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Abstract

The objective of this paper is to analyze a new approach to homology theory that deals with
Causal Random Groups, (CRG). It is shown that the evolution of (CRG) can be tracked down
as these groups stay within the general random groups category. Random groups are algebraic
groups that are not systematically the result of interaction of several random sub algebraic
groups. Therefore, in general random groups are unstable. Evolution is change from a known
state that can be traced back to that state. If change can not be traced back to its’ initial
state, then this change results in a shift to an unknown zone. Change within the unknown
zone is designated as evolution in complex domain. The method of tracing in complex do-
main is outlined and analyzed. It is proven that all change in complex domain stays within
the limits defined by causal random algebraic groups. Eventually, (CRG) can reach stability
(equilibrium) when repeated change in the complex domain finally leads to emergence from
the unknown zone onto a state in real space. A rectangular slab is used to represent causal
elements. The relationship between causal elements is depicted as a network of links and paths
on each face of the slab, and the space between any two opposing faces. This space is refereed
to as internal networks. Hyperplanes and hyperplane pencils are used to cut segments on
the networks on the faces, and geodesics are used to explore zones in the internal networks.
Zones on any face of the slab are considered to be in the real space, and zones in the internal
network are in the complex space. If the boundary points of the zones are on tangent bundles
to hyperplane pencils, then these points are non-singular, otherwise the zone contains singu-
larity. Then the focus is shifted onto the internal networks, similar search is done this time
with geodesics. Path on non-singular points connect stable, irreducible, cuasal elements, and
any sub-group of (CRG) built on these points is complete and optimal.
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1. Introduction

The objective of this paper is to introduce and analyze a new approach to homology theory that deals
with Causal Random Groups, (CRG), denoted by (G(X)) [1], where (X) is the space of causal elements.
CRG are those groups that do not obey certain rules regularly, but still stay in the same general random
group category. This means that random groups change their size due to causality external to the general
rules of the random groups. Therefore, if a random algebraic group (G) is of size (n ≥ 0), its size can vary
from (n) to (n − s; s ≤ n) without any change in the nature of the random algebraic group. The size of
(CRG) is the number of causal elements that build the structure of (CRG). A rectangular slab is used to
represent causal elements. Each node of the rectangular slab represents a causal element. Each rectangular
slab contains (8) causal elements. To include more causal elements, it suffices to attach more rectangular
slabs to each other. Each rectangular slab contains (6) faces. There exists a space between any two opposing
faces. The faces of the rectangular slab are considered to exist in the real space, (<n). The space between any
two faces exists in complex space,(Zn). The relationship between causal elements is depicted as a network of
links and paths on each face of the slab, and in the space between any two opposing faces. On each face of
the slab, it is possible to connect causal elements through alternate paths. Each path consists of a collection
of links. The origins and destinations of each path are causal elements. The intermediate points are called
causal chains. These points exist due to the complexity of causal elements. Each causal element has several
dimensions. A dimension represents a characteristic of a causal element. Each dimension has is considered
to have several degrees of intensities for each dimension. The level of the complexity of a causal element
depends on the existing knowledge of the causal element. The higher the level of complexity, the larger are
the number of causal chains on the paths. These paths are considered to be very important since outside
of these paths there is no information about the relationship among causal elements. Path on non-singular
points connect stable, irreducible, causal elements, and any sub-group of (CRG) built on these points is
complete and optimal.

The space between any two opposing faces is refereed to as internal networks. The networks inside the
slab consists of alternate paths. Each path is a collection of links. Each path is from an origin to a destination
on a face of the rectangular slab. The origins and destinations are causal element nodes on the faces of the
rectangular slab. The intermediate points in the internal networks are Parallax causal elements. Parallax
causal elements are those causal elements that are not in the list of causal elements since there is a gap
between parallax elements and the direct causal elements. Parallax causal elements are the origin and desti-
nation points of the links. Any point on a link between Parallax causal elements are called the neighboring
points. The neighboring points play an important role in the search process for optimal sub-groups of (CRG).
Hyperplanes and hyperplane pencils are used to cut segments on the networks on the faces of the slab. In
the internal networks, hyperplane pencils are transformed to the dynamics of internal forces. These tools
are used in the search process for stable, and irreducible causal elements. The outline of the search process
is as follows: on the faces of the slab, a search consists of cutting a zone of the network using hyperplanes
and hyperplane pencils. Zones on any face of the slab are considered to be in the real space. Each zone on a
face of a rectangular slab, is considered to be the base of a cone cut out by hyperplane pencils and the dual
hyperplane pencils outline a dual zone that is considered to be the vertex of this cone. The cone transforms
into a cylinder with all parallel hyperplane pencils that are of equal lengths, if the boundary points of the
zones are on tangent bundles to hyperplane pencils, then these points are non-singular, otherwise the zone
contains singularity. When singularity,then the focus is shifted onto the internal networks, similar search
is done this time with geodesics. Zones in the internal network are in the complex space, are found using
geodesics in the same way as in the real space. Thus the base of a cone is in the real space, and is the dual
zone. The vertex of the cone is in the complex space in the internal networks in the complex space. In the
same way, when the points on the boundary of the vertex are non-singular, i.e. possess tangent bundles to
geodesics at boundary points, then the cone transforms into a cylinder.

Theorem 1. If the hyperplane pencils that cut a segment (W) on a face of a rectangular slab, cut points
that possess tangents on the boundary of (β(W )), and the dual region (W ′) with dual hyperplane pencils,
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and dual tangent bundles that form a cylinder, then the hyperplane pencils are parallel to each other and are
all of same lengths.

Proof. The points on the boundary (β(W )), possess tangent bundles at hyperplane pencils, therefore, these

boundary points are non-singular points. Let (y
(i)|j
ca ; i = 1, · · · , I; ca = 1, · · · , Ca), where (i) is the dimension

of each boundary point, be on the boundary of (β(W )). Let the space of dimensions (I) be a space with one

degree of freedom. One degree of freedom of this space gives at most one dimension. Let (T
(i−1)

y
(i)|j
ca

), represent

tangent bundles orthogonal to hyperplane pencils at boundary points, (y
(i)|j
ca ). Let (Γ(i)) represent hyperplane

pencils. Given, the condition of one degree of freedom for dimension (i), the following homeomorphism exists,

(T (i−1) × Γ(i) → y
(i)|j
ca ). Given that any dual segment, (W ′) is a homeomorphism of (W), then the following

homeomorphism exists, (T ′(q−s−r)×Γ′(q−s) → y
′(i)|j
ca ; (i−1) ≤ q ≤ I; i = 1, · · · , (I−1); s, r ≤ 0), where (y

′(i)|j
ca )

are the dual boundary points of (y
(i)|j
ca ), and where homeomorphisms of types (T (i−1) × (I) → T ′(q−s−r)),

and (Γ(i) × (I) → Γ′(q−s)) exist, and ((T (i−1) × Γ(i)) → (T ′(q−s−r) × Γ′(q−s))) is a homeomorphism of

(y
(i)|j
ca → y

′(i)|j
ca ). Given that the dual dimension space (I ′) is the dual of dimension space (I), then all

hyperplane pencils, and their dual are of equal lengths.

The new homology theory is an approach that allows for transition hyperplane pencils (fiber bundles)
in the complex domain,[2] without any loss of the characteristics of random algebraic groups. Transition
vertices are means to finding the optimal fiber bundles for each random algebraic group, [3]. The optimal
fiber bundle is the one for which the vertex contains all non-singular points, and it is not possible to find a
neighborhood (ε) of any vertex (W ) that contains a singular point. The optimal fiber bundles to hyperplane
pencils in real space, or geodesics, in complex space, are the ones that all pencils are parallel, (normal tan-
gents) and of the same size.

The advantage of this new approach in homology is that it makes it possible to follow the evolution of
such random algebraic groups towards stability (equilibrium), and completeness. This approach to random
algebraic groups, has a potential to replace standard optimization methods since in this case, stability and
completeness are equivalent to optimality.

2 Random groups

As is mentioned in the introduction, random groups are the groups that do not obey certain rules regularly,
but still remain member of the same group. The reason for this is that in fact, random groups are formed from
elements that constitute causes. Groups formed from these causal elements are effects. To develop random
causal groups, (G), it is important to establish a background for causal elements. It is assumed that all causal
elements have some features in common. For example can assume that all causal elements are shapes and
they all possess specific dimensions. All causal elements are distinct from each other even though they may
share some common features. There exists different degrees of commonality among causal elements. This is
measured by calculating distances along dimensions. The shorter the distances among dimensions of any (2)
causal elements, the more similar they are. Each dimension has several degrees of intensities. The intensities
make up regions. For example if food is a causal element, then it possesses dimensions (characteristics)
such as weight, color, shape, and taste. Each dimension, let’s say weight has many degrees of intensities,
from light to heavy. In this example, the region of dimension weight is a set consisting of degrees of heaviness.

It is more appropriate to call random groups, as causal groups. A causal group retains its’ characteristics
as long as there are existing causes and thus corresponding effects. Variations in the degree of causality
allow for fibering in a complex domain. Each causal element is defined by its dimension. To clarify, let’s
denote the space of all casual elements forming a group by (X = {xki,j , k = 1, 2, , · · · ,K; i = 1, · · · , I; j =

1, · · · , J}),(X ⊂ <n). Let (X = {xki,j}), contain all causal elements of a group denoted by (xki,j), where
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(k) is the number of causal elements, (i) represents the dimension of each casual element, and (j) is the
number of regions of intensities. To make the concept of dimension and intensity clear, an example from
the representation field is chosen, [?]. To give an example, let’s say that there are a total of (K = 2) causal
elements, say ocean, and food. The dimension for ocean is those characteristics that describe an ocean,
such as color, depth, area, underwater landscape, water pressure, wave formation, beaches, weather, water
animals, pollution, and energy level, a total of (I=11) possible dimensions. Of course there are many more
characteristics if one wants to be exhaustive. For the causal element food, the dimension is the characteristics
that conjure up food such as (taste: saline, bitter, sour, sweet), weight, color, ingredients, spices, fat content,
and date of expiration, a total of (I=7) dimensions.

