On Some Properties of a Class of Analytic Functions Defined by Salagean Differential Operator

R. A.Bello ^a,T. O.Opoola ^b,*

^a Department of Statistics and Mathematical Sciences, Kwara State University, Malete, Nigeria

^bDepartment of Mathematics, University of Ilorin, Ilorin, Nigeria

Received: November 22, 2020; Accepted: December 17, 2020; Published: September 11, 2021

Abstract

In this work, the upper bounds for Fekete-Szego functional and Second Hankel Determinant are obtained for a class of analytic functions defined by Salagean Differential Operator. The estimates obtained are sharp.

Keywords:

Analytic functions, Salagean Differential Operator, Starlike functions, Univalent functions, Coefficient bounds, Fekete-Szego functional, Second Hankel Determinant and Subordination.

1. Introduction and definitions

Let A denote the class of functions f(z) analytic in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and let S be a subclass of A consisting of functions f(z) univalent in U and have the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1}$$

A function f(z) belonging to the class S is called starlike function if f(z) maps the unit disk U onto a starlike domain. A necessary and sufficient conditions for a $f(z) \in S$ to be starlike with respect to the origin is that;

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \qquad (z \in U))$$
 (2)

The class of starlike functions is denoted as S^*

A function $f(z) \in S$ is said to be starlike of order α , $0 \le \alpha < 1$ if

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in U))$$
 (3)

How to cite this paper: R.A.Bello, T.O.Opoola (2021) On Some Properties of a Class of Analytic Functions Defined by Salagean Differential Operator. Journal of Progressive Research in Mathematics, 18(3), 82-89. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2085

The class of starlike functions of order α is denoted as $S^*(\alpha)$

A function $f(z) \in S$ is called a Convex function if f(z) maps the unit dist U onto a convex domain. A function f(z) is a Convex function if and only if

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > 0 \qquad (z \in U)) \tag{4}$$

The class of convex functions is denoted as K.

A function $f(z) \in S$ is said to be Convex of order α , $0 \le \alpha < 1$ if

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in U))$$
 (5)

The class of all Convex functions of order α is denoted as $K(\alpha)$.

Let f and g be analytic in U. Then f(z) is subordinate to g(z) denoted by $f \prec g$ if there exist an analytic function $\omega(z)$ with $\omega(0) = 0$, $|\omega(z)| < 1$ such that $f(z) = g(\omega(z))$. In particular if g(z) is univalent in U then $f \prec g \iff f(0) = g(0)$ and $f(U) \subset g(U)$.

The q^{th} Hankel determinant $H_q(n), q \ge 1, n \ge 1$ for a function $f(z) \in A$ and have the form (1) is defined

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & \dots & \dots & \dots \\ \vdots & & & \vdots \\ a_{n+q-1} & \dots & \dots & a_{n+2q-2} \end{vmatrix}$$

In recent years, attention has been given to finding estimates of the determinant $H_q(n)$. The Fekete-Szego functional $|a_3 - \lambda a_2^2|$ is $H_2(1)$. For $f(z) \in S$ it is known that $H_2(1) \le 1$. see [1], The Second Hankel Determinant $H_2(2) = |a_2 a_4 - a_3|$ has received more attention from many authors. The sharp upper bound of $H_2(2)$ for starlike and convex functions was studied in [2] and the authors obtained $H_2(2) \le 1$ and $H_2(2) \le \frac{1}{8}$ respectively. Many other results have been obtained for $H_2(2)$ for a variety of subclass of S, most of which are subclass of S^* .

Noticing that several subclass of univalent functions are characterized by the quantities $\frac{zf'(z)}{f(z)}$ or $\left\{1 + \frac{zf''(z)}{f'(z)}\right\}$ lying in a region in the right half plane, Ma and Minda [3] considered the classes

$$ST(\phi) = \left\{ f \in A : \frac{zf'(z)}{f(z)} \right\} \tag{6}$$

$$CV(\phi) = \left\{ f \in A : \frac{1 + zf''(z)}{f'(z)} \right\} \tag{7}$$

For $\phi(z) = \frac{1+Az}{1+Bz}$, $-1 \le B < A < 1$, The class $ST(\phi)$ reduces to the familiar class consisting of Janowski starlike functions denoted by ST(A,B). The corresponding class of convex functions is denoted by CV(A, B).

