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Abstract

In this paper, closed forms of the sum formulas
∑n

k=0 x
kWk and

∑n
k=1 x

kW−k for generalized
Tetranacci numbers are presented. As special cases, we give summation formulas of Tetranacci,
Tetranacci-Lucas, and other fourth-order recurrence sequences.
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1. Introduction

There have been so many studies of the sequences of numbers in the literature which are defined recursively.
Two of these type of sequences are the sequences of Tetranacci and Tetranacci-Lucas which are special case
of generalized Tetranacci numbers. A generalized Tetranacci sequence

{Wn}n≥0 = {Wn(W0,W1,W2,W3; r, s, t, u)}n≥0

is defined by the fourth-order recurrence relations

Wn = rWn−1 + sWn−2 + tWn−3 + uWn−4, (1)

with the initial values W0,W1,W2,W3 are arbitrary complex (or real) numbers not all being zero and r, s, t, u
are real numbers.

This sequence has been studied by many authors and more detail can be found in the extensive literature
dedicated to these sequences, see for example [5,8,9,11,30,32,33].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = − t

u
W−(n−1) −

s

u
W−(n−2) −

r

u
W−(n−3) +

1

u
W−(n−4)
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for n = 1, 2, 3, .... Therefore, recurrence (1) holds for all integer n.
For some specific values of W0,W1,W2,W3 and r, s, t, u, it is worth presenting these special Tetranacci

numbers in a table as a specific name. In literature, for example, the following names and notations (see
Table 1) are used for the special cases of r, s, t, u and initial values.

In literature, for example, the following names and notations (see Table 1) are used for the special case
of r, s, t, u and initial values.

Table 1. A few special case of generalized Tetranacci sequences.
No Sequences (Numbers) Notation OEIS [12] Ref.
1 Tetranacci {Mn} = {Wn(0, 1, 1, 2; 1, 1, 1, 1)} A000078 [26]
2 Tetranacci-Lucas {Rn} = {Wn(4, 1, 3, 7; 1, 1, 1, 1)} A073817 [26]

3 fourth order Pell {P (4)
n } = {Wn(0, 1, 2, 5; 2, 1, 1, 1)} A103142 [27]

4 fourth order Pell-Lucas {Q(4)
n } = {Wn(4, 2, 6, 17; 2, 1, 1, 1)} A331413 [[27]

5 modified fourth order Pell {E(4)
n } = {Wn(0, 1, 1, 3; 2, 1, 1, 1)} A190139 [[27]

6 fourth order Jacobsthal {J (4)
n } = {Wn(0, 1, 1, 1; 1, 1, 1, 2)} A007909 [28]

7 fourth order Jacobsthal-Lucas {j(4)n } = {Wn(2, 1, 5, 10; 1, 1, 1, 2)} A226309 [28]

8 modified fourth order Jacobsthal {K(4)
n } = {Wn(3, 1, 3, 10; 1, 1, 1, 2)} [28]

9 fourth-order Jacobsthal Perrin {Q(4)
n } = {Wn(3, 0, 2, 8; 1, 1, 1, 2)} [28]

10 adjusted fourth-order Jacobsthal {S(4)
n } = {Wn(0, 1, 1, 2; 1, 1, 1, 2)} [28]

11 modified fourth-order Jacobsthal-Lucas {R(4)
n } = {Wn(4, 1, 3, 7; 1, 1, 1, 2)} [28]

12 4-primes {Gn} = {Wn(0, 0, 1, 2; 2, 3, 5, 7)} [29]
13 Lucas 4-primes {Hn} = {Wn(4, 2, 10, 41; 2, 3, 5, 7)} [29]
14 modified 4-primes {En} = {Wn(0, 0, 1, 1; 2, 3, 5, 7)} [29]

Here OEIS stands for On-line Encyclopedia of Integer Sequences. For easy writing, from now on, we

drop the superscripts from the sequences, for example we write Jn for J
(4)
n .

We present some works on summing formulas of the numbers in the following Table 2.
Table 2. A few special study of sum formulas.

Name of sequence Papers which deal with summing formulas
Pell and Pell-Lucas [1,3,31],[6,7]

Generalized Fibonacci [4,13,14,15,16,17,19]
Generalized Tribonacci [2,10,18]
Generalized Tetranacci [20,25,32]
Generalized Pentanacci [21,22]
Generalized Hexanacci [23,24]

In this work, we investigate linear summation formulas of generalized Tetranacci numbers.

2 Linear Sum Formulas of Generalized Tetranacci Numbers with
Positive Subscripts

The following theorem presents some linear summing formulas of generalized Tetranacci numbers with pos-
itive subscripts.

Theorem 1. Let x be a real or complex numbers. For n ≥ 0 we have the following formulas:

(a) If rx + sx2 + tx3 + ux4 − 1 6= 0, then

n∑
k=0

xkWk =
Θ1(x)

rx + sx2 + tx3 + ux4 − 1
.
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(b) If r2x + 2ux2 − s2x2 + t2x3 − u2x4 + 2sx + 2rtx2 − 2sux3 − 1 6= 0 then

n∑
k=0

xkW2k =
Θ2(x)

r2x + 2ux2 − s2x2 + t2x3 − u2x4 + 2sx + 2rtx2 − 2sux3 − 1
.

and

(c) If r2x + 2ux2 − s2x2 + t2x3 − u2x4 + 2sx + 2rtx2 − 2sux3 − 1 6= 0 then

n∑
k=0

xkW2k+1 =
Θ3(x)

r2x + 2ux2 − s2x2 + t2x3 − u2x4 + 2sx + 2rtx2 − 2sux3 − 1
,

where

Θ1(x) = xn+3Wn+3 − xn+2 (rx− 1)Wn+2 − xn+1
(
sx2 + rx− 1

)
Wn+1 + uxn+4Wn − x3W3 + x2(rx −

1)W2 + x(sx2 + rx− 1)W1 + (tx3 + sx2 + rx− 1)W0,
Θ2(x) = xn+1

(
−ux2 − sx + 1

)
W2n+2 +xn+2(t+rs+rux)W2n+1 +xn+2(u+ t2x−u2x2 +rt−sux)W2n +

uxn+2 (r + tx)W2n−1−x2(r+ tx)W3 +x(r2x+ux2 + sx+ rtx2−1)W2−x2(t+ rux− stx)W1 + (r2x+ux2−
s2x2 + t2x3 + 2sx + 2rtx2 − sux3 − 1)W0,

Θ3(x) = xn+1(r+tx)W2n+2+xn+1(s−s2x+t2x2−u2x3+ux−2sux2+rtx)W2n+1+xn+1(t+rux−stx)W2n

−uxn+1(ux2+sx−1)W2n−1+x(ux2+sx−1)W3−x2(t+rs+rux)W2+(r2x+ux2−s2x2+2sx+rtx2−sux3−1)
W1 − ux2(r + tx)W0.

Proof.

(a) Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3 + uWn−4

i.e.
uWn−4 = Wn − rWn−1 − sWn−2 − tWn−3

we obtain

ux0W0 = x0W4 − rx0W3 − sx0W2 − tx0W1

ux1W1 = x1W5 − rx1W4 − sx1W3 − tx1W2

ux2W2 = x2W6 − rx2W5 − sx2W4 − tx2W3

ux3W3 = x3W7 − rx3W6 − sx3W5 − tx3W4

...

uxn−3Wn−3 = xn−3Wn+1 − rxn−3Wn − sxn−3Wn−1 − txn−3Wn−2

uxn−2Wn−2 = xn−2Wn+2 − rxn−2Wn+1 − sxn−2Wn − txn−2Wn−1

uxn−1Wn−1 = xn−1Wn+3 − rxn−1Wn+2 − sxn−1Wn+1 − txn−1Wn

uxnWn = xnWn+4 − rxnWn+3 − sxnWn+2 − txnWn+1

If we add the above equations side by side, we get (a).

(b) and (c) Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3 + uWn−4

i.e.
rWn−1 = Wn − sWn−2 − tWn−3 − uWn−4
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we obtain

rx1W3 = x1W4 − sx1W2 − tx1W1 − ux1W0

rx2W5 = x2W6 − sx2W4 − tx2W3 − ux2W2

rx3W7 = x3W8 − sx3W6 − tx3W5 − ux3W4

rx4W9 = x4W10 − sx4W8 − tx4W7 − ux4W6

...

rxn−1W2n−1 = xn−1W2n − sxn−1W2n−2 − txn−1W2n−3 − uxn−1W2n−4

rxnW2n+1 = xnW2n+2 − sxnW2n − txnW2n−1 − uxnW2n−2

rxn+1W2n+3 = xn+1W2n+4 − sxn+1W2n+2 − txn+1W2n+1 − uxn+1W2n

Now, if we add the above equations side by side, we get

r(−W1 +
n∑

k=0

xkW2k+1) = (xnW2n+2 −W2 − x−1W0 +

n∑
k=0

xk−1W2k) (2)

−s(−W0 +

n∑
k=0

xkW2k)− t(−xn+1W2n+1 +

n∑
k=0

xk+1W2k+1)

−u(−xn+1W2n +

n∑
k=0

xk+1W2k).