Each characteristic possesses various levels of intensities, let’s say from (1) to (10), with (1) being the
lowest level of intensity, and (10) being the highest intensity. (j = 1, · · · , 10), meaning that the variable
(j) representing intensity levels that go from (1) to (10). For example, ({x2

1,5}), is the causal element food,
(k = 2),with characteristic being the color of food,(i = 2), and with intensity level of color equal to (5),
(j = 5). It is the interaction between each characteristic of a causal element of a (CRG) with it’s various
levels of intensities, and another causal elements characteristics and intensities that allow for randomness of
(CRG). Therefore, it is important to analyze this relationship in depth. Let’s take as an example, the causal
element food, and the characteristic taste as the sole characteristic, with (4) levels of intensities, (sweetness,
bitterness, sour, and salty). The second causal element is ocean with color as it’s sole characteristic, with
color having (4) levels of intensities (blue, green, gray, turquoise). The (CRG), (sea food) made of the two
causal elements (food, ocean) is the result of the relationship between the two causal elements, through
the relationship among the characteristics and their intensities. It is important to have a geometrical rep-
resentation of the causal random group. This way a metric is created that allows for measurement of the
relationship, and thus enabling the analysis of the causal random group with respect to the dynamics of
change and stability. The aim is to find at which combination of causal elements a random causal group
is at equilibrium. Equilibrium means stable. In the example above, the most stable sub-group of (CRG)
would be sea food that comes from a blue ocean, and is salty. An stable random causal group is the one
that contains all non-singular points. The existence of singularity is an indication of non-stability. An stable
random causal group is a sub-group of the random causal group. This sub-group is invariant and thus can
be used as a generator of homeomorphic (CRG) with all non-singular points in real space, (<n).

The character, taste of the causal element food with (4) levels of intensities (sweet, salty, bitter, sour)
is modeled by (Henning), [6], as a tetrahedron, shown in Figure 1. The Henning tetrahedron for one causal
element (food), with (4) dimensions (sweetness, bitterness, sour, and salty), and each dimension (circular
disks) with (4) levels of intensities, (each disk is divided into 4 slices) is shown in Figure 1a. Geometrical
representation modeling in the field of cognitive science is well established. The general representation theory
is based on modeling cognitive concepts such as concept formation, semantics, non-monotonic inferences,
and inductive reasoning. A tetrahedron in this context represents concept formation. For example, it is the
concept of evolution from sweet to sour. Tetrahedron represents inductive reasoning in the sense that it is
logical to go from sweet to sour. The advantage of using geometrical figures to represent the interaction of
causal elements is that it allows for the use of metrics to calculate the form, and the impact of the relationship
among causal elements. In Figure 1, each face of the tetrahedron is a manifold representing the relationship
among dimensions of each causal element and their (4) intensity levels. A (CRG) is formed when causal
elements are related. In this example, a (CRG) is formed as an emergence of a phenomenon, (sea food) which
is an interaction between the (2) basic causes, (ocean, and food), that creates the effect or (CRG) which
is (sea food). Taking the example of (Henning), as a model, it is possible to show this relationship for a
causal element space, (X = {xki,j , k = 1, 2; i = 1, 2, 3, 4; j = 1, 2, 3, 4}), with (2) causal elements, having each
(4) dimensions or characteristics, and for each dimension (4) levels of intensities, as a tetrahedron, shown
in Figure 2. Each vertex of the tetrahedron represents a causal element. Each dimension is represented by
a circular disk divided into slices that represent intensities of that dimension. In the example of Figure 2,
each causal element has (4) dimensions, therefore, there are (4) circular disks each divided into slices that
represent intensities. The lines of tetrahedron represent relationships between causal elements. Therefore
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each face of the tetrahedron is a manifold. There exists a line between each dimension and each intensity of
causal elements. Manifolds made of lines that connect each dimension and its’ intensities to another dimen-
sion and its’ intensities. For the purpose of demonstration and for avoiding clutter, only few lines are outlined.

In the context of this paper, given that there usually are a large number of causal elements that can be
considered, it is preferable to adopt a rectangular slab as a geographical representation, shown in Figure 3.
Another reason for choosing a rectangular slab is that it allows for better visualization of the positions of
causal elements, specially when there are various degrees of similarities among causal elements. For example,
those causal elements that are highly similar, are positioned closer together on a rectangular slab, and those
causal elements that have either low or negligible similarities are placed farther away on the rectangular slab.
Each rectangular slab allows for (8) causal elements. Each causal element has it’s respective dimensions or
characteristics, and each characteristic has degrees of graduations or intensities. In this paper it is always as-
sumed that a rectangular slab represents a (CRG),(G(X)). Each node of the slab represents a causal element
of a (CRG), ((xki,j)). Each circular plate at a node represents a characteristic or dimension (i). When there
are multiple dimensions, they are represented as a collection of circular plates, (i)s at a node. Each circular
plate, (i) is divided into (j ∈ J) slices, representing the intensities of each corresponding dimension. Each line
represents a link that is a connection between each ((xki,j)), and ((xk

′

i′,j′)), for each ((i, j); (i′, j′); i 6= i′, j 6= j′).
The rectangular slab in Figure 3, is an example of (8) causal elements each having (4) dimensions, with each
dimension having (4) levels of intensities, ((xki,j), k = 1, · · · , 8; i = 1, 2, 3, 4; j = 1, 2, 3, 4). In general, any
number of dimensions with any number of intensities for each dimension can be represented. As in the tetra-
hedron example, only a few lines are outlined. In general all dimensions, and their corresponding intensities
are related to each other by straight lines on rectangular slab. The totality of nodes and links constitute net-
works on each face of the rectangular slab and in the internal region of the slab. The network on each surface
of the slab is a network with linear segments or links joining each pair of nodes. The opposing faces causal
elements, their dimensions and their corresponding intensities are connected through non-linear segments
or curvatures in complex space. If the dual projection of a segment of a (CRG) that contains singularities
or (singularity clusters), then there is a search to find a projective dual of the dual segment that is in the
complex space between any two opposing faces of the rectangular slab. This dual projective zone in the
complex space, contains links of the internal networks that are considered to be non-linear due to multiple
forces in action. Dimension and intensity are important elements of the causal networks development on the
rectangular slab that represents (CRG).

In general dimension is divided into two categories, integral dimension, and separable dimension. Integral
dimension is defined as when one dimension is assigned a value, then it implies that other dimensions must
be assigned values that depend on the value of that dimension as well, [7]. If dimensions are not integral,
then they are separable, which simply means independent. Separable dimensions acquire values that are not
correlated. Though the type of dimension is important in the construction of (CRG), they have no impact on
how the dimensions are represented. Their impact is on the occurrence of singularities. Integral dimensions
tend to produce non-singularities and separable dimensions tend to produce singularities. When there exists
a larger number of causal elements, geometrical representation of larger number of causal elements, is done
by attaching several rectangular slabs or tetrahedrons as is shown in Figure 3. New dimensions can be added
by adding more circular disks sliced to represent intensities. Dimension determines the degree of causality
[8]. The degree of causality corresponds to the position of the dimension of causal elements. There exists
a hierarchy of disks based on their level of relevance. Separable dimensions tend to comprise higher level
disks, while integral dimensions tend to occupy lower level disks. The position of causal elements, given
its’ dimension space determines the action. Action is the formation of links in causal networks. Depending
on whether the causal networks are dense and compact networks or sparse networks the shape of (CRG) is
determined. The shape of (CRG) is determined in the sense that dense causal networks define a (CRG) with
strong homeomorphic tendencies. Sparse causal networks are (CRG) with many singularities that renders
them unstable. The compactness or sparseness of causal networks affects the position, and the angle of
hyperplanes. It is possible to cut out projective segments out of any face of (CRG). Hyperplanes cut sub-
groups of (CRG) and create projective spaces of each sub-group (CRG). Location of points on the projective

77



M.M. Khoshyaran

sub-group corresponds to hyperplanes. Location of the points of hyperplane pencils also indicate whether
the points are non-singular or singular points depending on the degree of inclination of the pencils. Segments
on each face of the rectangular slab are the base of a cone constructed by hyperplane pencils and their dual
hyperplane pencils that create the dual projective zone that contains singularity cluster. The dual projective
region is the vertex of the cone. Segments with all non-singular points are on cylinders constructed by
hyperplane pencils and dual hyperplane pencils that are parallel and are of equal lengths. The same applies
to dual projective zones in the complex space. Figure 4, depicts a hierarchical representation of dimension
relating to position and geometrical representation of causal elements. Figure 5, is a flow chart summarizing
the degree of causality and the orientation of hyperplanes.
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Figure 3. Larger number of causal elements represented as a rectangular slab (case: K=8; I=4, J=4)
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Each geometry, (tetrahedron, rectangular slab) defines a particular topological structure. For example,
in the case of a rectangular slab, it represents a presupposition that all (8) causal elements representing the
nodes of the rectangular slab, are not considered to be equally positioned with respect to each other. In
the case of a tetrahedron if all sides of triangles making up the faces of the tetrahedron, are equal, then
it is considered that all causal elements are equally distanced and represent the same level of importance.
The choice of the structure of a (CRG) depends on the method of measurement. It is for this reason
that those structures are chosen that give a metric space. Since each node is a node of a network, with
node coordinates given as the values of each dimensions/intensities denoted by cardinal numbers, then it is
easy to calculate distances and measure proximity of each dimension/intensity to the others. The distance,
(d(xki,j , x

k′

i′,j′); i 6= i′, j 6= j′) between (2) causal elements is defined as a real valued function. Each face of
a (CRG) represented topologically as a rectangular slab is considered to be a network of links connecting
dimension/intensities at each node to dimension/intensities of another node as is shown in Figure 6. Each
face of a (CRG) is a collection of nodes and links, where each link connects any two nodes ((xki,j , x

k′

i′,j′)).
Each node representing a causal element’s dimension is presented as a circular disk divided into several
slices or wedges that represent intensities. It is assumed that there is a total of (J) intensity levels for each
dimension, (j ∈ J). The number of slices on each circular disk is varied depending on intensity levels. Each
circular disk has a center that represents a causal element, ((xki,j)). The node by itself has intensity (zero).