The special case of $A = 1 - 2\alpha$, B = -1, $0 \le \alpha < 1$, $ST(\phi)$ and $CV(\phi)$ gives the classes of starlike functions of order α and convex functions of order α respectively. Let SC be the class of functions $f \in S$ with the quantity $\frac{zf'(z)}{f(z)}$ lying in the region bounded by the cardiod given by $(9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^$ $9y^2 - 6x + 1) = 0$ Thus a function $f(z) \in SC$ if $\frac{zf'(z)}{f(z)} \in CAR$ where,

$$CAR = \omega \in \mathbb{C} : \omega = 1 + \frac{4}{3}z + \frac{2}{3}z^2, (|z| < 1)$$
 (8)

The class SC was investigated by Kanika [4] We say that $f \in S$ belongs to the class S_nC if

$$\frac{D^{n+1}f(z)}{D^nf(z)} \prec \phi(z) \tag{9}$$

where D^n is the Salagean Differential Operator, $n \in N \cup 0$ and

$$\phi(z) = 1 + \frac{4}{3}z + \frac{2}{3}z^2 \quad z \in U \tag{10}$$

when n=0, the class S_nC reduces to the class SC. In this paper, we obtain the initial coefficient estimates a_2, a_3 and a_4 for functions belonging to the class S_nC . The Upper bounds for the Fekete-Szego functional and the second Hankel Determinant for functions belonging to the class S_nC are also established. Furthermore, when n=0 and $\phi(z)=\sqrt{(1+z^2)}+z$, the class S_nC becomes e class $S^*(q)$ sudied in [1]

2 Main Result

Let Ω be the class of analytic functions of the form

$$\omega(z) = c_1 z + c_2 z^2 + c_3 z^3 + \dots \tag{11}$$

such that $|c_k| \le 1$, k = 1, 2, 3, ... (see[])

Lemma 2.1[5]

If $\omega \in \Omega$, then for any $t \in \mathbb{R}$ $|c_2 - tc_1^2| \left\{ \begin{array}{rrr} -t & if & t < -1 \\ 1 & if & -1 \le t \le 1 \\ t & if & t > 1 \end{array} \right\}$

Lemma 2.2[5]

If $\omega \in \Omega$, for any complex number t $|c_2 - tc_1^2| \le \max\{1 : |t|\}$ The result is sharp for $\omega(z) = z^2$ or $\omega(z) = z$

Lemma 2.3[5]

If $\omega(z) = c_1 z + c_2 z^2 + c_3 z^3 + \dots \in \Omega$, then $|c_1^3 + c_3 + 2c_1 c_2| \le 1$

Theorem 3.1

If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in S_n C$ then

$$|a_2| \le \frac{4}{3 \cdot 2^n}, \qquad |a_3| \le \frac{11}{3^2 \cdot 3^n}, \qquad |a_4| \le \frac{68}{3^3 \cdot 3 \cdot 4^n}$$

Proof:

Since $f \in S_nC$, We have that,

$$\frac{D^{n+1}}{D^n f(z)} = \phi(\omega(z))$$

where $\phi(z)$ is given as (10), Thus

$$\frac{D^{n+1}f(z)}{D^nf(z)} = 1 + \frac{4}{3}\omega(z) + \frac{2}{3}(\omega(z))^2$$
(12)

Let $\omega = c_1 z + c_2 z^2 + c_3 z^3 + ... \in \Omega$ Then from (12) we obtain

$$D^{n+1}f(z) = D^n f(z) \left[1 + \frac{4}{3}\omega(z) + \frac{2}{3}(\omega(z))^2\right]$$

Therefore,

$$D^{n+1}f(z) = z + 2^{n+1}a_2z^2 + 3^{n+1}a_3z^3 + 4^{n+1}a_4z^4 + \dots$$
(13)

and

$$D^{n}f(z)\left[1 + \frac{4}{3}\omega(z) + \frac{2}{3}(\omega(z))^{2}\right]$$

$$= z + \left[\frac{4}{3}c_{1} + 2^{n}a_{2}\right]z^{2} + \left[\frac{4}{3}c_{2} + \frac{2}{3}c_{1}^{2} + 2^{n}a_{2}\frac{4}{3}c_{1} + 3^{n}a_{3}\right]z^{3} + \left[\frac{4}{3}c_{1}c_{2} + 2^{n}a_{2} \cdot \frac{4}{3}c_{2} + \frac{2}{3}2^{n}a_{2}c_{1}^{2} + 3^{n}a_{3}\frac{4}{3}c_{1} + 4^{n}a_{4}\right]z^{4}$$
(14)