Similarly, using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3 + uWn−4

i.e.
rWn−1 = Wn − sWn−2 − tWn−3 − uWn−4

we write the following obvious equations;

rx1W2 = x1W3 − sx1W1 − tx1W0 − ux1W−1

rx2W4 = x2W5 − sx2W3 − tx2W2 − ux2W1

rx3W6 = x3W7 − sx3W5 − tx3W4 − ux3W3

rx4W8 = x4W9 − sx4W7 − tx4W6 − ux4W5

...

rxn−1W2n−2 = xn−1W2n−1 − sxn−1W2n−3 − txn−1W2n−4 − uxn−1W2n−5

rxnW2n = xnW2n+1 − sxnW2n−1 − txnW2n−2 − uxnW2n−3

rxn+1W2n+2 = xn+1W2n+3 − sxn+1W2n+1 − txn+1W2n − uxn+1W2n−1

rxn+2W2n+4 = xn+2W2n+5 − sxn+2W2n+3 − txn+2W2n+2 − uxn+2W2n+1

Now, if we add the above equations side by side, we obtain

r(−W0 +

n∑
k=0

xkW2k) = (−W1 +

n∑
k=0

xkW2k+1)− s(−xn+1W2n+1 +

n∑
k=0

xk+1W2k+1)

−t(−xn+1W2n +

n∑
k=0

xk+1W2k)

−u(−xn+2W2n+1 − xn+1W2n−1 + x1W−1 +

n∑
k=0

xk+2W2k+1)
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Since

W−1 = − t

u
W0 −

s

u
W1 −

r

u
W2 +

1

u
W3

we have

r(−W0 +

n∑
k=0

xkW2k) = (−W1 +

n∑
k=0

xkW2k+1)− s(−xn+1W2n+1 +

n∑
k=0

xk+1W2k+1) (3)

−t(−xn+1W2n +

n∑
k=0

xk+1W2k)

−u(−xn+2W2n+1 − xn+1W2n−1

+x1(− t

u
W0 −

s

u
W1 −

r

u
W2 +

1

u
W3) +

n∑
k=0

xk+2W2k+1).

Then, solving the system (2)-(3), the required results of (b) and (c) follow. �

Note that (a) of the above theorem can be written as follows:

n∑
k=0

xkWk =
g

rx + sx2 + tx3 + ux4 − 1

where
g = xn+4Wn+4−xn+3(rx−1)Wn+3−xn+2(sx2 +rx−1)Wn+2−xn+1(tx3 +sx2 +rx−1)Wn+1−x3W3 +

x2(rx− 1)W2 + x(sx2 + rx− 1)W1 + (tx3 + sx2 + rx− 1)W0.

3 Special Cases

In this section, for the special cases of x, we present the closed form solutions (identities) of the sums∑n
k=0 x

kWk,
∑n

k=0 x
kW2k and

∑n
k=0 x

kW2k+1 for the specific case of sequence {Wn}.

3.1 The case x = 1

In this subsection we consider the special case x = 1.
The case x = 1 of Theorem 1 is given in [20]. For the generalized 4-primes sequence case (x = 1, r =

2, s = 3, t = 5, u = 7), see [29].
We only consider the case x = 1, r = 1, s = 1, t = 1, u = 2 (which is not considered in [20]).
Observe that setting x = 1, r = 1, s = 1, t = 1, u = 2 (i.e. for the generalized fourth order Jacobsthal

sequence case) in Theorem 1 (b),(c) makes the right hand side of the sum formulas to be an indeterminate
form. Application of L’Hospital rule however provides the evaluation of the sum formulas.

Theorem 2. If r = 1, s = 1, t = 1, u = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Wk = 1
4 (Wn+3 −Wn+1 + 2Wn −W3 + W1 + 2W0).

(b)
∑n

k=0 W2k = 1
12 ((2n + 7)W2n+2 − 2(2n + 5)W2n+1 + (2n + 13)W2n − 2(2n + 5)W2n−1 + 5W3 − 12W2 +

5W1 − 6W0).

(c)
∑n

k=0 W2k+1 = 1
12 (−(2n+ 3)W2n+2 + 4(n+ 5)W2n+1− (2n+ 3)W2n + 2(2n+ 7)W2n−1− 7W3 + 10W2−

W1 + 10W0).

Proof.

(a) We use Theorem 1 (a). If we set x = 1, r = 1, s = 1, t = 1, u = 2 in Theorem 1 (a) we get (a).
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(b) We use Theorem 1 (b). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 1 (b) then we have

n∑
k=0

xkW2k =
g1(x)

−4x4 − 3x3 + 5x2 + 3x− 1

where

g1(x) = −(2x2+x−1)xn+1W2n+2+(2x+2)xn+2W2n+1−(4x2+x−3)xn+2W2n+2(x+1)xn+2W2n−1+
x(3x2 + 2x− 1)W2 − (x + 1)x2W1 + (−x3 + 3x2 + 3x− 1)W0 − (x + 1)x2W3.

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule. Then we get (b) using

n∑
k=0

W2k =
d
dx (g1(x))

d
dx (−4x4 − 3x3 + 5x2 + 3x− 1)

∣∣∣∣∣
x=1

.

(c) We use Theorem 1 (c). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 1 (c) then we have

n∑
k=0

xkW2k+1 =
g2(x)

−4x4 − 3x3 + 5x2 + 3x− 1

where

g2(x) = (x+1)xn+1W2n+2−(4x3+3x2−2x−1)xn+1W2n+1+(x+1)xn+1W2n−2(2x2+x−1)xn+1W2n−1+
x(2x2 + x− 1)W3 − (2x + 2)x2W2 + (−2x3 + 2x2 + 3x− 1)W1 − 2(x + 1)x2W0.

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule. Then we get (c) using

n∑
k=0

W2k+1 =
d
dx (g2(x))

d
dx (−4x4 − 3x3 + 5x2 + 3x− 1)

∣∣∣∣∣
x=1

.

�

Taking Wn = Jn with J0 = 0, J1 = 1, J2 = 1, J3 = 1 in the last theorem, we have the following corollary
which presents linear sum formula of fourth-order Jacobsthal numbers.

Corollary 1. For n ≥ 0, fourth order Jacobsthal numbers have the following property:

(a)
∑n

k=0 Jk = 1
4 (Jn+3 − Jn+1 + 2Jn).

(b)
∑n

k=0 J2k = 1
12 ((2n + 7)J2n+2 − 2(2n + 5)J2n+1 + (2n + 13)J2n − 2(2n + 5)J2n−1 − 2) .

(c)
∑n

k=0 J2k+1 = 1
12 (−(2n + 3)J2n+2 + 4(n + 5)J2n+1 − (2n + 3)J2n + 2(2n + 7)J2n−1 + 2) .

From the last theorem, we have the following corollary which gives linear sum formula of fourth order
Jacobsthal-Lucas numbers (take Wn = jn with j0 = 2, j1 = 1, j2 = 5, j3 = 10).

Corollary 2. For n ≥ 0, fourth order Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=0 jk = 1
4 (jn+3 − jn+1 + 2jn − 5).

(b)
∑n

k=0 j2k = 1
12 ((2n + 7)j2n+2 − 2(2n + 5)j2n+1 + (2n + 13)j2n − 2(2n + 5)j2n−1 − 17) .

(c)
∑n

k=0 j2k+1 = 1
12 (−(2n + 3)j2n+2 + 4(n + 5)j2n+1 − (2n + 3)j2n + 2(2n + 7)j2n−1 − 1) .

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3,K3 = 10 in the last theorem, we have the following
corollary which presents linear sum formula of modified fourth order Jacobsthal numbers.
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Corollary 3. For n ≥ 0,modified fourth order Jacobsthal numbers have the following property:

(a)
∑n

k=0 Kk = 1
4 (Kn+3 −Kn+1 + 2Kn − 3).

(b)
∑n

k=0 K2k = 1
12 ((2n + 7)K2n+2 − 2(2n + 5)K2n+1 + (2n + 13)K2n − 2(2n + 5)K2n−1 + 1) .

(c)
∑n

k=0 K2k+1 = 1
12 (−(2n + 3)K2n+2 + 4(n + 5)K2n+1 − (2n + 3)K2n + 2(2n + 7)K2n−1 − 11) .

From the last theorem, we have the following corollary which gives linear sum formula of fourth-order
Jacobsthal Perrin numbers (take Wn = Qn with Q0 = 3, Q1 = 0, Q2 = 2, Q3 = 8).

Corollary 4. For n ≥ 0, fourth-order Jacobsthal Perrin numbers have the following property:

(a)
∑n

k=0 Qk = 1
4 (Qn+3 −Qn+1 + 2Qn − 2).

(b)
∑n

k=0 Q2k = 1
12 ((2n + 7)Q2n+2 − 2(2n + 5)Q2n+1 + (2n + 13)Q2n − 2(2n + 5)Q2n−1 − 2) .

(c)
∑n

k=0 Q2k+1 = 1
12 (−(2n + 3)Q2n+2 + 4(n + 5)Q2n+1 − (2n + 3)Q2n + 2(2n + 7)Q2n−1 − 6) .

Taking Wn = Sn with S0 = 0, S1 = 1, S2 = 1, S3 = 2 in the theorem, we have the following corollary
which presents linear sum formula of adjusted fourth-order Jacobsthal numbers.

Corollary 5. For n ≥ 0, adjusted fourth-order Jacobsthal numbers have the following property:

(a)
∑n

k=0 Sk = 1
4 (Sn+3 − Sn+1 + 2Sn − 1).

(b)
∑n

k=0 S2k = 1
12 ((2n + 7)S2n+2 − 2(2n + 5)S2n+1 + (2n + 13)S2n − 2(2n + 5)S2n−1 + 3) .

(c)
∑n

k=0 S2k+1 = 1
12 (−(2n + 3)S2n+2 + 4(n + 5)S2n+1 − (2n + 3)S2n + 2(2n + 7)S2n−1 − 5) .

From the last theorem, we have the following corollary which gives linear sum formula of modified fourth-
order Jacobsthal-Lucas numbers (take Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7).

Corollary 6. For n ≥ 0, modified fourth-order Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=0 Rk = 1
4 (Rn+3 −Rn+1 + 2Rn + 2).