The nodes on the boundary of the circular disk are degrees of intensities measured from (zero). The area
of each slice represents the magnitude of the intensity level. A wide slice represents a high intensity level.
So the (2) points on the boundary of the circular disk relating to the wide slice are farther apart, which
means, that the (2) points are with intensities with very different magnitudes from each other. A narrow
slice represents a low intensity level. The (2) points on the boundary of the disk relating to the narrow
slice are close to each other, which means that the (2) intensity levels are close to each other or similar,
as is shown in Figure 6 and Figure 7. Any two nodes ((xki,j , x

k′

i′,j′)), via their dimensions/intensities are
connected by a collection of links, they are then connected by paths as is shown in Figure 8. Thus each face
contains a collection of paths. In Figure 8, a sample of a network on face (V p) is demonstrated. (G(X)), is
now identified as a (CRG) with geometrical representation, (G(X,V p); p = 1, · · · , P ), where (p) is the face
number, (V) indicates a face, and (P) is the maximum number of possible face numbers. Not all links are
included, but the idea of links and paths are clearly established. It is proven that links are homeomorphic.
homeomorphism is defined as follows: let (f), and (g) be two continuous maps such that (f, g : xki,j −→ xk

′

i′,j′)

if (g = f), then the link is homeomorphic. Otherwise, if (f, g : xki,j −→ xk
′

i′,j′) and (g ' f), then the link is
homotopic.
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Figure 6. Causal elements with dimension and intensities depicted as networks
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Each node is connected to the others through a set of links called a path. Each link is represented by a
positive distance denoted as (d(xki,j , x

k′

i′,j′) > 0). These paths are called homeomorphic paths. Homeomorphic
paths are paths that share similar patterns, as is shown in Figure 8. In Figure 8, only one path is indicated
as a general example. Homeomorphic paths are differentiated into 2 types, those that share at least one link,
and those that share no links. Homeomorphic paths that share at least one link contain non-singular points.
Homeomorphic paths that share no links may contain singular points. Non-singular points are those points
where change in the intensity of one dimension with respect to change in the intensity of another dimension
either does not shift the point so it stays on the same path, or it shifts it to another existing path, the concept

is denoted as (
∂(xki,j)

∂(xk
′
i′,j′ ))

= 0; i 6= i′; j 6= j′), or (
∂(xki,j)

∂(xk
′
i′,j′ ))

= f(xki,j , x
k′

i′,j′)), where (f(xki,j , x
k′

i′,j′); f ∈ <n) is the

function representing a linear link in the real space. Singular points are those points where change in the
intensity of one dimension with respect to change in the intensity of another dimension shifts the point to
a complex region. Figure 8a, demonstrates the path switching action due to the intensity level (j) of each
dimension (i). In Figure 8a, the points inside a path are called chain causal points, and are represented

as (y
(i,i′)|(j,j′)
ca , ca = 1, · · · , Ca), where (Ca) represents the maximum number of chain causal points. The

following Theorems demonstrate the homology / homotopy of links and paths.
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Figure 8a. Shifting paths due to change in the intensity level of a dimension
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Figure 9. Homomorphic and Homotopic paths

In Figure 9, the formation of links and paths is explained. Again, a network is a collection of nodes,
and links connecting every pair of nodes. Nodes are graphical representation of causal elements which are
distinguished by their dimensions/intensities. The totality of the networks constituting a rectangular slab
represents a (CRG), (G{X,V p}). (V = (V 1, · · · , V P )) represents the faces of the rectangular slab. Each rect-
angular slab has (6) faces, (V 1 = V 1

1 , · · · , V 1
6 )). The number of faces increase based on the number of causal

elements rectangular slabs as is shown in Figure 4. Each face (V p, p = 1, · · · , P ) of the rectangular slab,
contains a network of links joining entry nodes (xk) to exit nodes (xk

′
), (k 6= k′). Each link is distinguished

by its’ length (or distance between the corresponding pair of nodes), represented as (d((xki,j), (x
k′

i′,j′)) 6= 0).
All the links that join any origin destination pairs constitute paths. Paths are homomorphic if all points
on these paths are non-singular. In Figure 9(1) paths from origin (a) to destinations (d) and (e) are ho-
momorphic. The same functional form is used to go from (a) to (d), and (a) to (e) in Figure 9(1). The
same reasoning applies to 9(2). In 9(3), the paths from (a) to (e) are homotopic paths. Paths are homot-
poic if there exists at least one singular point. In case 9(3), any point inside region (ghijkl) is a singular point.
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Gravitational force (δ(i) |j) is defined to be the force of attraction of the intensities of each dimension
when they interact with each other due to their membership in a (CRG). A gravitational force is equal
to the intensity level times the velocity with which it can affect the structure of any (CRG), denoted by
(δ(i) |j) = (| j |i × νj|i ; j 6= j′)), where (| j |i; j = 1, · · · , J ;∀(i)) is the magnitude of intensity of dimension
(i) of a causal element, and (νj|i ; j = 1, · · · , J ;∀(i)), is the velocity of interaction among (j) intensities of
dimension (i). Velocity (νj|i) is defined as the change in distance between any two points with respective to

a unit change in intensity (j), (νj|i =
∂(d((xki,j),(x

k′
i′,j′ )))

∂(j) ) given that (j′) stays fixed or in case (j) stays fixed,

then the velocity is defined as the change in distance between any two points with respective to a unit change

in intensity (j′), (νj′|i′ =
∂(d((xki,j),(x

k′
i′,j′ )))

∂(j′) ).

Theorem 2. Let (f), and (g) be (2) linear functions representing line segments between pairs of points,
(xki,j), (x

k′

i′,j′), as is shown below, on the network on face (V p), ((f), (g) ∈ V p), ((f), (g) ∈ G{X,V p}). (f),
and (g) are homeomorphic functions. All links of the network on face (V p ∈ G{X,V p}) are homeomorphic
line segments.

 

xk
(i,j) x

k’

(i’,j’)
 

f 

x
k

(i,j)
 

g 

x
k’

(i’,j’)
 

g 

f 

Homeomorphism of (f), and (g)

Proof. Let all entry nodes of a line segment to be in set (X∗ = {xki,j(V p)};X∗ ⊂ X) for a specific face

(p), and all the exit nodes be in set (Y ∗ = {xk′i′,j′(V p)};Y ∗ ⊂ X), where (k 6= k′). Let (f, g : X∗ → Y ∗)

be any two maps joining a pair of nodes (xki,j(V
p), xk

′

i,j(V
p)). (f), is homomorphic to (g), (f = g) if the

gravitational forces of the origin and destination nodes are equal (δj = δj′ ; j 6= j′) 1. This means that there

exists a function (F (xki,j(V
p), δ)) such that (F (xki,j(V

p), δ) = f(δj)), and (F (xk
′

i′,j′(V
p), δ) = g(δj′). If the

gravitational forces of the nodes of a link are not equal,(δj 6= δj′ ; j 6= j′), then those links are homotopic,
meaning (f ' g). In general, if a link can be represented by function (F (xk, δ) : X∗ × ∆ → Y ∗), where
(xk ∈ X∗) is the set of all origin nodes, (X∗ = {xki,j(V p)}), and (Y ∗) is the set of destination nodes, (Y ∗ =

{xk′i′,j′(V p)}), and (∆) is the space of all possible gravitational forces, (δ ∈ ∆), then (F (xk, δ) = f(xk, δj)),

and (F (xk
′
, δ) = g(xk

′
, δj′)), given that (δj = δj′), thus (F (xk, δ) = F (xk

′
, δ)). This is called the homology

condition. In the case of homotopic links where (δj 6= δj′), it is assumed that for the homology condition to
hold, (δj = ι×δj′), the gravitational force at destination node must be a multiple, (ι) of the gravitational force
at the origin node. The homology condition is modified to homotopy condition and (F (xk, δ) ' f(xk, δj)),

and (F (xk, δ) ' g(xk
′
, δj′)), since (f(xk, δj) ' g(xk

′
, δj′)), thus (F (xk, δ) ' F (xk

′
, δ)).

Paths play an important role in the process of finding stable sub groups of a (CRG). Paths repre-
sent,causal chains. Each set of points of a causal chain between any two causal elements is denoted by

(y
(i,i′)|j,j′
ca ; ca = 1, · · · , Ca). The direction of the links comprised of causal chain points depends on the

gravitational force of dimension (i). For example, link (y
(i,i′)|j,j′
ca , y

(i,i′)|j,j′
ca+1 ); ca = 1, · · · , Ca − 1) can occur

if (
δ((i)|j)(y

(i,i′)|
j,j′

ca )

δ((i′)|j′ )(y
(i,i′)|

j,j′
ca+1 )

< 1). Causal chains are intermediary nodes representing the process of which any (2)

causal elements, (x
(i)|j
k ), and (x

(i′)|j′
k′ ) can be connected. Note here that an alternative notation is used

to denote causal elements. (y
(i,i′)|j,j′
ca )s are usually information based, and are complementary causalities

1(δj = (δ(i) |j))
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leading to the existence of the main causal elements. A segment (W ) cut by hyperplanes contains links
on several paths. The boundary points of ((W )) must fall on links of paths, otherwise they can not exist
unless they are on causal chains. Hyperplane pencils are used to find homeomorphic segments to segment
(W). If hyperplane pencils are at the points of tangent bundles, then every boundary point of segment
(W) is a non-singular point, and then every boundary point in the dual projection segment, (W ′) is a non-
singular point. This implies that all the causal chain points connecting causal elements that fall within
segment (W ), and the causal elements on these paths are stable causal chain points and causal elements,
and the segment represents a stable sub-group of a (CRG). If hyperplane pencils and their dual are parallel
and are of equal lengths, then the sub-group is both stable and complete. Complete means that there exists
no other homeomorphic sub-group that contains extra causal elements outside of the complete and stable set.

Theorem 3. All paths on face (V p) are either homeomorphic or homotopic.

Proof. Let a causal element be alternatively represented as (x
(i)|j
k ), and let causal chain points be represented

as (y
(i,i′)|j,j′
ca ). Let (u) represent a path such that (u = ⊕ur(x(i)|j

k , y
(i,i′)|j,j′
ca , δj)⊕uN (y

(i,i′)|j,j′
ca , x

(i′)|j′
k′ , δj′); r =

1, ·, N−1), where (ur(x
(i)|j
k , y

(i,i′)|j,j′
ca ) is the path from node (x

(i)|j
k ) to node (y

(i,i′)|j,j′
ca ), where node (y

(i,i′)|j,j′
ca )

represents causal chain nodes between the origin node (x
(i)|j
k ), and the destination node (x

(i′)|j′
k′ ), and (ca)

is the number of causal chain nodes. This representation is equivalent to (u = ⊕fr(x(i)|j
k , y

(i,i′)|j,j′
ca , δj) ⊕

fN (y
(i,i′)|j,j′
ca , x

(i′)|j′
k′ , δj′)), where (f) is defined in Theorem 2. Let (v) represent another path such that (v =

⊕vr(x(i)|j
k , y

(i,i′)|j,j′
ca , δj)⊕vN (y

(i,i′)|j,j′
ca , x

(i′)|j′
k′ , δj′)). The equivalent representation is given as (v = ⊕gr(x(i)|j

k ,

y
(i,i′)|j,j′
ca , δj)⊕ gN (y

(i,i′)|j,j′
ca , x

(i′)|j′
k′ , δj′)), where (g) is defined in Theorem 2. Given that the condition exists

where (ur(x
(i)|j
k , y

(i,i′)|j,j′
ca , δj) = ur+1(x

(i)|j
k , y

(i,i′)|j,j′
ca , δj) = vr(x

(i)|j
k , y

(i,i′)|j,j′
ca , δj) = vr+1(x

(i)|j
k , y

(i,i′)|j,j′
ca , δj)),

then by Theorem 2, if the two functions (f), and (g) are homemorphic, (f = g), then there exists a homeo-
morphism (F (u, δ) : v ×∆ → u), such that (F (u, δ) = f(u, δ)), and (F (v, δ) = g(v, δ)), where (δ ∈ ∆), (∆)
is the space of all possible gravitational forces. In the case of homotopic paths, when by Theorem 2, the two
functions (f), and (g) are homotopic, (f ' g), then (F (v, δ) ' f(u, δ)), and (F (v, δ) ' g(u, δ)).