Comparing coefficiens in (13)and (14) we have

$$2^{n+1}a_2 = \frac{4}{3}c_1 + 2^n a_2$$

i.e

$$a_2 = \frac{4}{3 \cdot 2^n} c_1$$

$$3^{n+1}a_3 = \frac{4}{3}c_2 + \frac{2}{3}c_1^2 + \frac{4}{3}2^n a_2 c_1 + 3^n a_3$$
 (15)

which gives

$$a_3 = \frac{4}{3 \cdot 2 \cdot 3^n} c_2 + \frac{11}{3^2 \cdot 3^n} c_1^2 \tag{16}$$

and

$$4^{n+1}a_4 = \frac{4}{3}c_3 + \frac{4}{3}c_1c_2 + \frac{4}{3}2^n a_2c_2 + \frac{2}{3}2^n a_2c_1^2 + \frac{4}{3}3^n a_3c_1 + 4^n a_4$$

Thus,

$$a_4 = \frac{4}{3 \cdot 3 \cdot 4^n} c_3 + \frac{36}{3^2 \cdot 3 \cdot 4^n} c_1 c_2 + \frac{68}{3^3 \cdot 3 \cdot 4^n} c_1^3$$
(17)

From equation (15) and using $|c_k| \leq 1$ we get

$$|a_3| = \left| \frac{4}{3 \cdot 2 \cdot 3^n} \right| \left| \left(c_1 + \frac{22}{3^2 \cdot 2 \cdot 3^n} \cdot \frac{3 \cdot 2 \cdot 3^n c_1^2}{4} \right) \right|$$

$$= \frac{4}{3 \cdot 2 \cdot 3^n} \left| \left(c_1 + \frac{22}{3^2 \cdot 2 \cdot 3^n} \cdot \frac{3 \cdot 2 \cdot 3^n c_1^2}{4} \right) \right|$$

$$= \frac{4}{3 \cdot 2 \cdot 3^n} \left| \left(c_2 + \frac{22}{12} c_1^2 \right) \right|$$

$$= \frac{4}{3 \cdot 2 \cdot 3^n} \left| \left(c_2 - \left(-\frac{22}{12} \right) c_1^2 \right) \right|$$

By Applying Lemma (2.1), we have that

$$|a_3| \le \frac{4}{3 \cdot 2 \cdot 3^n} \left[\left(-\frac{22}{12} \right) \right] = \frac{11}{9 \cdot 3^n}$$
$$|a_3| \le \frac{11}{9 \cdot 3^n}$$

Also from equation (17) we have

$$a_4 = \frac{4}{3 \cdot 3 \cdot 4^n} c_1 c_2 + \frac{68}{81 \cdot 4^n} c_1^3 + \frac{4}{9 \cdot 4^n} c_3$$

$$= \frac{68}{3^3 \cdot 3 \cdot 4^n} \left(c_1^3 + \frac{3^3 \cdot 3 \cdot 4^n}{68} \cdot \frac{4}{3 \cdot 3 \cdot 4^n} c_3 + \frac{3^3 \cdot 3 \cdot 4^n}{68} \cdot \frac{36}{3^2 \cdot 3 \cdot 4^n} c_1 c_2 \right)$$

$$= \frac{68}{3^3 \cdot 3 \cdot 4^n} \left(c_1^3 + \frac{36}{68} c_3 + \frac{27}{17} c_1 c_2 \right)$$

$$\leq \frac{68}{3^3 \cdot 3 \cdot 4^n} \left(c_1^3 + c_3 + 2c_1 c_2 \right)$$

and lemma (2.3)we obtain

$$|a_4| \le \frac{68}{3^3 \cdot 3 \cdot 4^n} |c_1^3 + c_3 + 2c_1c_2|$$

$$\le \frac{68}{81 \cdot 4^n}$$

which complete the proof.

Theorem 3.2

Let $\sigma_1 = \frac{5 \cdot 2^{2n}}{16 \cdot 3^n}$, $\sigma_2 = \frac{17 \cdot 2^{2n}}{16 \cdot 3^n}$, If $f(z) \in S_nC$, then for any real number λ

$$|a_3 - \lambda a_2^2| \le \begin{cases} \frac{1}{9} \left(\frac{11}{3^n} - \frac{16}{2^{2n}} \lambda \right) & if \quad \lambda < \sigma_1 \\ \frac{4}{6 \cdot 3^n} & if \quad \sigma_1 \le \lambda \le \sigma_2 \\ -\frac{1}{9} \left(\frac{11}{3^n} - \frac{16}{2^{2n}} \lambda \right) & if \quad \lambda > \sigma_2 \end{cases}$$
 (19)

Proof:

If $f(z) \in S_nC$, then from equation (15) and (16) we have that

$$a_3 - \lambda a_2^2 = \frac{4}{6 \cdot 3^n} c_2 + \frac{22}{18 \cdot 3^n} c_1^2 - \lambda \frac{16}{9 \cdot 2^{2n}} c_1^2$$

$$= \frac{4}{6 \cdot 3^n} \left[c_2 - \left(\frac{2^{3-2n}}{3^{1-n}} \lambda - \frac{11}{6} \right) c_1^2 \right]$$
(20)

