
− r2(

∂Φ

∂x
)2 = 0.

Let Xt denote the wealth of a person at time t. Suppose that the person has the choice of two different
investments. The price X1(t) at time t of one of the assets is assumed to satisfy the equation

dX1(t)

dt
= X1(t)[a+ αWt], (31)

where W denotes a white noise, i.e. the “symbolic” time derivative of a Brownian motion, and a, α > 0 are
constants measuring the average relative rate of change of X1(t) and the size of the noise, respectively. It is
easy to interpret (31) as the Itô SDE:

dX1(t) = X1(t)adt+X1(t)αdBt. (32)

This investment is called risky, since α > 0. We assume that the price X0(t) of the other asset satisfies a
similar equation, but with no noise:

dX0(t) = X0(t)bdt. (33)

This investment is called safe. So it is natural to assume b < a. At each instant t the person can choose how
big fraction u(t) of his wealth he will own. This gives the following SDE for the wealth Zt = Zut :

dZt = u(t)Ztadt+ u(t)ZtαdBt + (1− u(t))Ztbdt

= Zt(au(t) + b(1− u(t)))dt+ αu(t)ZtdBt. (34)

Suppose that, starting with the wealth Zs = x > 0 at time s, the person wants to maximize the
expected utility of the wealth at some future time t0 > s. If we do not allow any borrowing (i.e. require
u(t) 6 1) and we do not allow any shortselling (i.e. require u(t) > 0) and we are given a utility function
N : [0,∞)→ [0,∞), N(0) = 0 (usually assumed to be increasing and concave) the problem is to find Φ(s, x)
and a (Markov) control u∗ = u∗(t, Zt), 0 6 u∗ 6 1, such that

Φ(s, x) = sup{Ju(s, x);u Markov control, 0 6 u 6 1} = Ju
∗
(t, Zt),

where Ju(s, x) = Es,x[N(ZuτG)] and τG is the first exit time from the region

G = {(r, z); r < t0, z > 0}.

We shall use Dynkin’s formula to prove directly that

u∗(t, x) = min(
a− b

α2(1− γ)
, 1)

is the optimal portfolio selection problem with utility function N(x) = xγ .
To prove this apply Dynkin’s formula for U(x) = xγ to get U(Xt) = Xγ

t and so

Et,x[Xγ
t ] = xγ + Et,x

[∫ t

0

Av(Xγ
s )ds

]
.

Since

Av(xγ) = x(av + b(1− v))γxγ − 1 +
1

2
α2v2xγ .γ(γ − 1)xγ−2
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=

(
γ(av + b(1− v) +

1

2
α2v2γ(γ − 1)

)
xγ =: r(v),

then
r′(v) = (γ(a− b)) + α2vγ(γ − 1)xγ = 0

has a solution

v =
a− b

1− γ)α2
.

Thus the optimal control is

u∗(t, x) = min(
a− b

(1− γ)α2
, 1).

2.4 The Maximum Principle

Let U ⊂ R be a convex subset of R. We say that ν(.) : [0, T ] × Ω → R is admissible if u ∈ L2
ad([0, t] × Ω)

and ν(t) ∈ U a.e., a.s.. The set of admissible controls is denoted bu Uad. Suppose that b : R× R→ R and
σ : R× R→ R are two continuous mappings, and consider the following controlled SDE with ν ∈ Uad :

dX(t) = b(X(t), ν(t))dt+ σ(X(t), ν(t))dW (t), t ∈ (0, T ], (35)

X(0) = x0,

and W is a Brownian motion in R.
A solution of (35) will be denoted by Xν(.) to indicate the presence of the control process ν(.); cf.

Theorem 2.4 below.
Let ` : R×R→ R and φ : R→ R be two measurable mappings such that the following cost (performance)

functional is defined:

J(ν(.)) = E[

∫ T

0

`(Xν(.)(t), ν(t))dt+ φ(Xν(.)(T ))]. (36)

We want to derive the maximum principle for this control problem. More precisely, we will concentrate on
providing necessary conditions for optimality for this optimal control problem, which gives this minimization.
For this purpose we will apply the theory of backward stochastic differential equation (BSDEs).

Assume that b, σ are continuously differentiable with respect to x. Then, for every ν(.) there exists a
unique mild solution Xν(.) on [0, T ] to (35). That is, Xν(.) is a progressively measurable stochastic process
such that X(0) = x0. The proof of this theorem can be derived in [8, Theorem 5.2.1].