The existence of homotopic paths is the reason why singularity occurs. Singularity occurs when change

in the position of a causal element (x
(i)|j
k ) on a homomorphic path (u), with respect to change in the gravita-

tional force (δ), (
∂u(x

(i)|j
k ,x

(i′)|j′

k′ ,δ(i,i′))

∂(δ(i′)) ), would either shift the causal element (x
(i)|j
k ) to another homomorphic

path, to (v), or would shift it to a position outside of any homeomorphic path. In this case, one must
assume that the initial path (u), was homotopic. When all causal elements are on homeomorphic paths,
then they are considered to be non-singular points. Therefore, all points on a path are non-singular if

(
∂u(x

(i)|j
k ,x

(i′)|j′

k′ ,δ(i,i′))

∂(δ(i′)) = y
(i,i′)|j,j′
ca ), path (u) is homomorphic to path (v),(u ×∆ → v). If path (u) is homo-

topic to path (v), then (
∂v(x

(i)|j
k ,x

(i′)|j′

k′ ,δ)

∂(δ) = z
(q−s)
sd ; (n−k) ≤ sd ≤ n), (n) is the total number of possible causal

elements in (<n), and (k) is the number of non-singular causal elements before the occurrence of singularity.
(q) is the dimension of the parallax causal element that is related to the dimension or characteristics of causal
elements (i). (q) is a function of dimension (i), (q = .((i)ג (s > 0) is a positive number representing those

dimensions that belong to non-singular causal elements before the singularity. The causal element (z
(q−s)
sd )

is called the parallax causal element. The set of parallax causal elements is denoted by (z = {z(q−s)
sd }).

Parallax causal elements, [10] are the transcendental transformation or transcendental illusion or tran-
scendental dialectic of singularity. Transcendental refers to what is assumed about the causality of the
original casual elements in singular zones which is required in order find a valid zone in the internal net-
works. Illusion in this context refers to how understanding, and rationality impacts the perception of causal
elements as it relates to singular zones. Therefore, Parallax causal elements are the original causal elements
that are looked at from a new angle of understanding and rationality, that sorts out the dimension property
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of original causal elements, so that only some dimensions are deemed important or relevant. This explains
the choice of dimension, (q − s). The internal networks space is considered to be a Parallax gap. Parallax
gap is a space shared by both the Parallax causal elements, and the original causal elements, in as much
as the parallax gap is a space that shows the other side of the original causal elements space. Thus, the
naturally, parallax gap is in the complex space, which mirrors the original causal elements space which is
in the real space. In short, transcendental dialectic is what singularity would look like if it were perceived
through a different set of dimensions than what is expected. Parallax causal element can be found by shifting
the perspective of a singularity. This perspective is a parallax gap, and lies in the complex space, (Zn), or

in this case the internal network. The parallax causal element (z
(q−s)
sd ) is neither on path (u) nor on it’s

homotopic path (v), but change in the position of the causal element (x
(i)|j
k ) with respect to change in the

gravitational force (δ) would shift the perspective of a singularity to a complex space, (z
(q−s)
sd ∈ Zn).

The Parallax causal element thus found is in the internal network, in other words, it is inside the
rectangular slab representing (CRG), as is shown in Figure 10. The singularity becomes a set of paral-

lax causal elements in the internal network. A parallax causal element is formulated as (1): (z
(q−s)
sd =

δ(q − s) × x(q−s)
n−k + ii × η(δ(q − s), δ(q′ − s)ξ(q−s)

md ;md = 1, · · · ,Md; i − 1 ≤ q ≤ I; i = 1, · · · , I − 1; ii =

−1; sd = n − k, · · · , n), where (x
(q−s)
n−k ∈ <n) is the real part equal to the causal element not in the set

of non-singularities of segment (W ∈ Γ(i)), and (ξ
(q−s)
md ∈ Zn) is the induced causality, and (md) is the

number of induced causal elements that constitute a causal chain between Parallax causal elements and
the (origins ,destination) pairs of non-singular causal elements on the faces of the rectangular slab. (n)
is the universe of all possible causal elements. Induced causality is causality that exists due to the influ-
ence of factors linking to the (CRG), from outside, normally not easily detectable. An example of induced
causality is the impact of gravitational force covariances on the length of the curvature of the links of the
internal networks. It is assumed that due to induced causality factor all the links in the internal networks
are arcs. (η(δ(q − s), δ(q′ − s); (i − 1) ≤ q ≤ I; i = 1, · · · , I; s ≤ 0) is the covariance between the gravi-
tational forces of the dimensions of origin Parallax causal element (q − s), and the gravitational forces of
the dimensions of destination Parallax causal element ((q′ − s); q 6= q′). The initial Parallax causal element

(z
(q−s)
n−k ) is formulated as (z

(q−s)
n−k = δ(q − s) × x

(q−s)
n−k + ii × η(δ(q − s), δ(q′ − s)ξ

(q−s)
1 ;md = 1, · · · ,Md),

where the first induced causal element (ξ
(q−s)
1 = C), and (C) is an arbitrary positive number that repre-

sents the magnitude of the parallax gap. Induced causal elements (ξ
(q−s)
md ) are formulated as, (ξ

(q−s)
md =

δ(q− s)× z(q−s)
n−k + ii× η(δ(q− s), δ(q′− s)z(q′−s)

sd+1 ; sd = (n− k), · · · , n). The dimension of the induced causal

element, (ξ
(q−s)
md ) depends on the location of the induced causal element point on the arc, (z

(q−s)
sd , z

(q′−s)
sd+1 ).

Close to the origin node and up to the middle of the arc, the dimension of (ξ
(q−s)
md ), is the same as the origin

node, (z
(q−s)
sd ). Past the middle point, the dimension of (ξ

(q−s)
md ), must be equal to the dimension of the end

node, (z
(q′−s)
sd+1 ).
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Figure 10. Internal networks

The internal networks inside of the rectangular slab represents networks with (start, and exit) nodes,

((x
(i)|j
k , x

(i′)|j′
k′ ) ∈ <n) from opposing faces (V p, V p

′
), where (V p

′
) is the opposing face of (V p). Internal

networks are in the complex domain since the curvature of the links can not be determined solely in the real
domain, (<n). The impact of gravitational force covariances on the curvature is expressed quantitatively
in the complex field, (Zn). It is not realistic to assume that the links of the internal networks should be
line segments. It is reasonable to assume that all links are arcs due to gravitational effects. The degree
of non-linearity depends on the level of the attractiveness of each pair of origin and destination nodes and
the gravitational force covariances. Due to gravitational force covariances, non-linear segments in internal
networks are either homeomorphic or homotopic. The difference between links in (<n) and arcs in (Zn) is
that homemorphisom or homotopy in (<n) space depends on one factor, the intensity level (j), and impacted
by the gravitational forces, while homeomorphism or homotopy in (Zn) depends on two factors, gravitational
forces, and the gravitational force covariances. Internal networks contain non-linear paths. It is also shown
that these non-linear paths are either homeomorphic or homotopic. Non-linear paths joining causal element

points, ((x
(i)|j
k , x

(i′)|j′
k′ ) ∈ <n), in opposing faces of the rectangular slab, contain intermediate Parallax causal

points (z
(q−s)
sd ) in complex space, (Zn). Internal network paths are represented by (πz ∈ Zn). The curvature

and the shape of the curve (convex, concave) between any two points in the interior of complex space
depends on the magnitude of the gravitational force of the (start, exit) causal elements, (δ(i), δ(i′)), and the
gravitational force of the interior nodes, (δ(q − s), δ(q′ − s)), and the gravitational force covariances among
interior nodes, (η(δ(q − s), δ(q′ − s))). The following two theorems prove the conditions for the existence of
homotopy of non-linear arcs and paths of the interior networks. The particularity of the internal network is
that though the points inside lie in the complex domain, the points on the opposite faces, ((V p, V p

′
), p 6= p′)

are in the real domain, ((x
(i)|j
k , x

(i′)|j′
k′ ) ∈ <n). This means that the origin node and the destination node of

a path in the internal network are in the real domain, and thus can be easily identified. The Parallax causal

elements can potentially be identified using formula (1), with potential candidates, (x
(q−s)
n−k ). This is not the

case for the induced causal nodes in the internal network, (ξ
(q−s)
md ),where (md = 1, · · · ,Md) is the number

of induced causal intermediate nodes between any two Parallax causal elements ((z
(q−s)
sd , z

(q′−s)
sd + 1); sd =

n−k, · · · , n), and where (ξ
(q−s)
md = δ(q−s)×z(q−s)

n−k + ii×η(δ(q−s), δ(q′−s))×z(q′−s)sd+1), where (δ(q−s))
is the gravitational force of the start parallax causal element node of a link, and (η(δ(q− s), δ(q′− s))) is the

covariance between the start, and the end (z
(q′−s)
sd+1 ) Parallax nodes. Figure 10a, demonstrates the positioning

of the induced causal elements.
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Figure 10a. The positioning of the induced causal elements

Theorem 4. All arcs in the internal network in complex space, (Zn) are either homeomorphic or homotopic
curve segments.

Proof. If all arcs are generated by a gravitational force, (δ(q − s)), where dimension ((q − s)) is chosen
at random or in other words are independent dimensions with dialectic dependency, and the covariance
of gravitational forces (η(δ(q − s), δ(q′ − s)) exists for any random dimension, ((q − s)), then each arc is

generated by a function (Fz) such that (Fz(0, z
(q−s)
sd ) = z

(q−s)
sd )); and (Fz(z

(q′−s)
sd+1 , 1) = z

(q′−s)
sd+1 ) for any

function (Fz : Zn × I→ Fz) in (I) space is homeomorphic to space, (Zn). The arcs generated this way are
homotopic to each other. If arcs are generated by a family of gravitational forces (δ(q − s)), and covariance
of gravitational forces (η(δ(q− s), δ(q′− s)), where all dimensions ((q− s)) belong to a dependent families of
dimensions, where gravitational forces, and covariance of gravitational forces stay within fixed limits, then
all arcs generated by any function (Fz) are homeomorphic to each other.

Theorem 5. All paths in the internal network in complex space, (Zn) are either homeomorphic or homotopic
mappings.