(b)
∑n

k=0 R2k = 1
12 ((2n + 7)R2n+2 − 2(2n + 5)R2n+1 + (2n + 13)R2n − 2(2n + 5)R2n−1 − 20) .

(c)
∑n

k=0 R2k+1 = 1
12 (−(2n + 3)R2n+2 + 4(n + 5)R2n+1 − (2n + 3)R2n + 2(2n + 7)R2n−1 + 20) .

3.2 The case x = −1
In this subsection we consider the special case x = −1.

In this section, we present the closed form solutions (identities) of the sums
∑n

k=0(−1)kWk,
∑n

k=0(−1)kW2k

and
∑n

k=0(−1)kW2k+1 for the specific case of the sequence {Wn}.
Taking x = −1, r = s = t = u = 1 in Theorem 1 (a), (b) and (c), we obtain the following proposition.

Proposition 3. If x = −1, r = s = t = u = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kWk = (−1)
n

(Wn+3 − 2Wn+2 + Wn+1 −Wn)−W3 + 2W2 −W1 + 2W0.

(b)
∑n

k=0(−1)kW2k = (−1)
n

(W2n+2 −W2n+1 −W2n)−W2 + W1 + 2W0.

(c)
∑n

k=0(−1)kW2k+1 = (−1)
n

(W2n + W2n−1)−W3 + W2 + 2W1.

From the above proposition, we have the following corollary which gives linear sum formulas of Tetranacci
numbers (take Wn = Mn with M0 = 0,M1 = 1,M2 = 1,M3 = 2).

Corollary 7. For n ≥ 0, Tetranacci numbers have the following properties.
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(a)
∑n

k=0(−1)kMk = (−1)
n

(Mn+3 − 2Mn+2 + Mn+1 −Mn)− 1.

(b)
∑n

k=0(−1)kM2k = (−1)
n

(M2n+2 −M2n+1 −M2n).

(c)
∑n

k=0(−1)kM2k+1 = (−1)
n

(M2n + M2n−1) + 1.

Taking Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7 in the above proposition, we have the following
corollary which presents linear sum formulas of Tetranacci-Lucas numbers.

Corollary 8. For n ≥ 0, Tetranacci-Lucas numbers have the following properties.

(a)
∑n

k=0(−1)kRk = (−1)
n

(Rn+3 − 2Rn+2 + Rn+1 −Rn) + 6.

(b)
∑n

k=0(−1)kR2k = (−1)
n

(R2n+2 −R2n+1 −R2n) + 6.

(c)
∑n

k=0(−1)kR2k+1 = (−1)
n

(R2n + R2n−1)− 2.

Taking x = −1, r = 2, s = t = u = 1 in Theorem 1 (a), (b) and (c), we obtain the following proposition.

Proposition 4. If x = −1, r = 2, s = t = u = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kWk = 1
2 ((−1)

n
(Wn+3 − 3Wn+2 + 2Wn+1 −Wn)−W3 + 3W2 − 2W1 + 3W0).

(b)
∑n

k=0(−1)kW2k = 1
2 ((−1)

n
(W2n+2 −W2n+1 − 2W2n −W2n−1) + W3 − 3W2 + 3W0).

(c)
∑n

k=0(−1)kW2k+1 = 1
2 ((−1)

n
(W2n+2 −W2n+1 + W2n−1)−W3 + W2 + 4W1 + W0).

From the last proposition, we have the following corollary which gives linear sum formulas of fourth-order
Pell numbers (take Wn = Pn with P0 = 0, P1 = 1, P2 = 2, P3 = 5).

Corollary 9. For n ≥ 0, fourth-order Pell numbers have the following properties:

(a)
∑n

k=0(−1)kPk = 1
2 ((−1)

n
(Pn+3 − 3Pn+2 + 2Pn+1 − Pn)− 1).

(b)
∑n

k=0(−1)kP2k = 1
2 ((−1)

n
(P2n+2 − P2n+1 − 2P2n − P2n−1)− 1).

(c)
∑n

k=0(−1)kP2k+1 = 1
2 ((−1)

n
(P2n+2 − P2n+1 + P2n−1) + 1).

Taking Wn = Qn with Q0 = 4, Q1 = 2, Q2 = 6, Q3 = 17 in the last proposition, we have the following
corollary which presents linear sum formulas of fourth-order Pell-Lucas numbers.

Corollary 10. For n ≥ 0, fourth-order Pell-Lucas numbers have the following properties:

(a)
∑n

k=0(−1)kQk = 1
2 ((−1)

n
(Qn+3 − 3Qn+2 + 2Qn+1 −Qn) + 9).

(b)
∑n

k=0(−1)kQ2k = 1
2 ((−1)

n
(Q2n+2 −Q2n+1 − 2Q2n −Q2n−1) + 11).

(c)
∑n

k=0(−1)kQ2k+1 = 1
2 ((−1)

n
(Q2n+2 −Q2n+1 + Q2n−1) + 1).

Observe that setting x = −1, r = 1, s = 1, t = 1, u = 2 (i.e. for the generalized fourth order Jacobsthal
case) in Theorem 1 (a), (b) and (c), makes the right hand side of the sum formulas to be an indeterminate
form. Application of L’Hospital rule however provides the evaluation of the sum formulas.

Theorem 5. If r = 1, s = 1, t = 1, u = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kWk = 1
6 ((−1)

n
(−(n+3)Wn+3 +(2n+5)Wn+2−nWn+1 +2(n+4)Wn)+3W3−5W2−2W0).

(b)
∑n

k=0(−1)kW2k = 1
10 ((−1)

n
(−(3n + 5)W2n+2 + 2(n + 2)W2n+1 + (7n + 18)W2n + 2(n + 2)W2n−1) −

2W3 + 7W2 − 2W1 − 6W0).
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(c)
∑n

k=0(−1)kW2k+1 = 1
10 (− (−1)

n
((n + 1)W2n+2 − (4n + 13)W2n+1 + (n + 1)W2n + 2(3n + 5)W2n−1) +

5W3 − 8W1 − 4W2 − 4W0).

Proof.

(a) We use Theorem 1 (a). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 1 (a) then we have

n∑
k=0

xkWk =
g3(x)

2x4 + x3 + x2 + x− 1

where

g3(x) = xn+3Wn+3 − (x− 1)xn+2Wn+2 − (x2 + x− 1)xn+1Wn+1 + 2xn+4Wn − x3W3 + x2(x− 1)W2 +
x(x2 + x− 1)W1 + (x3 + x2 + x− 1)W0.

For x = −1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule. Then we get (b) using

n∑
k=0

(−1)kWk =
d
dx (g3(x))

d
dx (2x4 + x3 + x2 + x− 1)

∣∣∣∣∣
x=−1

.

(b) We use Theorem 1 (b). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 1 (b) then we have

n∑
k=0

xkW2k =
g4(x)

−4x4 − 3x3 + 5x2 + 3x− 1

where

g4(x) = −(2x2+x−1)xn+1W2n+2+(2x+2)xn+2W2n+1−(4x2+x−3)xn+2W2n+2(x+1)xn+2W2n−1−
(x + 1)x2W3 + x(3x2 + 2x− 1)W2 − (x + 1)x2W1 + (−x3 + 3x2 + 3x− 1)W0.

For x = −1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule (twice). Then we get (b) using

n∑
k=0

(−1)kW2k =
d2

dx2 (g4(x))
d2

dx2 (−4x4 − 3x3 + 5x2 + 3x− 1)

∣∣∣∣∣
x=−1

.

(c) We use Theorem 1 (c). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 1 (c) then we have

n∑
k=0

xkW2k+1 =
g5(x)

−4x4 − 3x3 + 5x2 + 3x− 1

where

g5(x) = (x+1)xn+1W2n+2−(4x3+3x2−2x−1)xn+1W2n+1+(x+1)xn+1W2n−2(2x2+x−1)xn+1W2n−1+
x(2x2 + x− 1)W3 − (2x + 2)x2W2 + (−2x3 + 2x2 + 3x− 1)W1 − 2(x + 1)x2W0.

For x = −1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule (twice). Then we get (c) using

n∑
k=0

(−1)kW2k+1 =
d2

dx2 (g5(x))
d2

dx2 (−4x4 − 3x3 + 5x2 + 3x− 1)

∣∣∣∣∣
x=−1

.

�
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Taking Wn = Jn with J0 = 0, J1 = 1, J2 = 1, J3 = 1 in the last theorem, we have the following corollary
which presents linear sum formula of fourth-order Jacobsthal numbers.

Corollary 11. For n ≥ 0, fourth order Jacobsthal numbers have the following property:

(a)
∑n

k=0(−1)kJk = 1
6 ((−1)

n
(−(n + 3)Jn+3 + (2n + 5)Jn+2 − nJn+1 + 2(n + 4)Jn)− 2).

(b)
∑n

k=0(−1)kJ2k = 1
10 ((−1)

n
(−(3n + 5)J2n+2 + 2(n + 2)J2n+1 + (7n + 18)J2n + 2(n + 2)J2n−1) + 3).

(c)
∑n

k=0(−1)kJ2k+1 = 1
10 (− (−1)

n
((n + 1)J2n+2 − (4n + 13)J2n+1 + (n + 1)J2n + 2(3n + 5)J2n−1)− 7).

From the last theorem, we have the following corollary which gives linear sum formula of fourth order
Jacobsthal-Lucas numbers (take Wn = jn with j0 = 2, j1 = 1, j2 = 5, j3 = 10).

Corollary 12. For n ≥ 0, fourth order Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=0(−1)kjk = 1
6 ((−1)

n
(−(n + 3)jn+3 + (2n + 5)jn+2 − njn+1 + 2(n + 4)jn) + 1).