By applying lemma (2.1), equation (20) yields

$$|a_3 - \lambda a_2^2| \le \frac{4}{6 \cdot 3^n} \left(\frac{11}{6} - \frac{2^{3-2n}}{3^{1-n}} \lambda \right)$$

For

$$\frac{2^{3-2n}}{3^{1-n}}\lambda - \frac{11}{6} < -1$$

i.e

$$\lambda < \frac{5 \cdot 2^{2n}}{16 \cdot 3^n}$$

and $taking \sigma_1 = \frac{5 \cdot 2^{2n}}{16 \cdot 3^n}$ we obtain that

$$|a_3 - \lambda a_2^2| \le \frac{1}{9} \left(\frac{11}{3^n} - \frac{16}{2^{2n}} \lambda \right) \tag{21}$$

when $\lambda < \sigma_1$

Also, using Lemma 2.1, inequality (20) yields

$$|a_3 - \lambda a_2^2| \le \frac{4}{6 \cdot 3^n}$$

for

$$-1 \le \frac{2^{3-2n}}{3^{1-n}}\lambda - \frac{11}{6} \le 1$$

that is, for

$$\frac{5 \cdot 2^{2n}}{16 \cdot 3^n} \le \lambda \le \frac{17 \cdot 2^{2n}}{16 \cdot 3^n}$$

Taking $\sigma_2 = \frac{17 \cdot 2^{2n}}{16 \cdot 3^n}$ we obtain that

$$|a_3 - \lambda a_2^2| \le \frac{4}{6 \cdot 3^n} \quad \text{if} \quad \sigma_1 \le \lambda \le \sigma_2 \tag{22}$$

Applying Lemma (2.1) again to inequality (20) we have,

$$|a_3 - \lambda a_2^2| \le \frac{4}{6 \cdot 3^n} \left(\frac{2^{3-2n}}{3^{1-n}} \lambda - \frac{11}{6} \right)$$

for

$$\frac{2^{3-2n}}{3^{1-n}}\lambda - \frac{11}{6} > 1$$

that is,

$$|a_3 - \lambda a_2^2| \le \frac{1}{9} \left(\frac{16}{2^n \lambda} - \frac{11}{3^n} \right) \tag{23}$$

for $\lambda > \sigma_2$

Combining inequality (21)(22) and (23) we obtain the result of the theorem.

Theorem 3.3

If $f(z) \in S_nC$ then for any complex number λ

$$|a_3 - \lambda a_2^2| \le \frac{4}{6 \cdot 3^n} \max\{1; \left| \frac{11}{6} - \frac{8 \cdot 3^n}{3 \cdot 2^{2n}} \right| \}$$

Proof:

From inequality (15)and(16)we have that

$$|a_3 - \lambda a_2^2| = \left| \frac{4}{6 \cdot 3^n} \left[c_2 - \left(\frac{2^{3-2n} \lambda}{3^{1-n}} - \frac{11}{6} \right) c_1^2 \right] \right|$$

i.e

$$|a_3 - \lambda a_2^2| = \frac{4}{6 \cdot 3^n} \left| c_2 - \left(\frac{2^{3-2n}\lambda}{3^{1-n}} - \frac{11}{6} \right) c_1^2 \right|$$

By applying lemma 2.2 we have

$$|a_3 - \lambda a_2^2| \le \frac{4}{6 \cdot 3^n} \max \left| \left\{ 1; \frac{8 \cdot 3^n}{3 \cdot 2^{2n}} - \frac{11}{6} \right| \right\}$$

$$|a_2 a_4 - a_3^2| = \left| \frac{272}{3^5 \cdot 2^{3n}} c_1 \left(c_1^3 + 2c_1 c_2 + c_3 \right) - \frac{4}{9 \cdot 3^{2n}} \left(c_2 + \frac{22}{12} c_1^2 \right)^2 \right|$$

$$= \frac{272}{3^5 \cdot 2^{3n}} |c_1| \left| c_1^3 + 2c_1 c_2 + c_3 \right| + \frac{4}{9 \cdot 3^{2n}} \left| c_2 + \frac{22}{12} c_1^2 \right|^2$$

$$\le \frac{272}{3^5 \cdot 2^{3n}} + \frac{4}{9 \cdot 3^{2n}} \left(\frac{22}{12} \right)^2$$

$$= \frac{272}{3^5 \cdot 2^{3n}} + \frac{121}{3^4 \cdot 3^{2n}}$$

Theorem 3.4

Let f(z) belong to the class of functions in S_nC , then

$$H_2(2) = |a_2 a_4 - a_3^2| \le \frac{272}{3^5 \cdot 2^{3n}} + \frac{121}{3^4 \cdot 3^{2n}}$$