Consider the Hamiltonian:
H : R× R× R× R→ R,

H(x, ν, y, z) := `(x, ν) + b(x, ν)y + σ(x, ν)z.

Then, we consider the following BSDE on R, (under condition (i)) of Theorem 2.4 below:

−dY ν(.)(t) = Hx(Xν(.)(t), ν(t), Y ν(.)(t), Zν(.)(t)))dt− Zν(.)(t)dW (t),

Y ν(.)(T ) = φ′(Xν(.)(T )). (37)

A solution of (37) is a pair (Y, Z) in the sense of Definition ?? such that we have P - a.s. for all t ∈ [0, T ]

Y ν(.)(t) = φ′(Xν(.)(T )) +

∫ T

t

Hx(Xν(.)(s), ν(s), Y ν(.)(s), Zν(.)(s))ds

−
∫ T

t

Zν(.)(s)dW (s). (38)
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Suppose that the following two conditions hold.
(i) b, σ, and ` are continuously differentiable with respect to x, ν, φ is continuously differentiable with respect
to x, the derivatives bx, bν , σx, σν , `x, and `ν are uniformly bounded, and

|φx| 6 K(1 + |x|) (39)

for some constant K > 0.
(ii) `x is Lipschitz with respect to v uniformly in x.

If (Xν∗(.), ν∗(.)) is an optimal pair (i.e. ν∗(.) is an optimal control and Xν∗(.) is its corresponding solution
of (35)), for the control problem then there exists a unique solution (Y ν

∗(.), Zν
∗(.)) to the corresponding

adjoint BSDE (37) such that the following inequality holds:

Hν(Xν∗(.)(t), ν∗(t), Y ν
∗(.)(t), Zν

∗(.)(t))(ν∗(t)− ν) 6 0 (40)

a.e. t ∈ [0, T ], a.s. ∀ν ∈ U. The proof of this theorem can be mimicked from the proof of Theorem 3 in [2].
Let U = R. Given φ as in Theorem 2.4, we would like to minimize the cost functional

J(ν(.)) = E

[∫ T

0

|ν(t)|2dt

]
+ E

[
φ(Xν(.)(T ))

]
(41)

subject to
dXν(.)(t) = (Xν(.)(t) + ν(t))dt+ ν(t)dW (t), t ∈ (0, T ], (42)

Xν(.)(0) = x0 ∈ R.

The Hamiltonian is then given by the formula:

H(x, ν, Y, Z) = |ν|2 + ν + νZ,

where (x, ν, Y, Z) ∈ R× R× R× R and the adjoint BSDE is

− dY ν(.)(t) = Y ν(.)(t)dt− Zν(.)(t)dW (t), t ∈ [0, T ) (43)

Y ν(.)(T ) = φ′(Xν(.)(T )).

From the construction of the solution of (43), see Section 4, this BSDE attains an explicit solution:

Y ν(.)(t) = E
[
φ′(Xν(.)(T ))|FWt

]
,

Zν(.)(t) = Rν(.)(t),

where Rν(.) is the unique element of L2
ad([0, T ]× Ω) satisfying

φ′(Xν(.)(T )) = E
[
φ′(Xν(.)(T ))

]
+

∫ T

0

Rν(.)(t)dW (t). (44)

Here FWt is the completed natural filtration of W .

On the other hand, for fixed (x, ν, y, z) we note that the function ν � H(x, ν, y, z) attains its minimum

at ν =
1

2
(y + z) ∈ U. Therefore, we may take

ν∗(t, w) =
1

2
(Y ν

∗(.)(t, w) + Zν
∗(.)(t, w)) (45)

as a candidate optimal control.
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It is easy to see that with these choices all the requirements of Theorem 2.4 are verified. Hence, this
candidate ν∗(.) given in (45) is an optimal control for the problem (41) and (42), and its corresponding
optimal solution Xν∗(.) is the solution of the following BSDE:

dXν∗(.)(t) = (Xν∗(.)(t) +
1

2
Y ν

∗(.)(t) + Zν
∗(.)(t)))dt

+
1

2
(Y ν

∗(.)(t) + Zν
∗(.)(t))dW (t), t ∈ (0, T ],

Xν∗(.)(0) = x0. (46)

Finally, the value function attains the formula

J∗ =
1

4
E

[∫ T

0

|Y ν
∗(.)(t) + Zν

∗(.)(t)|2dt

]
+ E

[
φ(Xν∗(.)(T ))

]
. (47)
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