(b)
∑n

k=0(−1)kj2k = 1
10 ((−1)

n
(−(3n + 5)j2n+2 + 2(n + 2)j2n+1 + (7n + 18)j2n + 2(n + 2)j2n−1) + 1).

(c)
∑n

k=0(−1)kj2k+1 = 1
10 (− (−1)

n
((n + 1)j2n+2 − (4n + 13)j2n+1 + (n + 1)j2n + 2(3n + 5)j2n−1) + 14).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3,K3 = 10 in the last theorem, we have the following
corollary which presents linear sum formula of modified fourth order Jacobsthal numbers.

Corollary 13. For n ≥ 0,modified fourth order Jacobsthal numbers have the following property:

(a)
∑n

k=0(−1)kKk = 1
6 ((−1)

n
(−(n + 3)Kn+3 + (2n + 5)Kn+2 − nKn+1 + 2(n + 4)Kn) + 9).

(b)
∑n

k=0(−1)kK2k = 1
10 ((−1)

n
(−(3n+ 5)K2n+2 + 2(n+ 2)K2n+1 + (7n+ 18)K2n + 2(n+ 2)K2n−1)− 19).

(c)
∑n

k=0(−1)kK2k+1 = 1
10 (− (−1)

n
((n+ 1)K2n+2− (4n+ 13)K2n+1 + (n+ 1)K2n + 2(3n+ 5)K2n−1) + 18).

From the last theorem, we have the following corollary which gives linear sum formula of fourth-order
Jacobsthal Perrin numbers (take Wn = Qn with Q0 = 3, Q1 = 0, Q2 = 2, Q3 = 8).

Corollary 14. For n ≥ 0, fourth-order Jacobsthal Perrin numbers have the following property:

(a)
∑n

k=0(−1)kQk = 1
6 ((−1)

n
(−(n + 3)Qn+3 + (2n + 5)Qn+2 − nQn+1 + 2(n + 4)Qn) + 8).

(b)
∑n

k=0(−1)kQ2k = 1
10 ((−1)

n
(−(3n + 5)Q2n+2 + 2(n + 2)Q2n+1 + (7n + 18)Q2n + 2(n + 2)Q2n−1)− 20).

(c)
∑n

k=0(−1)kQ2k+1 = 1
10 (− (−1)

n
((n+ 1)Q2n+2− (4n+ 13)Q2n+1 + (n+ 1)Q2n + 2(3n+ 5)Q2n−1) + 20).

Taking Wn = Sn with S0 = 0, S1 = 1, S2 = 1, S3 = 2 in the theorem, we have the following corollary
which presents linear sum formula of adjusted fourth-order Jacobsthal numbers.

Corollary 15. For n ≥ 0, adjusted fourth-order Jacobsthal numbers have the following property:

(a)
∑n

k=0(−1)kSk = 1
6 ((−1)

n
(−(n + 3)Sn+3 + (2n + 5)Sn+2 − nSn+1 + 2(n + 4)Sn) + 1).

(b)
∑n

k=0(−1)kS2k = 1
10 ((−1)

n
(−(3n + 5)S2n+2 + 2(n + 2)S2n+1 + (7n + 18)S2n + 2(n + 2)S2n−1) + 1).

(c)
∑n

k=0(−1)kS2k+1 = 1
10 (− (−1)

n
((n + 1)S2n+2 − (4n + 13)S2n+1 + (n + 1)S2n + 2(3n + 5)S2n−1)− 2).

From the last theorem, we have the following corollary which gives linear sum formula of modified fourth-
order Jacobsthal-Lucas numbers (take Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7).

Corollary 16. For n ≥ 0, modified fourth-order Jacobsthal-Lucas numbers have the following property:
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(a)
∑n

k=0(−1)kRk = 1
6 ((−1)

n
(−(n + 3)Rn+3 + (2n + 5)Rn+2 − nRn+1 + 2(n + 4)Rn)− 2).

(b)
∑n

k=0(−1)kR2k = 1
10 ((−1)

n
(−(3n + 5)R2n+2 + 2(n + 2)R2n+1 + (7n + 18)R2n + 2(n + 2)R2n−1)− 19).

(c)
∑n

k=0(−1)kR2k+1 = 1
10 (− (−1)

n
((n + 1)R2n+2 − (4n + 13)R2n+1 + (n + 1)R2n + 2(3n + 5)R2n−1)− 1).

Taking x = −1, r = 2, s = 3, t = 5, u = 7 in Theorem 1 (a), (b) and (c), we obtain the following
proposition.

Proposition 6. If r = 2, s = 3, t = 5, u = 7 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kWk = 1
2 ((−1)

n
(−Wn+3 + 3Wn+2 + 7Wn) + W3 − 3W2 − 5W0).

(b)
∑n

k=0(−1)kW2k = 1
6 ((−1)

n
(−W2n+2 + W2n+1 + 12W2n + 7W2n−1)−W3 + 3W2 + 2W1 −W0).

(c)
∑n

k=0(−1)kW2k+1 = 1
6 ((−1)

n
(9W2n+1 −W2n+2 + 2W2n − 7W2n−1) + W3 −W2 − 6W1 − 7W0).

From the last proposition, we have the following corollary which gives linear sum formulas of 4-primes
numbers (take Wn = Gn with G0 = 0, G1 = 0, G2 = 1, G3 = 2).

Corollary 17. For n ≥ 0, 4-primes numbers have the following properties:

(a)
∑n

k=0(−1)kGk = 1
2 ((−1)

n
(−Gn+3 + 3Gn+2 + 7Gn)− 1).

(b)
∑n

k=0(−1)kG2k = 1
6 ((−1)

n
(−G2n+2 + G2n+1 + 12G2n + 7G2n−1) + 1).

(c)
∑n

k=0(−1)kG2k+1 = 1
6 ((−1)

n
(9G2n+1 −G2n+2 + 2G2n − 7G2n−1) + 1).

Taking Wn = Hn with H0 = 4, H1 = 2, H2 = 10, H3 = 41 in the last proposition, we have the following
corollary which presents linear sum formulas of Lucas 4-primes numbers.

Corollary 18. For n ≥ 0, Lucas 4-primes numbers have the following properties:

(a)
∑n

k=0(−1)kHk = 1
2 ((−1)

n
(−Hn+3 + 3Hn+2 + 7Hn)− 9).

(b)
∑n

k=0(−1)kH2k = 1
6 ((−1)

n
(−H2n+2 + H2n+1 + 12H2n + 7H2n−1)− 11).

(c)
∑n

k=0(−1)kH2k+1 = 1
6 ((−1)

n
(9H2n+1 −H2n+2 + 2H2n − 7H2n−1)− 9).

From the last proposition, we have the following corollary which gives linear sum formulas of modified
4-primes numbers (take Wn = En with E0 = 0, E1 = 0, E2 = 1, E3 = 1).

Corollary 19. For n ≥ 0, modified 4-primes numbers have the following properties:

(a)
∑n

k=0(−1)kEk = 1
2 ((−1)

n
(−En+3 + 3En+2 + 7En)− 2).

(b)
∑n

k=0(−1)kE2k = 1
6 ((−1)

n
(−E2n+2 + E2n+1 + 12E2n + 7E2n−1) + 2).

(c)
∑n

k=0(−1)kE2k+1 = 1
6 ((−1)

n
(9E2n+1 − E2n+2 + 2E2n − 7E2n−1)).
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3.3 The case x = i

In this subsection we consider the special case x = i. Taking x = i, r = s = t = u = 1 in Theorem 1 (a), (b)
and (c), we obtain the following proposition.

Proposition 7. If x = i, r = s = t = u = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 i
kWk = in(iWn+3 + (1− i)Wn+2− (1 + 2i)Wn+1−Wn)− iW3− (1− i)W2 + (1 + 2i)W1 + 2W0.

(b)
∑n

k=0 i
kW2k = (5+4i)

41 (in(− (1 + 2i)W2n+2 + (2 + i)W2n+1 + 3W2n + (1 + i)W2n−1) − (1 + i)W3 +
(2 + 3i)W2 −W1 + (3− 3i)W0).

(c)
∑n

k=0 i
kW2k+1 = (5+4i)

41 (in((1− i)W2n+2 + (2− 2i)W2n+1 − iW2n − (1 + 2i)W2n−1) + (1 + 2i)W3 −
(2 + i)W2 + (2− 4i)W1 − (1 + i)W0).

From the above proposition, we have the following corollary which gives linear sum formulas of Tetranacci
numbers (take Wn = Mn with M0 = 0,M1 = 1,M2 = 1,M3 = 2).

Corollary 20. For n ≥ 0, Tetranacci numbers have the following properties.

(a)
∑n

k=0 i
kMk = in(iMn+3 + (1− i)Mn+2 − (1 + 2i)Mn+1 −Mn) + i.

(b)
∑n

k=0 i
kM2k = (5+4i)

41 (in(− (1 + 2i)M2n+2 + (2 + i)M2n+1 + 3M2n + (1 + i)M2n−1) + (−1 + i)).

(c)
∑n

k=0 i
kM2k+1 = (5+4i)

41 (in((1− i)M2n+2 + (2− 2i)M2n+1 − iM2n − (1 + 2i)M2n−1) + (2− i)).

Taking Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7 in the above proposition, we have the following
corollary which presents linear sum formulas of Tetranacci-Lucas numbers.

Corollary 21. For n ≥ 0, Tetranacci-Lucas numbers have the following properties.

(a)
∑n

k=0 i
kRk = in(iRn+3 + (1− i)Rn+2 − (1 + 2i)Rn+1 −Rn) + (6− 2i).

(b)
∑n

k=0 i
kR2k = (5+4i)

41 (in(− (1 + 2i)R2n+2 + (2 + i)R2n+1 + 3R2n + (1 + i)R2n−1) + 10(1− i)).