Proof. Let (πz ∈ Zn) denote a path mapping node (z
(q−s)
sd ) to node (z

(q′−s)
sd+m ;m ≥ 0). Theorem 4, can

be extended to mappings. A mapping, (πz) is a chain homotopy (Fz(z
(q−s)
sd ) → Fz(z

(q′−s)
sd+m )) if (δ(q − s)),

and (η(δ(q − s), δ(q′ − s)), include random dimensions ((q − s)), with dialectic dependency for a chain of

links on the mapping of an origin node (z
(q−s)
sd ) to any destination node (z

(q′−s)
sd+m ). A mapping (πz) is a

chain homology if (δ(q − s)), and (η(δ(q − s), δ(q′ − s)), belong to dependent families of dimensions, where
gravitational forces, and covariance of gravitational forces stay within fixed limits, for a chain of links on

the mapping of an origin node (z
(q−s)
sd ) to any destination node (z

(q′−s)
sd+m ), then all paths generated by any

mappings (πz) are homeomorphic to each other.

A (CRG), (G(X,V p); p = 1, · · · , P ) is represented by a rectangular slab each with (8) faces (V p). Each
node of the rectangular slab represents a causal element, (xki,j(δ, η), k = 1, 2, , · · · ,K; i = 1, · · · , I; j =
1, · · · , J), where each node consists of circular disks that represent dimension (i) of each (k) causal element.
Circular disks are divided into (j) slices. Each (j) is a level of intensity of each (i). Based on the gravitational
force of each (i), which depends on (j), each causal element reacts with another causal element by creating
links that connect each (j 6= j′) of (i 6= i′) to each (j’) of (i’). This way, there exists networks of nodes, and
linear links connecting these nodes on each face of the rectangular slab. Hyperplanes in a hyperplane space
(Li), and hyperplane pencils, (Γi) are tools used to cut sections (regions) on faces (V p). These regions are
denoted by (W ∈ <n), with boundary points (β(W )) which are the points cut by hyperplanes on face (V p).
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Each region (W) is of dimension (i) since hyperplanes are the projective spaces containing sections (W).
Let the dual space of the projective space hyperplanes,(Li) be denoted as (L′i), and the dual hyperplane
pencils be denoted as (Γ′i), and let the dual of region (W) be denoted as (W ′ ∈ <n). The object of the dual
space is to represent the region (W) on a linear space as homeomorphic to the projective space. If all the
boundary points (β(W )) are non-singular then the projective space points in the real space and all points
on the boundary of the projective dual segment, (β(W ′)) are homeomorphic to the points of (β(W )).

Hyperplanes become tangent hyperplnes with dimension not greater than (i-1), if all the hyperplane
pencils are tangents to (β(W )). In the case when tangent hyperplanes can not be found, then the dual
segment falls in the complex space, (Zn). It is assumed that there exists at least one singular point among
the boundary points (β(W )). Therefore, the dual boundary points, (β(W ′)) fall in the complex space. In
the graphical representation, the hyperplanes are shown as a collection of hyperplane pencils cutting regions
(W) on face (V p) as is shown in Figure 11(a), with the dual region (W ′) depicted as situated on the elevated
portion of hyperplanes. In Figure 11(b), the dual region (W ′z) is situated in the internal networks inside of
the rectangular slab, in complex space. The dual region (W ′z) cuts a section in the internal networks. The
boundary points (β(W ′z)) are points on arcs on paths of the internal networks. If these points are the points
of tangent hyperplanes, or tangent geodesic hyperplanes, then all the points on the boundary (β(W ′z)) are
non-singular points; otherwise if the points are not the points of tangent geodesic hyperplanes, then there
exists at least one singularity. In this case, search for non-singularity continues by cutting other sections in
the internal networks and applying geodesic hyperplanes, and checking for singularities. This search should
continue until non-singular sections are found that lead to stable causal elements. All non-singular points
indicate that the links where the boundary points (β(W ′z)) are on, are links of paths or mappings that
connect causal elements on the faces (V p), and these causal elements are highly stable and relevant to a
(CRG). The causal elements thus found are stable, and complete. Therefore, any (CRG) made up of thus
found causal elements is invariant in nature, and is complete. In this case, the hyperplane pencils are parallel
to each other and are of the same size. In general, the boundary points (β(W ′z)) must fall on the links of
the paths in the internal network, if those points are non-singular. Singularities occur when the boundary
points fall outside of the paths.

 

Hyperplanes/dual 

Hyperplanes 

(W’) (W) 

Figure 11a. Hyperplanes cutting region (W ), and its’ dual region (W ′)
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Singularity 

(W’z) 

(W) 

Figure 11b. Dual region (W ′) with a singularity zone, and its’ dual region (W ′
z) inside the rectangular slab

The use of the hyperplanes tool is to examine the stability of the networks on face (V p). Stability refers
to finding out the relevancy of the causal elements in making up a (CRG). Any section (W) is stable if
hyperplanes cut points on the boundary (β(W )), all of which are non-singular points, otherwise, if there
exists at least one singular point on (β(W )), then (W) is not stable. In the case of instability, hyperplanes
point to a dual of (W), (W ′z ∈ Zn) in complex space, (Zn).

3 Hyperplanes and Singularities, and search for stability

The objective is to find a subgroup of a (CRG) that is stable. Stable implies that all the causal elements
that constitute these subgroups are irreducible, in which case there exists a strong gravitational attraction
among the causal elements with a set of characteristics (i), also covariance among the causal elements exists
and is significant. In order to find a subgroup of a (CRG) that is at equilibrium or stable, one must use a
particular tool. Tools used here are hyperplanes and hyperplane pencils. Next, one must use a technique
as follows: singularity detection by using hyperplanes to cut segments to be tested for singularity testing,
transition phase (the internal network in complex space, if singularity occurs), repeat search for singularities
in the transition phase if non-singularity not found, and continue until a region is found that is irreducible,
(all non-singular points). This is what happens during the transition phase, in the complex space, (Zn);
two cases can occur. In case one, given section (W), on face (V p), with at least one singularity, the dual
of (W), (W ′z) in the interior network contains all network arcs with boundary points, (β(W ′z)), that are all
non-singular, then the links in the dual section (W ′z), are on paths that map the origin causal elements to the
destination causal elements, ((xki,j) ∈ <n → xk

′

i′,j′)) in the real space, (<n). In case one, the causal elements
at the origin and destination of these paths are irreducible elements of a sub group of a (CRG).

In case two, given section (W), on face (V p), with at least one singularity, the dual (W ′), has a dual
(W ′z) in the internal networks contains all network arcs with boundary points, (β(W ′z)), at this point two
possibilities can occur. Either all boundary points are non-singular or there exists at least one point which
is singular. The dual of (W ′z), (W ′′z ), is found by applying hyperplanes tools, and checking for singularity.
As long as singularity exists, case two is repeated and search for non-singularity continues. Hyperplanes
and hyperplane pencils exist in the real space (<n), and are transformed into curved manifolds consisting of
geodesics curves in the complex space (Zn). Geodesics,(Λ(q−s)) are the complex space version of hyperplane
pencils. (CRG) is depicted as a rectangular slab for reasons of simplicity of visualization, and clarity of
conceptualization, it is assumed that all faces of the rectangular slab are in the real domain, and the space
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between the opposing faces lies in the complex domain. Therefore it is possible to cut sub regions on the
faces using real domain hyperplanes, and hyperplane pencils, and in the internal regions with geodesics.
Since hyperplanes are considered to exist in a projective space as dual hyperplane pencils that projects the
dual region onto the projective space in (<n), then, in case of singularity, the dual region also possess its’
own dual in the projective space in (Zn). The duality region and the dual hyperplanes are shown in Figure
11a, and the dual of the dual region and its’ corresponding geodesics are shown in Figure 12b. Most simple
sub region selection would be a circular form, but to cover all possible subregions on a face of a rectangular
slab, irregular shape regions could be cut using hyperplanes, as is shown in Figure 12a.

 

Face (Vp) of a rectangular 

slab (GX
K{ X,Vp }) 

Region (W) 

(W’ ) dual of (W) 

Hyperplane pencil Γ(i) 

Hyperplane L(i) 

Figure 12a. Region cut by hyperplanes with all non-singular points

 

Parallax gap 

 

Dual region (W’z) in  the 

Parallax gap 

(W’) dual of (W) 

Geodesics, Λ(q-s) 
 (W) 

Figure 12b. Dual region in the complex space cut by geodesics

In Figure 12a, (CRG), (G(X,V p)), is depicted as a rectangular slab, on one face (V p), region (W) is cut
using hyperplane pencils (Γi). Hyperplanes are formulated as a collection of hyperplane pencils, (Li = ⊕Γi).
The projection of these hyperplanes are dual hyperplane pencils, (L′(i)) create dual region (W ′). Figure 11b,
depicts the same region (W) cut by hyperplane pencils, except that there exists singularity which is shown on
the dual region as an empty space. The hyperplane pencils (Γi) are homeomorphic to their dual (Γ′(i)), and
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the hyperplanes (Li) are homeomorphic to their dual, (L′(i)). Region (W) is homeomorphic to its′ projective
dual region (W ′), if both regions contain the same number of points, in other words, if the intersection
(W ∩Γi) contains the same number of points as the projective dual, (W ′ ∩Γ′(i)); otherwise, if the projective
dual region has less points, then there exists singularity. If all points of the intersection (W ∩ Γi) are non-
singular, then, there exists tangents or fibre bundles, (T q−s), where (T q−s; (i− 1) ≤ q ≤ I; i = 1, · · · , I − 1)
such that (Γi×T q−s = 0). If the derivative of hyperplane pencils with respect to gravitational force (δ(i) |j)
exists, then the tangent fibre bundles are formulated as,(T q−s = ⊕(∂(Γi(δ(i)))

∂(δ(i) ). The same applies to the dual

segment (W ′), where non-singular points exist, (Γ′i×T q−s−r = 0; r ≥ 0). The points on the boundary of the
dual segment (β(W ′)) are in the multiplicative space (Γ′(i)×T q−s−r = 0). If on the other hand, the derivative
does not exist, then the hyperplane pencils have cut singular points on the region (W ∩Γi). In that case the
dual of hyperplane pencils, (Γ′(q−s)), and dual hyperplanes (L′(q−s)) form a cone with (W ′ ∩ Γ′q−s) as the
base, and the dual region (W ′z ∩Λ(q−s)), where (Λ(q−s)), is an arbitrary geodesic pick in the singularity zone
of the dual segment, (W ′). Repeated arbitrary geodesics, (Λ(q−s)), form a collection that hit networks in
the internal networks, and carves out a zone, (W ′z) containing the points of the intersection of the geodesics
and the links of the internal networks. Zone, (W ′z), is the vertex of the projective dual region (W ′) which is
the base of the cone formed by geodesics.