Proof:

Given $f(z) \in S_nC$, then

$$a_{2}a_{4} - a_{3}^{2} = \frac{4}{3 \cdot 2^{n}} c_{1} \left[\frac{4}{3^{2} \cdot 2^{2n}} c_{3} + \frac{36}{3^{3} \cdot 2^{2n}} c_{1} c_{2} + \frac{68}{3^{4} 2^{2n}} c_{1}^{3} \right] - \left[\frac{4}{3^{2} 3^{n}} c_{2} + \frac{22}{3^{3} \cdot 2 \cdot 3^{n}} c_{1}^{2} \right]^{2}$$

$$= \frac{16}{3^{3} \cdot 2^{3n}} c_{1} c_{3} + \frac{144}{3^{4} \cdot 2^{3n}} c_{1}^{2} c_{2} + \frac{272}{3^{5} \cdot 2^{3n}} c_{1}^{4} - \frac{4}{9 \cdot 3^{2n}} \left[c_{2} + \frac{22}{12} c_{1}^{2} \right]^{2}$$

$$= \frac{272}{3^{5} \cdot 2^{3n}} c_{1} \left[c_{1}^{3} + \frac{432}{272} c_{1} c_{2} + \frac{144}{272} c_{3} \right] - \frac{4}{9 \cdot 3^{2n}} \left[c_{2} + \frac{22}{12} c_{1}^{2} \right]^{2}$$

$$\leq \frac{272}{3^{5} \cdot 2^{3n}} c_{1} \left[c_{1}^{3} + 2c_{1} c_{2} + c_{3} \right] - \frac{4}{9 \cdot 3^{2n}} \left[c_{2} + 2c_{1}^{2} \right]^{2}$$

$$|a_{2}a_{4} - a_{3}^{2}| = \left| \frac{272}{3^{5} \cdot 2^{3n}} c_{1} \left[c_{1}^{3} + 2c_{1} c_{2} + c_{3} \right] - \frac{4}{9 \cdot 3^{2n}} \left[c_{2} + \frac{22}{12} c_{1}^{2} \right]^{2} \right|$$

$$\leq \frac{272}{3^{5} \cdot 2^{3n}} |c_{1}| \left[c_{1}^{3} + 2c_{1} c_{2} + c_{3} \right] + \frac{4}{9 \cdot 3^{2n}} \left| c_{2} + 2c_{1}^{2} \right|^{2}$$

$$= \left| \frac{272}{3^5 \cdot 2^{3n}} c_1 \left(c_1^3 + 2c_1 c_2 + c_3 \right) - \frac{4}{9 \cdot 3^{2n}} \left(c_2 + \frac{22}{12} c_1^2 \right)^2 \right|$$

$$= \frac{272}{3^5 \cdot 2^{3n}} \left| c_1 \right| \left| c_1^3 + 2c_1 c_2 + c_3 \right| + \frac{4}{9 \cdot 3^{2n}} \left| c_2 + \frac{22}{12} c_1^2 \right|^2$$

$$\leq \frac{272}{3^5 \cdot 2^{3n}} + \frac{4}{9 \cdot 3^{2n}} \left(\frac{22}{12} \right)^2$$

$$= \frac{272}{3^5 \cdot 2^{3n}} + \frac{121}{3^4 \cdot 3^{2n}}$$

References

- [1] Bello.R.A and Opoola.T.O, Upper Bounds for Fekete-Szego functions and the Second Hankel Determinants for a class of Starlike.IOSR.Journal of Mathematics.Vol.13, Issue 2, (March-April, 2017) Pp 34-39
- Jantency.A, Halim.S and Dans.M, Hankel Determinants for Starlike and Convex functions. Int. Journal, Math. Analysis, 1(2007), No 13,619-625
- [3] Kanika.S. Geometric Properties of a class of starlike functions Amer Journal of Mathematics and Mathematical Sciences.3(1), January-June 2014.ISSN 2278-0874, pp 59-65
- [4] Kowalezyk.B and Lecko.A. The Fekete-Szego Inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter Journal of Inequalities and Applications, 2014
- [5] Ma W. C and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin 1992), Pp.157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, M.A
- [6] RainaR.K. and Sokol.J, On Coefficient Estimate For A Class of Starlike Functions, 2000 Mathematica Subject Classification. Primary 30C45