(c)
∑n

k=0 i
kR2k+1 = (5+4i)

41 (in((1− i)R2n+2 + (2− 2i)R2n+1 − iR2n − (1 + 2i)R2n−1) + (−1 + 3i)).

Corresponding sums of the other fourth order generalized Tetranacci numbers can be calculated similarly.

4 Linear Sum Formulas of Generalized Tetranacci Numbers with
Negative Subscripts

The following theorem present some linear summing formulas of generalized Tetranacci numbers with nega-
tive subscripts.

Theorem 8. Let x be a real or complex numbers. For n ≥ 1 we have the following formulas:

(a) If rx3 + sx2 + tx + u− x4 6= 0, then

n∑
k=1

xkW−k =
Θ4(x)

rx3 + sx2 + tx + u− x4

(b) If 2sx3 + t2x + 2ux2 + r2x3 − s2x2 − u2 − x4 + 2rtx2 − 2sux 6= 0 then

n∑
k=1

xkW−2k =
xΘ5(x)

2sx3 + t2x + 2ux2 + r2x3 − s2x2 − u2 − x4 + 2rtx2 − 2sux
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(c) If 2sx3 + t2x + 2ux2 + r2x3 − s2x2 − u2 − x4 + 2rtx2 − 2sux 6= 0 then

n∑
k=1

xkW−2k+1 =
xΘ6(x)

2sx3 + t2x + 2ux2 + r2x3 − s2x2 − u2 − x4 + 2rtx2 − 2sux

where

Θ4(x) = −xn+1W−n+3 +xn+1(r−x)W−n+2 +xn+1(s+ rx−x2)W−n+1 +xn+1(t+ rx2 + sx−x3)W−n +
xW3 − x(r − x)W2 + x(−s− rx + x2)W1 + x(−t− rx2 − sx + x3)W0,

Θ5(x) = xn(u+sx−x2)W−2n+2−xn(ru+ tx+ rsx)W−2n+1 +xn(2sx2−s2x+ r2x2−su+ux−x3 + rtx)
W−2n− uxn(t+ rx)W−2n−1 + (t+ rx)W3 + (−u− r2x− rt− sx+ x2)W2 + (ru− st+ tx)W1− (2sx2− s2x+
r2x2 − su + ux + t2 − x3 + 2rtx)W0,

Θ6(x) = −xn+1(t + rx)W−2n+2 + xn+1(u + r2x + rt + sx − x2)W−2n+1 − xn+1(ru − st + tx)W−2n +
uxn(u+sx−x2)W−2n−1 +(−u−sx+x2)W3 +(ru+ tx+rsx)W2 +(−2sx2 +s2x−r2x2 +su−ux+x3−rtx)
W1 + u(t + rx)W0.

Proof.

(a) Using the recurrence relation

W−n+4 = rW−n+3 + sW−n+2 + tW−n+1 + uW−n

i.e.
uW−n = W−n+4 − rW−n+3 − sW−n+2 − tW−n+1

we obtain

uxnW−n = xnW−n+4 − rxnW−n+3 − sxnW−n+2 − txnW−n+1

uxn−1W−n+1 = xn−1W−n+5 − rxn−1W−n+4 − sxn−1W−n+3 − txn−1W−n+2

uxn−2W−n+2 = xn−2W−n+6 − rxn−2W−n+5 − sxn−2W−n+4 − txn−2W−n+3

...

ux4W−4 = x4W0 − rx4W−1 − sx4W−2 − tx4W−3

ux3W−3 = x3W1 − rx3W0 − sx3W−1 − tx3W−2

ux2W−2 = x2W2 − rx2W1 − sx2W0 − tx2W−1

ux1W−1 = x1W3 − rx1W2 − sx1W1 − tx1W0

If we add the above equations side by side, we obtain

u(

n∑
k=1

xkW−k) = (−xn+1W−n+3 − xn+2W−n+2 − xn+3W−n+1 − xn+4W−n

+x1W3 + x2W2 + x3W1 + x4W0 + x4
n∑

k=1

xkW−k)

−r(−xn+1W−n+2 − xn+2W−n+1 − xn+3W−n + x1W2 + x2W1 + x3W0 + x3
n∑

k=1

xkW−k)

−s(−xn+1W−n+1 − xn+2W−n + x1W1 + x2W0 + x2
n∑

k=1

xkW−k)

−t(−xn+1W−n + x1W0 + x1
n∑

k=1

xkW−k)

From the last equation we get (a).
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(b) and (c) Using the recurrence relation

W−n+4 = rW−n+3 + sW−n+2 + tW−n+1 + uW−n

i.e.
tW−n+1 = W−n+4 − rW−n+3 − sW−n+2 − uW−n

we obtain

txnW−2n+1 = xnW−2n+4 − rxnW−2n+3 − sxnW−2n+2 − uxnW−2n

txn−1W−2n+3 = xn−1W−2n+6 − rxn−1W−2n+5 − sxn−1W−2n+4 − uxn−1W−2n+2

txn−2W−2n+5 = xn−2W−2n+8 − rxn−2W−2n+7 − sxn−2W−2n+6 − uxn−2W−2n+4

txn−3W−2n+7 = xn−3W−2n+10 − rxn−3W−2n+9 − sxn−3W−2n+8 − uxn−3W−2n+6

...

tx3W−5 = x3W−2 − rx3W−3 − sx3W−4 − ux3W−6

tx2W−3 = x2W0 − rx2W−1 − sx2W−2 − ux2W−4

tx1W−1 = x1W2 − rx1W1 − sx1W0 − ux1W−2.

If we add the above equations side by side, we get

t

n∑
k=1

xkW−2k+1 = (−xn+1W−2n+2 − xn+2W−2n + x2W0 + x1W2 +

n∑
k=1

xk+2W−2k) (4)

−r(−xn+1W−2n+1 + x1W1 +

n∑
k=1

xk+1W−2k+1)

−s(−xn+1W−2n + x1W0 +

n∑
k=1

xk+1W−2k)− u(

n∑
k=1

xkW−2k).

Similarly, using the recurrence relation

W−n+4 = rW−n+3 + sW−n+2 + tW−n+1 + uW−n

i.e.
tW−n = W−n+3 − rW−n+2 − sW−n+1 − uW−n−1

we obtain

txnW−2n = xnW−2n+3 − rxnW−2n+2 − sxnW−2n+1 − uxnW−2n−1

txn−1W−2n+2 = xn−1W−2n+5 − rxn−1W−2n+4 − sxn−1W−2n+3 − uxn−1W−2n+1

txn−2W−2n+4 = xn−2W−2n+7 − rxn−2W−2n+6 − sxn−2W−2n+5 − uxn−2W−2n+3

txn−3W−2n+6 = xn−3W−2n+9 − rxn−3W−2n+8 − sxn−3W−2n+7 − uxn−3W−2n+5

...

tx4W−8 = x4W−5 − rx4W−6 − sx4W−7 − ux4W−9

tx3W−6 = x3W−3 − rx3W−4 − sx3W−5 − ux3W−7

tx2W−4 = x2W−1 − rx2W−2 − sx2W−3 − ux2W−5

tx1W−2 = x1W1 − rx1W0 − sx1W−1 − ux1W−3.
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If we add the above equations side by side, we get

t

n∑
k=1

xkW−2k = (−xn+1W−2n+1 + x1W1 +

n∑
k=1

xk+1W−2k+1)

−r(−xn+1W−2n + x1W0 +

n∑
k=1

xk+1W−2k)

−s(
n∑

k=1

xkW−2k+1)− u(xnW−2n−1 − x0W−1 +

n∑
k=1

xk−1W−2k+1).

Since

W−1 = − t

u
W0 −

s

u
W1 −

r

u
W2 +

1

u
W3

it follows that

t

n∑
k=1

xkW−2k = (−xn+1W−2n+1 + x1W1 +

n∑
k=1

xk+1W−2k+1) (5)

−r(−xn+1W−2n + x1W0 +

n∑
k=1

xk+1W−2k)− s(

n∑
k=1

xkW−2k+1)

−u(xnW−2n−1 − x0(− t

u
W0 −

s

u
W1 −

r

u
W2 +

1

u
W3) +

n∑
k=1

xk−1W−2k+1).

Then, solving system (4)-(5) the required results of (b) and (c) follow. �

5 Specific Cases

In this section, for the specific cases of x, we present the closed form solutions (identities) of the sums∑n
k=1 x

kW−k,
∑n

k=1 x
kW−2k and

∑n
k=0 x

kW−2k+1 for the specific case of sequence {Wn}.

5.1 The case x = 1

In this subsection we consider the special case x = 1.
The case x = 1 of Theorem 8 is given in [20]. For the generalized 4-primes sequence case (x = 1, r =

2, s = 3, t = 5, u = 7), see [29].
We only consider the cases x = 1, r = 1, s = 1, t = 1, u = 2 (which is not considered in [20]).
Observe that setting x = 1, r = 1, s = 1, t = 1, u = 2 (i.e. for the generalized fourth order Jacobsthal

case) in Theorem 8 (a),(b),(c) makes the right hand side of the sum formulas to be an indeterminate form.
Application of L’Hospital rule however provides the evaluation of the sum formulas.

Taking r = 1, s = 1, t = 1, u = 2 in Theorem 8, we obtain the following theorem.

Theorem 9. If r = 1, s = 1, t = 1, u = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W−k = 1
4 (−W−n+3 + W−n+1 + 2W−n + W3 −W1 − 2W0).

(b)
∑n

k=1 W−2k = 1
12 ((2n + 1)W−2n+2 − 2(2n + 3)W−2n+1 + (2n + 7)W−2n − 2(2n + 3)W−2n−1 + 3W3 −

4W2 + 3W1 − 10W0).