Hyperplane pencils can be formulated as (Γi = α
(i)|j
k × x(i)|j

k (δ(i) |j , τ(j) |i) + α
′(i′)|j′
k′ × x′(i

′)|j′
k′ (δ(i′) |j′

, τ(j′) |i′)), where (i′) is the dual of (i), and (α
(i)|j
k ), and (α

′(i′)|j′
k′ ) are the coefficients of causal elements

(x
(i)|j
k (δ(i) |j , τ(j) |i)), and its′ projective dual point (x

′(i′)|j′
k′ (δ(i′) |j′ , τ(j′) |i′)). The variable (τ(j) |i) is

similar to the variable (δ(i) |j); as the variable (δ(i) |j) represents the gravitational force of dimension
(i), the variable (τ(j) |i) is considered to be the causality force of the intensity level (j) of causal element

(x
(i)|j
k (δ(i) |j , τ(j) |i)). The causality force is the covariance between different intensity levels (j) of dimension

(i). A hyperplane is formulated as (⊕a(i)|j
k × Γ(i) = L(i) = 0). (a

(i)|j
k = {α(i)|j

k }) is the coefficient of the
hyperplane pencil. The hyperplane exists as long as the Jacobian criterion, (JJ) holds. (JJ) is the derivative
of hyperplane pencils with respect to both the dimensional gravitational force, (δ(i) |j), and the intensity

level causality force (τ(j) |i), and is formulated as (JJ := (
∂(Γ(i)(δ(i)|j ,τ(j)|i))
∂(δ(i)|j ,τ(j)|i) ).

Hyperplanes cut regions with non-singular points when the Jacobian criterion holds. Singularity occurs

when the Jacobian criterion is not satisfied. In that case, for some regions, (JJ := (
∂(Γ(i)(δ(i)|j ,τ(j)|i))
∂(δ(i)|j ,τ(j)|i) ), the

derivative does not exist in the real domain (<n), but the derivative exists in the complex domain,(Zn); in
other words, the Jacobian criterion is equal the derivative of geodesics with respect to the gravitational forces,

and the covariances of the gravitational forces, formulated as, (JJ := (∂(Λ(q−s)(δ(q−s),η(δ(q−s),δ′(q′−s)))
∂(δ(q−s),η(δ(q−s),δ′(q′−s)) ). Grav-

itational forces, and the covariances of the gravitational forces, define the formulation of a Parallax causal

element node as, (z
(q−s)
sd = δ×x(q−s)

n−k +ii×η(δ, δ′)ξ
(q−s)
md ;md = 1, · · · ,Md; (i−1) ≤ q ≤ I; i = 1, · · · , I−1; ii =

−1) in the internal networks. The length of each hyperplane pencil in (<n), is denoted as (| Γi |). The length
of each hyperplane pencil is the same for all regions (W), and their projective dual region (W ′), when all
points on the the intersection, (W ∩ Γi) and (W ′ ∩ Γ′i) are non-singular points. Hyperplane pencils have
all the same length, (| Γi |=| Γ′i |) if they are orthogonal, (Γ′i × T i−1 = 0) to fiber bundles, (T i−1). Any
region that contains boundary points, (β(W ′)) that are in the multiplicative space, (Γ′i × T i−1 = 0) are all
son-singular points, and causal elements relating to these points are irreducible. The fibre bundles, (T i−1)
have the same length (| T i−1 |=| δ(i) |j |), when (δ(i) |j= δ(i) |j′), and all the intensity level causality
forces (τ(j) |i= τ(j′) |i= BB), are fixed at an arbitrary value (BB). On each face of the rectangular slab

(G(X,V p)), where all causal elements (x
(i)|j
k (δ(i) |j , τ(j) |i)), are in the real domain, (<n), when singularities

occur, then the dual hyperplane pencil (Γ
′(q−s)
∗ ) that does not obey the Jacobian criterion is a tensor that

points to the interior of (G(X,V p)). Here the (*) sign is used to distinguish this particular hyperplane pencils
from the others. Due to the effect of gravitational forces acting inside the rectangular slab, the arbitrary

hyperplane pencil, (Γ
′(q−s)
∗ ) becomes a geodesic (Λq−s). Dimension (q − s) represents the dimension of the
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singularity, and (s) is considered to be the number of dimensions that correspond to non-singular points of
the dual region (W ′). It points to a section inside and is a guide to find all geodesics with similar curvatures
to cut out an initial zone of interest in the complex domain of the interior networks of (G(X,V p)). Therefore,
initially, the choice of the cut is arbitrary, since the geodesic tensor, (Λq−s) does not indicate a specific point,
and therefore some arbitrary region around it is considered.

Lemma 1. Any hyperplane (Li) cuts non-singular points in (W ∩ Γi) if the Jacobian criterion, (JJ 6= 0)
for hyperplane pencils (Γi) is satisfied, and the points on the intersection (W ∩ Γi) are on the network on
any face of the rectangular slab.

The embedded implication is that the existence of Lemma 1, is equivalent to stating that if the gravita-
tional force of dimension (i), (δ(i) |j>> 0) is very strong, then hyperplanes, (L(i)) cut sections, (W∩Γi(δ(i) |j
)), with all non-singular points. Plus if the gravitational force (δ(i) |j>> 0) is strong, then it is strong for
any finite dimension (i <∞), and any finite intensity level (j <∞), in particular for cases when dimension
(i ≤ I) is finite with an upper limit, and when the intensity level (j ≤ J) is finite with an upper limit. (I),
and (J), are maximum values of dimension and intensity levels. Strong gravitational force of dimension (i),
(δ(i) |j>> 0), cuts non-singular points (W ∩ Γi(δ(i) |j)), which are irreducible, implying that the maximum
values of dimension of the dual region, (W ′ ∩ Γ′i)), is (dim(W ′) = I ′ = I), the same as section (W).

Lemma 2. Any number (K < ∞) of causal elements with any number of characteristics or dimensions
(I < ∞) and any number of intensity levels (J < ∞) create dense networks. Hyperplanes with large
dimensions (Li) cut a finite number (nd) of non-singular points on the intersection (W ∩ Γi).

Lemma 3. Any number (K <∞) of causal elements with any number of characteristics (I <∞) and any
number of intensity levels (J < ∞) create dense networks. Hyperplanes, (Li) with large dimensions cut a
finite number of singular points, (sd), where (sd < nd) on the intersection (W ∩ Γi).

Lemma 3 is equivalent to stating that if the gravitational force of dimension (i), (δ(i) |j> 0) is medium
strength, then the hyperplanes, (Li) cut at least one singular point, (W ∩ Γi; i ≤ I; j ≤ J). Here, the
dimension of the dual (W ′ ∩ Γ′q−s)), is (dim(W ′) = I ′ < I), is less than section (W).

Lemma 4. For any number (K < ∞) of causal elements with any number of characteristics (I < ∞) and
any number of intensity levels (J <∞), the dual hyperplanes with large dimensions (L′i) cuts a finite number
of non-singular points, (nd), on the intersection of the dual region (W ′) with dual hyperplane pencils (Γ′i),
(W ′ ∩ Γ′i).

Lemma 5. For any number (K < ∞) of causal elements with any number of characteristics (I < ∞)
and any number of intensity levels (J < ∞), the dual hyperplanes with large dimensions (L′i) cuts a finite
number of singular points, (sd < nd), such that the dual projective intersection of the dual region (W ′z)
with dual hyperplane pencils (Γ′(q−s)), (W ′z ∩ Γ′q−s) is the vertex of a cone with base (W ′ ∩ Γ′q−s), the
singularity zone of the dual zone (W ′), and where dimension, (q − s) is the dimension of the singularity
zone, ((i− 1) ≤ q ≤ I; i = 1, · · · , (I − 1)), minus the dimension of non-singularity points of the dual region,
(W ′).

Proof. There are 2 cases: case 1, is when the hyperplanes (Li) consists of all hyperplane pencils (Γi), where
the Jacobian criterion (JJ 6= 0), the intensity level causality force (τ(j) |i 6= 0), and the gravitational force of
dimension (i), (δ(i) |j 6= 0) are both positive. Let the points (x = (x1, · · · , xnd)) be in the cut segment((W ∩
Γi(δ(i) |j)). By Lemma 4, these points, (x) are all non-singular points. The dual segment,(W ′∩Γ′(i)) consists
of all non-singular points. Case 2, is when there exists singular points. In this case the hyperplanes (Li) is
not orthogonal to tangent bundles (T (i−1)), and tangent bundles do not exist for a collection of points that
constitute the boundary points, (h = (h1, · · · , hsd)) of a singular zone, where (h ∈ (W ′ ∩ Γ′q−s)). In this
case, the hyperplane pencil, (Γ′(q−s)), has dimension ((q − s); (i − 1) ≤ q ≤ I; i = 1, · · · , (I − 1)), which is
the dimension of the singular zone. In the case of singularity, (τ(j) |i= 0), (δ(i) |j= 0) are equal to zero.
The dual projection, (W ′z) of the dual region, (W ′) is in the internal networks. ((W ′z ∩ Λq−s)) is a vertex of
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a cone found by geodesics (Λq−s) with the same number of dimensions ((q − s)), as the hyperplane pencil
(Γ′(q−s)). The base of the cone is the singular zone of the dual region (W ′ ∩ Γ′q−s).

The dual region in the internal networks, ((W ′z ∩ Λ(q−s)) ∈ Zn) , where geodesics (Λ(q−s)) cut points
(z = (z1, · · · , zsd)) in the networks within the region (W ′z). (z) is homeomorphic to (h). If these points,
(z), are the points of the geodesics orthogonal to tangent bundles, (T q−s−rz ), in the multiplicative space
(Λq−s × T q−s−rz = 0; r ≥ 0), then these points are non-singular points, and the cone is a cylinder with all
geodesics parallel and have the same lengths. When singularity occurs, the cone concept can be extended into
the complex space, by generalizing Lemma 5. This means that the search process for finding non-singular
regions within the internal networks continues. In this case, a shrinking criteria is used to explore regions
within the dual region (W ′z) for singularity check. Regions, outside of the dual region , can be checked
enlarging the cone till all the points on the singularity zone on the dual region (W ′) in the real space,
(<n), are included. Each new cone is then checked for singularities in the internal networks in (Zn). Each
vertex is the extension of the dual region (W ′′z ) found by geodesics, (Λ′q−s) that are arbitrary, but similar
to the geodesics of the initial dual region ((W ′′z ∩ Λ′q−s)), with the base of the cone as, (W ′z ∩ Λq−s)). If
the points are non-singular points, the the cone becomes cylinder, with parallel geodesics, with equal lengths.