(c)
∑n

k=1 W−2k+1 = 1
12 (−(2n + 5)W−2n+2 + 4(n + 2)W−2n+1 − (2n + 5)W−2n + 2(2n + 1)W−2n−1 −W3 +

6W2 − 7W1 + 6W0).

Proof.
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(a) We use Theorem 8 (a). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 8 (a) we get (a).

(b) We use Theorem 8 (b). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 8 (b) then we have

n∑
k=1

xkW−2k =
g6(x)

−x4 + 3x3 + 5x2 − 3x− 4

where

g6(x) = (−x2 + x + 2)xn+1W−2n+2 − (2x + 2)xn+1W−2n+1 + (−x3 + 3x2 + 2x− 2)xn+1W−2n − 2(x +
1)xn+1W−2n−1 + x(x + 1)W3 − x(−x2 + 2x + 3)W2 + x(x + 1)W1 − x(−x3 + 3x2 + 3x− 1)W0.

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule. Then we get (b) using

n∑
k=1

W−2k =
d
dx (g6(x))

d
dx (−x4 + 3x3 + 5x2 − 3x− 4)

∣∣∣∣∣
x=1

.

(c) We use Theorem 8 (c). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 8 (c) then we have

n∑
k=1

xkW−2k+1 =
g7(x)

−x4 + 3x3 + 5x2 − 3x− 4

where

g7(x) = −(x + 1)xn+2W−2n+2 + (−x2 + 2x + 3)xn+2W−2n+1 − (x + 1)xn+2W−2n + 2(−x2 + x +
2)xn+1W−2n−1 − x(−x2 + x + 2)W3 + x(2x + 2)W2 − x(−x3 + 3x2 + 2x− 2)W1 + 2xW0(x + 1).

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule. Then we get (c) using

n∑
k=1

W−2k+1 =
d
dx (g7(x))

d
dx (−x4 + 3x3 + 5x2 − 3x− 4)

∣∣∣∣∣
x=1

.

�

Taking Wn = Jn with J0 = 0, J1 = 1, J2 = 1, J3 = 1 in the last theorem, we have the following corollary
which presents linear sum formula of fourth-order Jacobsthal numbers.

Corollary 22. For n ≥ 1, fourth order Jacobsthal numbers have the following property

(a)
∑n

k=1 J−k = 1
4 (−J−n+3 + J−n+1 + 2J−n).

(b)
∑n

k=1 J−2k = 1
12 ((2n + 1)J−2n+2 − 2(2n + 3)J−2n+1 + (2n + 7)J−2n − 2(2n + 3)J−2n−1 + 2).

(c)
∑n

k=1 J−2k+1 = 1
12 (−(2n + 5)J−2n+2 + 4(n + 2)J−2n+1 − (2n + 5)J−2n + 2(2n + 1)J−2n−1 − 2).

From the last theorem, we have the following corollary which gives linear sum formulas of fourth order
Jacobsthal-Lucas numbers (take Wn = jn with j0 = 2, j1 = 1, j2 = 5, j3 = 10).

Corollary 23. For n ≥ 1, fourth order Jacobsthal-Lucas numbers have the following property

(a)
∑n

k=1 j−k = 1
4 (−j−n+3 + j−n+1 + 2j−n + 5).

(b)
∑n

k=1 j−2k = 1
12 ((2n + 1)j−2n+2 − 2(2n + 3)j−2n+1 + (2n + 7)j−2n − 2(2n + 3)j−2n−1 − 7).

(c)
∑n

k=1 j−2k+1 = 1
12 (−(2n + 5)j−2n+2 + 4(n + 2)j−2n+1 − (2n + 5)j−2n + 2(2n + 1)j−2n−1 + 25).
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Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3,K3 = 10 in the last theorem, we have the following
corollary which presents linear sum formula of modified fourth order Jacobsthal numbers.

Corollary 24. For n ≥ 1,modified fourth order Jacobsthal numbers have the following property:

(a)
∑n

k=1 K−k = 1
4 (−K−n+3 + K−n+1 + 2K−n + 3).

(b)
∑n

k=1 K−2k = 1
12 ((2n + 1)K−2n+2 − 2(2n + 3)K−2n+1 + (2n + 7)K−2n − 2(2n + 3)K−2n−1 − 9).

(c)
∑n

k=1 K−2k+1 = 1
12 (−(2n + 5)K−2n+2 + 4(n + 2)K−2n+1 − (2n + 5)K−2n + 2(2n + 1)K−2n−1 + 19).

From the last theorem, we have the following corollary which gives linear sum formula of fourth-order
Jacobsthal Perrin numbers (take Wn = Qn with Q0 = 3, Q1 = 0, Q2 = 2, Q3 = 8).

Corollary 25. For n ≥ 1, fourth-order Jacobsthal Perrin numbers have the following property:

(a)
∑n

k=1 Q−k = 1
4 (−Q−n+3 + Q−n+1 + 2Q−n + 2).

(b)
∑n

k=1 Q−2k = 1
12 ((2n + 1)Q−2n+2 − 2(2n + 3)Q−2n+1 + (2n + 7)Q−2n − 2(2n + 3)Q−2n−1 − 14).

(c)
∑n

k=1 Q−2k+1 = 1
12 (−(2n + 5)Q−2n+2 + 4(n + 2)Q−2n+1 − (2n + 5)Q−2n + 2(2n + 1)Q−2n−1 + 22).

Taking Wn = Sn with S0 = 0, S1 = 1, S2 = 1, S3 = 2 in the last theorem, we have the following corollary
which presents linear sum formula of adjusted fourth-order Jacobsthal numbers.

Corollary 26. For n ≥ 1, adjusted fourth-order Jacobsthal numbers have the following property:

(a)
∑n

k=1 S−k = 1
4 (−S−n+3 + S−n+1 + 2S−n + 1).

(b)
∑n

k=1 S−2k = 1
12 ((2n + 1)S−2n+2 − 2(2n + 3)S−2n+1 + (2n + 7)S−2n − 2(2n + 3)S−2n−1 − 1).

(c)
∑n

k=1 S−2k+1 = 1
12 (−(2n + 5)S−2n+2 + 4(n + 2)S−2n+1 − (2n + 5)S−2n + 2(2n + 1)S−2n−1 − 3).

From the last theorem, we have the following corollary which gives linear sum formula of modified fourth-
order Jacobsthal-Lucas numbers (take Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7).

Corollary 27. For n ≥ 1, modified fourth-order Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=1 R−k = 1
4 (−R−n+3 + R−n+1 + 2R−n − 2).

(b)
∑n

k=1 R−2k = 1
12 ((2n + 1)R−2n+2 − 2(2n + 3)R−2n+1 + (2n + 7)R−2n − 2(2n + 3)R−2n−1 − 28).

(c)
∑n

k=1 R−2k+1 = 1
12 (−(2n + 5)R−2n+2 + 4(n + 2)R−2n+1 − (2n + 5)R−2n + 2(2n + 1)R−2n−1 + 28).

5.2 The case x = −1
In this subsection we consider the special case x = −1.

Taking x = −1, r = s = t = u = 1 in Theorem 8 (a) and (b) (or (c)), we obtain the following proposition.

Proposition 10. If r = s = t = u = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1(−1)kW−k = (−1)
n

(−W−n+3 + 2W−n+2 −W−n+1 + 2W−n) + W3 − 2W2 + W1 − 2W0.

(b)
∑n

k=1(−1)kW−2k = (−1)
n

(−W−2n+2 + W−2n+1 + 2W−2n) + W2 −W1 − 2W0.

(c)
∑n

k=1(−1)kW−2k+1 = (−1)
n

(W−2n+1 −W−2n −W−2n−1) + W3 −W2 − 2W1.

From the above proposition, we have the following corollary which gives linear sum formulas of Tetranacci
numbers (take Wn = Mn with M0 = 0,M1 = 1,M2 = 1,M3 = 2).
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Corollary 28. For n ≥ 1, Tetranacci numbers have the following properties.

(a)
∑n

k=1(−1)kM−k = (−1)
n

(−M−n+3 + 2M−n+2 −M−n+1 + 2M−n) + 1.

(b)
∑n

k=1(−1)kM−2k = (−1)
n

(−M−2n+2 + M−2n+1 + 2M−2n) .

(c)
∑n

k=1(−1)kM−2k+1 = (−1)
n

(M−2n+1 −M−2n −M−2n−1)− 1.

Taking Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7 in the above proposition, we have the following
corollary which presents linear sum formulas of Tetranacci-Lucas numbers.

Corollary 29. For n ≥ 1, Tetranacci-Lucas numbers have the following properties.

(a)
∑n

k=1(−1)kR−k = (−1)
n

(−R−n+3 + 2R−n+2 −R−n+1 + 2R−n)− 6.

(b)
∑n

k=1(−1)kR−2k = (−1)
n

(−R−2n+2 + R−2n+1 + 2R−2n)− 6.

(c)
∑n

k=1(−1)kR−2k+1 = (−1)
n

(R−2n+1 −R−2n −R−2n−1) + 2.

Taking x = −1, r = 2, s = t = u = 1 in Theorem 8 (a) and (b) (or (c)), we obtain the following
proposition.

Proposition 11. If r = 2, s = t = u = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1(−1)kW−k = 1
2 ((−1)

n
(−W−n+3 + 3W−n+2 − 2W−n+1 + 3W−n) + W3 − 3W2 + 2W1 − 3W0).

(b)
∑n

k=1(−1)kW−2k = 1
2 ((−1)

n
(−W−2n+2 + W−2n+1 + 4W−2n + W−2n−1)−W3 + 3W2 − 3W0).

(c)
∑n

k=1(−1)kW−2k+1 = 1
2 ((−1)

n
(−W−2n+2 + 3W−2n+1 −W−2n−1) + W3 −W2 − 4W1 −W0).

From the last proposition, we have the following corollary which gives linear sum formulas of fourth-order
Pell numbers (take Wn = Pn with P0 = 0, P1 = 1, P2 = 2, P3 = 5).

Corollary 30. For n ≥ 1, fourth-order Pell numbers have the following properties:

(a)
∑n

k=1(−1)kP−k = 1
2 ((−1)

n
(−P−n+3 + 3P−n+2 − 2P−n+1 + 3P−n) + 1).

(b)
∑n

k=1(−1)kP−2k = 1
2 ((−1)

n
(−P−2n+2 + P−2n+1 + 4P−2n + P−2n−1) + 1).

(c)
∑n

k=1(−1)kP−2k+1 = 1
2 ((−1)

n
(−P−2n+2 + 3P−2n+1 − P−2n−1)− 1).

Taking Wn = Qn with Q0 = 4, Q1 = 2, Q2 = 6, Q3 = 17 in the last proposition, we have the following
corollary which presents linear sum formulas of fourth-order Pell-Lucas numbers.

Corollary 31. For n ≥ 1, fourth-order Pell-Lucas numbers have the following properties:

(a)
∑n

k=1(−1)kQ−k = 1
2 ((−1)

n
(−Q−n+3 + 3Q−n+2 − 2Q−n+1 + 3Q−n)− 9).

(b)
∑n

k=1(−1)kQ−2k = 1
2 ((−1)

n
(−Q−2n+2 + Q−2n+1 + 4Q−2n + Q−2n−1)− 11).

(c)
∑n

k=1(−1)kQ−2k+1 = 1
2 ((−1)

n
(−Q−2n+2 + 3Q−2n+1 −Q−2n−1)− 1).

Observe that setting x = −1, r = 1, s = 1, t = 1, u = 2 (i.e. for the generalized fourth order Jacobsthal
case) in Theorem 8 (a),(b),(c) makes the right hand side of the sum formulas to be an indeterminate form.
Application of L’Hospital rule however provides the evaluation of the sum formulas.

Taking r = 1, s = 1, t = 1, u = 2 in Theorem 8, we obtain the following theorem.

Theorem 12. If r = 1, s = 1, t = 1, u = 2 then for n ≥ 1 we have the following formulas:
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(a)
∑n

k=1(−1)kW−k = 1
6 ((−1)

n
(−(n+ 1)W−n+3 + (2n+ 3)W−n+2− (n+ 4)W−n+1 + 2(n+ 3)W−n) +W3−

3W2 + 4W1 − 6W0).

(b)
∑n

k=1(−1)kW−2k = 1
10 ((−1)

n
(−(3n+4)W−2n+2+2(n+1)W−2n+1+(7n+13)W−2n+2(n+1)W−2n−1)−

W3 + 5W2 −W1 − 12W0).

(c)
∑n

k=1(−1)kW−2k+1 = 1
10 ((−1)

n
(−(n+2)W−2n+2+(4n+9)W−2n+1−(n+2)W−2n−2(3n+4)W−2n−1)+

4W3 − 13W1 − 2W2 − 2W0).

Proof.

(a) We use Theorem 8 (a). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 8 (a) then we have

n∑
k=1

xkW−k =
g8(x)

−x4 + x3 + x2 + x + 2

where

g8(x) = xW3+x(x−1)W2−x(−x2+x+1)W1−x(−x3+x2+x+1)W0−xn+1W−n+3−(x−1)xn+1W−n+2+
(−x2 + x + 1)xn+1W−n+1 + (−x3 + x2 + x + 1)xn+1W−n.

For x = −1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule. Then we get (a) using

n∑
k=1

(−1)kW−k =
d
dx (g8(x))

d
dx (−x4 + x3 + x2 + x + 2)

∣∣∣∣∣
x=−1

.

(b) We use Theorem 8 (b). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 8 (b) then we have

n∑
k=1

xkW−2k =
g9(x)

−x4 + 3x3 + 5x2 − 3x− 4

where

g9(x) = (−x2 + x + 2)xn+1W−2n+2 − (2x + 2)xn+1W−2n+1 + (−x3 + 3x2 + 2x− 2)xn+1W−2n − 2(x +
1)xn+1W−2n−1 + x(x + 1)W3 − x(−x2 + 2x + 3)W2 + x(x + 1)W1 − x(−x3 + 3x2 + 3x− 1)W0.

For x = −1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule (twice). Then we get (b) using

n∑
k=1

(−1)kW−2k =
d2

dx2 (g9(x))
d2

dx2 (−x4 + 3x3 + 5x2 − 3x− 4)

∣∣∣∣∣
x=−1

.

(c) We use Theorem 8 (c). If we set r = 1, s = 1, t = 1, u = 2 in Theorem 8 (c) then we have

n∑
k=1

xkW−2k+1 =
g10(x)

−x4 + 3x3 + 5x2 − 3x− 4

where

g10(x) = −(x + 1)xn+2W−2n+2 + (−x2 + 2x + 3)xn+2W−2n+1 − (x + 1)xn+2W−2n + 2(−x2 + x +
2)xn+1W−2n−1 − x(−x2 + x + 2)W3 + x(2x + 2)W2 − x(−x3 + 3x2 + 2x− 2)W1 + 2x(x + 1)W0.

For x = −1, the right hand side of the above sum formula is an indeterminate form. Now, we can use
L’Hospital rule (twice). Then we get (c) using

n∑
k=1

(−1)kW−2k+1 =
d2

dx2 (g10(x))
d2

dx2 (−x4 + 3x3 + 5x2 − 3x− 4)

∣∣∣∣∣
x=−1

.

�
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Taking Wn = Jn with J0 = 0, J1 = 1, J2 = 1, J3 = 1 in the last proposition, we have the following
corollary which presents linear sum formula of fourth-order Jacobsthal numbers.

Corollary 32. For n ≥ 1, fourth order Jacobsthal numbers have the following property

(a)
∑n

k=1(−1)kJ−k = 1
6 ((−1)

n
(−(n + 1)J−n+3 + (2n + 3)J−n+2 − (n + 4)J−n+1 + 2(n + 3)J−n) + 2).

(b)
∑n

k=1(−1)kJ−2k = 1
10 ((−1)

n
(−(3n+4)J−2n+2 +2(n+1)J−2n+1 +(7n+13)J−2n +2(n+1)J−2n−1)+3).

(c)
∑n

k=1(−1)kJ−2k+1 = 1
10 ((−1)

n
(−(n+2)J−2n+2+(4n+9)J−2n+1−(n+2)J−2n−2(3n+4)J−2n−1)−11).

From the last proposition, we have the following corollary which gives linear sum formulas of fourth order
Jacobsthal-Lucas numbers (take Wn = jn with j0 = 2, j1 = 1, j2 = 5, j3 = 10).

Corollary 33. For n ≥ 1, fourth order Jacobsthal-Lucas numbers have the following property

(a)
∑n

k=1(−1)kj−k = 1
6 ((−1)

n
(−(n + 1)j−n+3 + (2n + 3)j−n+2 − (n + 4)j−n+1 + 2(n + 3)j−n)− 13).

(b)
∑n

k=1(−1)kj−2k = 1
10 ((−1)

n
(−(3n+4)j−2n+2 +2(n+1)j−2n+1 +(7n+13)j−2n +2(n+1)j−2n−1)−10).

(c)
∑n

k=1(−1)kj−2k+1 = 1
10 ((−1)

n
(−(n+2)j−2n+2 +(4n+9)j−2n+1− (n+2)j−2n−2(3n+4)j−2n−1)+13).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3,K3 = 10 in the last proposition, we have the following
corollary which presents linear sum formula of modified fourth order Jacobsthal numbers.

Corollary 34. For n ≥ 1,modified fourth order Jacobsthal numbers have the following property:

(a)
∑n

k=1(−1)kK−k = 1
6 ((−1)

n
(−(n + 1)K−n+3 + (2n + 3)K−n+2 − (n + 4)K−n+1 + 2(n + 3)K−n)− 13).

(b)
∑n

k=1(−1)kK−2k = 1
10 ((−1)

n
(−(3n+4)K−2n+2+2(n+1)K−2n+1+(7n+13)K−2n+2(n+1)K−2n−1)−

32).

(c)
∑n

k=1(−1)kK−2k+1 = 1
10 ((−1)

n
(−(n+2)K−2n+2+(4n+9)K−2n+1−(n+2)K−2n−2(3n+4)K−2n−1)+

15).

From the last proposition, we have the following corollary which gives linear sum formula of fourth-order
Jacobsthal Perrin numbers (take Wn = Qn with Q0 = 3, Q1 = 0, Q2 = 2, Q3 = 8).

Corollary 35. For n ≥ 1, fourth-order Jacobsthal Perrin numbers have the following property:

(a)
∑n

k=1(−1)kQ−k = 1
6 ((−1)

n
(−(n + 1)Q−n+3 + (2n + 3)Q−n+2 − (n + 4)Q−n+1 + 2(n + 3)Q−n)− 16).

(b)
∑n

k=1(−1)kQ−2k = 1
10 ((−1)

n
(−(3n+4)Q−2n+2+2(n+1)Q−2n+1+(7n+13)Q−2n+2(n+1)Q−2n−1)−34).

(c)
∑n

k=1(−1)kQ−2k+1 = 1
10 ((−1)

n
(−(n+2)Q−2n+2+(4n+9)Q−2n+1−(n+2)Q−2n−2(3n+4)Q−2n−1)+22).