Hyperplanes in the internal networksin the complex space, (Zn), are called geodesics, and are denoted
as (Λq−s; (i − 1) ≤ q ≤ (I); i = 1, · · · , I − 1; sd = n − k, · · · , n). Geodesics are formulated as (Λq−s =
∂2Γq−s(δ(q−s))

(∂t)2 + ( δ(q−s))
η(δ(q−s),δ(q′−s))

α,β
)× ∂Γq−s(δ(q−s))α

∂t ×∂Γq−s(δ(q−s))β
∂t ), where (α) is rotational movement in

(3) dimensions, and (β) is movement in dimension not equal to (α), and (t =| δ(q−s)−η(δ(q−s), δ(q′−s)) |).
The objective is to show how these geodesics, are used to find the dual segment, ((W ′z ∩Λq−s) ∈ Zn), or the
vertex of the cone with ordinary points. Ordinary points are those points that are on paths that connect
causal elements in (Rn) that are non-singular. To show this some preliminary ideas should be introduced
first. The nodes in the interior networks (zq−ssd

) are called Parallax causal elements. Parallax causal elements
are those causal element that are not easily identified but are embedded in the structure of a (CRG). Parallax
causal elements are closely related to other causal elements, but the connection is hidden. Parallax causal
elements are ordinary points when they are in the vertex (zq−ssd

∈ W ′z) with base (W ′) with singular points
constituting a singular zone in the dual segment, (W ′).

If the vertex (W ′z) does not contain ordinary points, then neighborhoods around the vertex are explored.
This is done by tracking the geodesics around the vertex. The neighborhoods are either embedded in the
vertex or the vertex is a cross-section of the neighborhood. It must be shown that embedded neighborhoods
contains points that are homeomorphic to Parallax causal element points. If Parallax causal element points
are ordinary points, then all embedded neighboring points are also ordinary points due to homeomorphism
effect. The same logic applies if the vertex, (W ′z) is a cross-section of the neighborhood (B(ξ, υ)) with the

neighboring points, (ξ
(q−s)
md ;md = 1, · · · ,Md), and (υ) is the radius of the neighboring zone. Now if Paral-

lax causal elements are not ordinary points, then expanded neighborhoods orthogonal to the geodesics are
checked. When Parallax causal elements are not ordinary points, then they are not on the links of the paths
in the internal networks, and therefore, are not on the geodesics. These points are ignored. Once a vertex
with ordinary points are found then neighboring zones around the vertex are checked for homeomorphism
effect. The idea is that if the Parallax causal elements are ordinary points, the paths that include them
join causal elements that are stable causal elements and therefore are invariant. The homeomorphism of
the neighboring points indicates that these ordinary points are a complete set. Therefore, two types of
neighborhoods are considered, one type of neighborhoods are found through shrinking the zones around the
vertex, so the zones are embedded zones. The second type of neighboring zones are expansion zones.

Lemma 6. Given a set of Parallax causal elements, ((zq−ssd
); (i − 1) ≤ q ≤ (I); i = 1, · · · , I − 1; sd =

n − k, · · · , n), where (n) is the total space of possible causal elements, and (0 ≤ s), in vertex (W ′z), a
neighborhood (B(ξ, υ)) of points around each Parallax causal element can be found such that each point,

93



M.M. Khoshyaran

((ξq−smd
); (i− 1) ≤ q ≤ (I); i = 1, · · · , I − 1;md = 1, · · · ,Md) on (B(ξ, υ)), is homeomorphic to each Parallax

causal element in the vertex.

Proof. If the vertex, (W ′z), is a fibre bundle vertex resulting from the product of the two spaces of dual

hyperplane pencils, (T
(q−s−r)
z ), and geodesics, (Λ(q−s)), (T

(q−s−r)
z ∩ ×Λ(q−s)), then all the points on the

boundary of the vertex are at intersections of the tangents with geodesics. If all the points in the product
space are on the links of the paths (πz) in a dense region of the internal networks, then these points are

considered to be ordinary points, (z
(q−s)
sd ). Ordinary points are non-singular points in the complex space of

internal networks. Any zone embedded in the fibre bundle vertex (W ′z), is a fibre bundle zone, (B(ξ, υ)), where

the intersection of the links in (B(ξ, υ)), and the geodesics, (Λ(q−s)), are the neighboring points (ξ
(q−s)
md ).

The segment between the ordinary points and the neighboring points are a segment of the geodesics that

is equal to (υ), the radius of the orthogonal zone (B(ξ, υ)). Since both points, (ξ
(q−s)
md ), and (z

(q−s)
sd ) are

on the geodesics, then the condition for the existence of the geodesics, (( δ(q))
η(δ(q),δ(q′))

α,β
) 6= 0) is true for

both the fibre bundle vertex, and the neighborhood. Therefore all points (ξ
(q−s)
md ) are homeomorphic to the

ordinary points ((z
(q−s)
sd ) since the geodesic is considered to be a mapping from (W ′z), to (B(ξ, υ)), shown as

(υ = Λ(q−s) : W ′z → (B(ξ, υ)).

Lemma 7. The neighborhood points, (ξ
(q−s)
md ) of ordinary points, (z

(q−s)
sd ), must be points on the arcs of the

paths in the internal networks.

Lemma 7, is the direct consequence of Lemma 6. Lemma 6, is the generalization of lemma 6, to show
that all embedded orthogonal fibre bundle neighboring zones, ((B(ξ, υ)) consist of neighboring points that
are homeomorphic to the ordinary points, (((zq−ssd

)), in the vertex, (W ′z). If the ordinary points, exist, then

homeomorphic points to these points can be obtained, (ξ
(q−s)
md ). The homeomorphic points must be on paths

that have links with ordinary points as origins and destinations, ((zq−ssd
), (zq−ssd+1)).

Proof. Let (λ) be a link with origin an ordinary point (zq−ssd
), and destination (ξ

(q−s)
md ), or inversely, (λ) is a

link, with (ξ
(q−s)
md ), as origin, and (((zq−ssd+1)) as destination. Choose a parameter (t), to represent tracing of

the link (λ = λ(t)). Link (λ(t)× I → λ(t)), is a link sufficiently close (I ∈ [0, 1]) to links in the vertex, (W ′z),
and let (B(ξ, λ(t)) = B(λ(t) × I); I ∈ [0, 1]). Let (λ(t) × Λ(q−s) → Λ(q−s)(λ(t))), geodesics can move along

(λ(t)) links. Let (T
(q−s−r)
ξ,z (λ(t)) = (B(ξ, λ(t)) × Λ(q−s)(λ(t))), be the tangent line orthogonal to geodesics

in fibre bundle neighboring zones, and there exists a mapping (T
(q−s−r)
ξ,z (λ(t))×Λ(q−s)(λ(t))) with following

properties:

(1) for (t = 0), (T
(q−s−r)
ξ,z (λ(0))×Λ(q−s)(λ(0))→ (z

(q−s)
sd ), when the ordinary point is the origin point of

link (λ(t)).

(2) for (t = 1), (T
(q−s−r)
ξ,z (λ(1))×Λ(q−s)(λ(1))→ ξ

(q−s)
md ), when the neighboring point is the destination point

of link (λ(t)).

Then (T
(q−s−r)
ξ,z (λ(t)) × Λ(q−s)(λ(t))) is the mapping of (B(ξ, λ(t)) into the vertex (W ′z). Therefore

(B(ξ, λ(t))) is the homotopy of (W ′z).

Theorem 6. Let (π1) be a homology class of paths that include ordinary points, (zq−ssd
), and join causal

elements (x
(i)|j
k ∈ <n), and (x

(i′)|j′
k′ ∈ <n). Then there exists a mapping of any orthogonal fibre bundle

containing the homology class paths (π1), (B(ξ, λ(π1))) to any vertex, (W ′z). Thus (B(ξ, λ(π1))) is home-

omorphic to (W ′z). The causal elements on the extreme ends of homology class of paths (π1), (x
(i)|j
k ), and

(x
(i′)|j′
k′ ) are non-singular points and are irreducible.
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Proof. Let (π1 = π1(λ(t))), where (λ(t)) is defined as in Lemma 7 be a path containing link (λ(t)). Let
(π1(λ(t)) × I → π1(λ(t))) be a mapping into ([0, 1]) space. (π1(λ(t))) is on path (πz) since link (λ(t)) is

on path (πz) that connects ordinary points (z
(q−s)
sd , z

(q−s)
sd+1 ). Let (T

(q−s−r)
ξ,z (π1(λ(t))) = (B(ξ, π1(λ(t))) ×

Λ(q−s)(π1(λ(t)))), be the tangent line orthogonal to geodesics in fibre bundle neighboring zones, and there

exists a mapping (T
(q−s−r)
ξ,z π1(λ(t)))× Λ(q−s)(π1(λ(t))) with following properties:

(1) for (t=0), (T
(q−s−r)
ξ,z (π1(λ(0))) × Λ(q−s)(π1(λ(0)) → ((zq−ssd

)), when the ordinary point is the origin
point of link (λ(t)).

(2) for (t=1), (T
(q−s−r)
ξ,z (π1(λ(1)))× Λ(q−s)(π1(λ(1))→ (ξ

(q−s)
md )), when the neigboring point is the destina-

tion point of link (λ(t)).

Then (T
(q−s−r)
ξ,z π1(λ(t)))×Λ(q−s)(π1(λ(t))) is the mapping of (B(ξ, π1(λ(t))) into the vertex (W ′z). There-

fore (B(ξ, π1(λ(t)))) is the homotopy of (W ′z).

Corollary 1. There exists a chain of homeomorphic orthogonal fibre bundle zones, (Bg(ξ, υg)) to the vertex,
(W ′z).

The proof of Corollary 1 is the extension of Theorem 6 and Lemmas 6, and 7. The outline of the proof is as

follows: Let (λg(t
∗)), be defined as links on class (π1) paths such that (ξ

(q−s)
md ), is either the origin of the link

or the destination of the link. (t∗) is a a parameter on the second copy of (I). Let (λg(t
∗)× I × I → λg(t

∗)),
be defined as a homeomorphism into the second copy of (I). Let (π1(λg(t∗))) be defined as in Theorem 6,
as a homeomorphism of path (π1(λg(t

∗))) onto the second copy of (I). By Theorem 6, and Lemmas 6, any
orthogonal fibre bundle, (Bg(ξ, υg)) is homeomorphic to the vertex (W ′z).