Taking Wn = Sn with S0 = 0, S1 = 1, S2 = 1, S3 = 2 in the last proposition, we have the following
corollary which presents linear sum formula of adjusted fourth-order Jacobsthal numbers.

Corollary 36. For n ≥ 1, adjusted fourth-order Jacobsthal numbers have the following property:

(a)
∑n

k=1(−1)kS−k = 1
6 ((−1)

n
(−(n + 1)S−n+3 + (2n + 3)S−n+2 − (n + 4)S−n+1 + 2(n + 3)S−n) + 3).

(b)
∑n

k=1(−1)kS−2k = 1
10 ((−1)

n
(−(3n+4)S−2n+2+2(n+1)S−2n+1+(7n+13)S−2n+2(n+1)S−2n−1)+2).

(c)
∑n

k=1(−1)kS−2k+1 = 1
10 ((−1)

n
(−(n+2)S−2n+2+(4n+9)S−2n+1−(n+2)S−2n−2(3n+4)S−2n−1)−7).

From the last proposition, we have the following corollary which gives linear sum formula of modified
fourth-order Jacobsthal-Lucas numbers (take Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7).
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Corollary 37. For n ≥ 1, modified fourth-order Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=1(−1)kR−k = 1
6 ((−1)

n
(−(n + 1)R−n+3 + (2n + 3)R−n+2 − (n + 4)R−n+1 + 2(n + 3)R−n)− 22).

(b)
∑n

k=1(−1)kR−2k = 1
10 ((−1)

n
(−(3n+4)R−2n+2+2(n+1)R−2n+1+(7n+13)R−2n+2(n+1)R−2n−1)−41).

(c)
∑n

k=1(−1)kR−2k+1 = 1
10 ((−1)

n
(−(n+2)R−2n+2+(4n+9)R−2n+1−(n+2)R−2n−2(3n+4)R−2n−1)+1).

Taking x = −1, r = 2, s = 3, t = 5, u = 7 in Theorem 8 (a), (b) and (c), we obtain the following
proposition.

Proposition 13. If r = 2, s = 3, t = 5, u = 7 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1(−1)kW−k = 1
2 ((−1)

n
(W−n+3 − 3W−n+2 − 5W−n)−W3 + 3W2 + 5W0).

(b)
∑n

k=1(−1)kW−2k = 1
6 ((−1)

n
(W−2n+2 −W−2n+1 − 6W−2n − 7W−2n−1) + W3 − 3W2 − 2W1 + W0) .

(c)
∑n

k=1(−1)kW−2k+1 = 1
6 ((−1)

n
(W−2n+2 − 3W−2n+1 − 2W−2n + 7W−2n−1)−W3 + W2 + 6W1 + 7W0).

From the last proposition, we have the following corollary which gives linear sum formulas of 4-primes
numbers (take Wn = Gn with G0 = 0, G1 = 0, G2 = 1, G3 = 2).

Corollary 38. For n ≥ 1, 4-primes numbers have the following properties:

(a)
∑n

k=1(−1)kG−k = 1
2 ((−1)

n
(G−n+3 − 3G−n+2 − 5G−n) + 1).

(b)
∑n

k=1(−1)kG−2k = 1
6 ((−1)

n
(G−2n+2 −G−2n+1 − 6G−2n − 7G−2n−1)− 1) .

(c)
∑n

k=1(−1)kG−2k+1 = 1
6 ((−1)

n
(G−2n+2 − 3G−2n+1 − 2G−2n + 7G−2n−1)− 1).

Taking Wn = Hn with H0 = 4, H1 = 2, H2 = 10, H3 = 41 in the last proposition, we have the following
corollary which presents linear sum formulas of Lucas 4-primes numbers.

Corollary 39. For n ≥ 1, Lucas 4-primes numbers have the following properties:

(a)
∑n

k=1(−1)kH−k = 1
2 ((−1)

n
(H−n+3 − 3H−n+2 − 5H−n) + 9).

(b)
∑n

k=1(−1)kH−2k = 1
6 ((−1)

n
(H−2n+2 −H−2n+1 − 6H−2n − 7H−2n−1) + 11) .

(c)
∑n

k=1(−1)kH−2k+1 = 1
6 ((−1)

n
(H−2n+2 − 3H−2n+1 − 2H−2n + 7H−2n−1) + 9).

From the last proposition, we have the following corollary which gives linear sum formulas of modified
4-primes numbers (take Wn = En with E0 = 0, E1 = 0, E2 = 1, E3 = 1).

Corollary 40. For n ≥ 1, modified 4-primes numbers have the following properties:

(a)
∑n

k=1(−1)kE−k = 1
2 ((−1)

n
(E−n+3 − 3E−n+2 − 5E−n) + 2).

(b)
∑n

k=1(−1)kE−2k = 1
6 ((−1)

n
(E−2n+2 − E−2n+1 − 6E−2n − 7E−2n−1)− 2) .

(c)
∑n

k=1(−1)kE−2k+1 = 1
6 ((−1)

n
(E−2n+2 − 3E−2n+1 − 2E−2n + 7E−2n−1)).
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5.3 The case x = i

In this subsection we consider the special case x = i. Taking r = s = t = u = 1 in Theorem 8, we obtain the
following proposition.

Proposition 14. If r = s = t = u = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 i
kW−k = i(in(W−n+3− (1− i)W−n+2− (2 + i)W−n+1−2iW−n)−W3 +(1− i)W2 +(2 + i)W1 +

2iW0).

(b)
∑n

k=1 i
kW−2k = (4+5i)

41 (in(− (2 + i)W−2n+2 + (1 + 2i)W−2n+1 + (4− 2i)W−2n + (1 + i)W−2n−1) −
(1 + i)W3 + (3 + 2i)W2 − iW1 − (3− 3i)W0).

(c)
∑n

k=1 i
kW−2k+1 = (4+5i)

41 (in(− (1− i)W−2n+2+(2− 3i)W−2n+1−W−2n−(2 + i)W−2n−1)+(2 + i)W3−
(1 + 2i)W2 − (4− 2i)W1 − (1 + i)W0).

From the above proposition, we have the following corollary which gives linear sum formulas of Tetranacci
numbers (take Wn = Mn with M0 = 0,M1 = 1,M2 = 1,M3 = 2).

Corollary 41. For n ≥ 1, Tetranacci numbers have the following properties.

(a)
∑n

k=1 i
kM−k = i(in(M−n+3 − (1− i)M−n+2 − (2 + i)M−n+1 − 2iM−n) + 1).

(b)
∑n

k=1 i
kM−2k = (4+5i)

41 (in(− (2 + i)M−2n+2 +(1 + 2i)M−2n+1 +(4− 2i)M−2n +(1 + i)M−2n−1)+(1−
i)).

(c)
∑n

k=1 i
kM−2k+1 = (4+5i)

41 (in(− (1− i)M−2n+2+(2− 3i)M−2n+1−M−2n−(2 + i)M−2n−1)+(−1+2i)).

Taking Wn = Rn with R0 = 4, R1 = 1, R2 = 3, R3 = 7 in the above proposition, we have the following
corollary which presents linear sum formulas of Tetranacci-Lucas numbers.

Corollary 42. For n ≥ 1, Tetranacci-Lucas numbers have the following properties.

(a)
∑n

k=1 i
kR−k = i(in(R−n+3 − (1− i)R−n+2 − (2 + i)R−n+1 − 2iR−n) + 2(−1 + 3i)).

(b)
∑n

k=1 i
kR−2k = (4+5i)

41 (in(− (2 + i)R−2n+2+(1 + 2i)R−2n+1+(4− 2i)R−2n+(1 + i)R−2n−1)+10(−1+
i)).

(c)
∑n

k=1 i
kR−2k+1 = (4+5i)

41 (in(− (1− i)R−2n+2 + (2− 3i)R−2n+1 −R−2n − (2 + i)R−2n−1) + (3− i)).

Corresponding sums of the other fourth order generalized Tetranacci numbers can be calculated similarly.
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[3] Gökbaş, H., Köse, H., Some Sum Formulas for Products of Pell and Pell-Lucas Numbers, Int. J. Adv.
Appl. Math. and Mech. 4(4), 1-4, 2017.

[4] Hansen., R.T., General Identities for Linear Fibonacci and Lucas Summations, Fibonacci Quarterly,
16(2), 121-28, 1978.

45



Y. Soykan

[5] Hathiwala, G. S., Shah, D. V., Binet–Type Formula For The Sequence of Tetranacci Numbers by
Alternate Methods, Mathematical Journal of Interdisciplinary Sciences 6 (1), 37–48, 2017.

[6] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, New
York, 2001.

[7] Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.

[8] Melham, R. S., Some Analogs of the Identity F 2
n + F 2

n+1 = F 2
2n+1, Fibonacci Quarterly, 305-311, 1999.

[9] Natividad, L. R., On Solving Fibonacci-Like Sequences of Fourth, Fifth and Sixth Order, International
Journal of Mathematics and Computing, 3 (2), 2013.
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[31] Öteleş, A., Akbulak, M., A Note on Generalized k-Pell Numbers and Their Determinantal Representa-
tion, Journal of Analysis and Number Theory, 4(2), 153-158, 2016.

[32] Waddill, M. E., The Tetranacci Sequence and Generalizations, Fibonacci Quarterly, 9-20, 1992.

[33] Waddill, Another Generalized Fibonacci Sequence, M. E., Fibonacci Quarterly, 5 (3), 209-227, 1967.

47


	Linear Sum Formulas of Generalized Tetranacci Numbers with Positive Subscripts
	Special Cases
	The case x=1
	The case x=-1
	The case x=i

	Linear Sum Formulas of Generalized Tetranacci Numbers with Negative Subscripts
	Specific Cases
	The case x=1
	The case x=-1
	The case x=i