Singularities in the internal networks occur when a geodesic does not intersect any links containing or-

dinary nodes, (z
(q−s)
sd ), in the internal networks, and thus makes it impossible to perceive a vertex (W ′z). In

this case, must restart the search procedure from the beginning by going back to a face on the rectangular
slab that is different from the one that was checked initially, (V p

′ 6= V p). The search process restart by
cutting a segment (W ) using hyperplanes, (L(i)), and hyperplane pencils, (Γ(i)). Then proceed with finding
the dual of (W ), (W ′) and its’ corresponding dual hyperplanes, (L′(i)), and dual hyperplane pencils, (Γ′(i)).
If dual hyperplane pencils, exist for all points on the dual segment, (W ′), then all point on the segment (W ),
are non-singular points, and therefore, the causal elements linked by arcs on paths inside the cut segment,
(W ), are stable, irreducible, causal elements, and any sub-group of (CRG) is a complete sub-group that
is optimal. If on the other hand dual hyperplane pencils, do not exist for all points on the dual segment,

(W ′), then within the singularity zone, an arbitrary dual hyperplane pencil, (Γ
(q−s)
∗ ) extended to the internal

networks in (Zn). At this point the arbitrary dual hyperplane pencil transforms into a geodesic (Λ(q−s)). If
geodesics hit links in the internal networks that contain ordinary points otherwise known as Parallax causal
elements, then it is possible to designate a dual zone, (W ′z), that is considered to be the vertex, of a cone
with base the singular zone of the dual segment, (W ′). If all points (W ′z) are on links, and the geodesics are
orthogonal to tangent bundles at these points, then it is considered that the causal elements linked through
the paths containing these links in the dual segment (W ′), are stable, and irreducible causal elements, and
any sub-group consisting of these causal elements is optimal. If geodesics do not hit links in the internal
networks, then the search process restarts.

4 Conclusion

In this paper a search technique for finding stable and complete sub-groups of (CRG) is proposed using a
new homology approach. The objective of this new approach is to find the equilibrium state of (CRG) by
finding optimal stable, irreducible, and complete sub-groups. An equilibrium state is indicative of an optimal
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(CRG). It is assumed that at equilibrium a (CRG) is stable (predictable), and thus does not demonstrate
randomness behavior. The main element of this type of random algebraic groups is causality. What causes
instability is the occurrence of singularities. Singularities are directly related to causality. Causality is
detailed as is shown in Figure 12.

 

Causality 

Known 

Causality 

𝑥𝑘
൫(𝑖)ห𝑗൯

 

Parallax 

Causality  

𝑧𝑠𝑑
(𝑞−𝑠)

 

in parallax gap 

Fixed Causality: 

are independent 

causal elements 

Dialectic Causality: 

are moving and 

dependent causal 

elements 

Emergence of 

induced causal 

elements chain 

𝜉𝑚𝑑

(𝑞−𝑠)
 

 

Figure 13. Causality

As is shown in Figure 13, there are two types of causalities: 1) known causality, (x
(i)|j
k ), 2) Parallax

causality, (z(q − s)sd). Known causal elements are either fixed which means that causal elements are inde-
pendent and they are linked through fixed paths that contain fixed intermediate causal chains. Dialectic
causal elements are dependent and posses internal triggering elements of change inside the causal elements.
For example, each dialectic causal element possesses several dimensions or characteristics, and each dimen-
sion possesses several degrees of intensities. Dialectic causal elements are linked through different paths that
contain variable intermediate causal chains, that lead to the formation of networks that consist alternative
paths. Optimal sub-groups are found on alternative paths. In the case of singularity, causal elements become
Parallax causal elements in complex space. The behavior of Parallax causal elements in complex space is
similar to the behavior of causal elements in real space which leads to the formation of networks and paths.
The internal networks is a Parallax gap. This is the physical distance between the causal elements, and
related causal elements that initially do not seem to be related to causal elements. Search for regions of
non-singularity in the complex space ends in finding those causal elements that are stable, and complete.
Hyperplanes and hyperplane pencils are used in the search, in real space, and geodesics are used in complex
space. Geometrical representation has been used for algebraic groups, but is a novel approach for (CRG).
(CRG) is represented as a rectangular slab. A rectangular slab has eight faces or sides. The space between
every two faces of the rectangular slab is called a Parallax gap in complex space. The network in Parallax
gap is called an internal networks. On each face of the rectangular slab, there exists a network consisting of
links and paths that join each causal point of the rectangular slab. Each point represents a causal element.
The main tools used are hyperplanes and hyperplane pencils to cut or isolate segments of the network on
a face of rectangular slab, and dual hyperplanes and dual hyperplane pencils are used to find dual regions.
In the internal network, hyperplane pencils are transformed into geodesics. If dual regions exist in the real
space, for a set of causal elements and each point on the dual region is a point on dual hyperplane pencils
that is orthogonal to fibre bundles that pass through these points, then it is assumed that these points are
non-singular, otherwise if for some points on the dual region there exists no multiplicative space of hyper-
plane pencils and fibre bundles, then singularity occurs. In the case of singularity, search for dual regions
continues in complex space using geodesics. Non-singularity of points on dual regions occur if these points
are in a multiplicative space where geodesics are orthogonal to tangent fibre bundles. These non-singular
points indicate that causal elements are stable, irreducible, and any sub-group of (CRG) that includes these
causal elements is complete and thus optimal. If non-singularity occurs, then the search for non-singular
points continues. The search for optimal sub-groups of (CRG) is outlined in Figure 14.
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If all points of (W’) are not all 

non-singular, then there 

exists a zone of singularity on 
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𝑥
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, are stable, and irreducible, and 

any sub-group of (CRG) that includes 

these causal elements is stable, 

irreducible, and complete. Thus any 

(CRG) that is structured by including 

optimal sub-groups is itself optimized. 

Find a dual segment of 

(W’), on the internal 

networks inside of the 

rectangular slab, ሺ𝑊′𝑧ሻ, 

using arbitrary hyperplane 

pencils , Γ∗
ሺ𝑞−𝑠ሻ

.  The 

arbitrary hyperplane 

pencils in the internal 

network are called 

geodesics ,𝛬ሺ𝑞−𝑠ሻ.  

Geodesics are curved lines. 

If  ሺ𝑊′𝑧ሻ, cuts points on links 

containing Parallax causal elements, 

called also ordinary points, 𝑧𝑠𝑑
ሺ𝑞−𝑠ሻ

. 

(A) 

 

 

 

(A) 

The dual zone,  ሺ𝑊′𝑧ሻ  considered to be the 

vertex of a cone with base the singular zone of 

the dual segment (W’). 

Check if geodesics hit neighboring points also called 

induced causal elements , 𝜉𝑚𝑑
ሺ𝑞−𝑠ሻ

, on the links 

containing Parallax causal elements. 

If  induced causal elements , 𝜉𝑚𝑑
ሺ𝑞−𝑠ሻ

 , exist, then 

all points on the dual zone ,  ሺ𝑊′𝑧ሻ  , are all non-

singular. 

The origin-destination causal elements   

𝑥൫ሺ𝑖ሻห𝑗൯, and , 𝑥ቀሺ𝑖′ሻቚ𝑗′ቁ , joined by links on 

paths on the dual zone ,  ሺ𝑊′𝑧ሻ  , are 

stable, irreducible, and any (CRG) that is 

structured by including optimal sub-

groups is itself optimized.  

If  induced causal elements , 𝜉𝑚𝑑
ሺ𝑞−𝑠ሻ

 , do not 

exist, then the search for other stable zones by 

going back to a face,  ሺ𝑉𝑝′ሻ  ≠  ሺ𝑉𝑝ሻ , and repeat 

the search process. 

Figure 14. Singularity search process
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5 Notation

(CRG) = Causal Random Groups.
(<n) = Real space.
(Zn) = Complex space.
(G(X);X ⊂ <n) = Causal Random Group, (CRG)
(X = {xki,j , k = 1, 2, , · · · ,K; i = 1, · · · , I; j = 1, · · · , J}) = Space of causal elements
(k = 1, 2, , · · · ,K) = Number of causal elements with maximum number, (K ≤ n) less than or equal to (n),
where (n) is the number of causal elements in space (X).
(i = 1, · · · , I) = Number of dimensions for each causal element with the maximum number of dimensions
equal to (I).
**(I) also used inside proofs to represent an identity space.
(j = 1, · · · , J) = Levels of intensities of each dimension. (J) is the maximum levels of intensities.

(x
(i)|j
k ; k ≤ K) = Each element of space (X).

(G(X,V p); p = 1, · · · , P ) = A (CRG) with geometrical representation.
(p) = Face number.
(V ) = A face.
(P ) = Maximum number of possible face numbers.

(y
(i)|j
ca ; ca = 1, · · · , Ca) = Chain causal elements.

(Ca) = Maximum number of causal chain points.

(π(y
(i,i′)|j,j′
ca , y

(i,i′)|j,j′
ca+1 ); ca);≤ K − 1; y

(i,i′)|j,j′
1 = x

(i)|j
k , y

(i,i′)|j,j′
Ca

= x
(i′)|j′
k′ ; i 6= i′; j 6= j′; k 6= k′;) = Paths on

face (V p) in (<n).
(δ((i) |j) = (| j |i × νj|i)) = Gravitational force of dimensions (i) in real space.
(| j |i; j = 1, · · · , J ;∀(i)) = Magnitude of intensity of dimension (i).
(νj|i ; j = 1, · · · , J ;∀(i)), = Velocity of interaction among (j) intensities of dimension (i).
(η(δ(q − s), δ(q′ − s)); (i − 1) ≥ q ≤ I; i = 1, · · · , I − 1) = Covariance of gravitational forces of dimensions
(q − s), and (q′ − s).
(τ(j) |i) = Intensity level causality forces.
(zq−ssd

); sd = n− k, · · · , n) = Parallax causal points in the internal networks in (Zn).

(ξ(q − s)md ;md = 1, · · · ,Md) = Neighboring points, also called induced causal elements.
(Md)= is the number of induced causal elements in the causal chain.
(πz ∈ Zn) = Paths in internal networks.
(δ(q − s)) = Gravitational force in complex space.
(η(δ(q − s), δ(q′ − s)) = Covariances among parallax causal nodes.
(L(i)) = Hyperplanes in (<n).
(L′(i)) = Dual hyperplane in (<n).
(Γ(i)) = Hyperplane pencils in (<n).
(Γ′(i)) = Dual Hyperplane pencils in (<n).
(Λ(q−s)) = Geodesics in the complex space, (Zn).
(W ′z) = Dual projection of a singular zone in the internal network in (Zn), in the dual region (W’).
((B(ξ, υ)) = Orthogonal fibre bundle.
(T (q−s)) = Tangent fibre bundles on (β(W )) in (<n).
(T (q−s−r)) = Tangent fibre bundles on (W ′)) in (<n).

(T
(q−s−r)
z ) = Tangent fibre bundles on (W ′z)) in (Zn).

(T
(q−s−r)
ξ,z ) = Tangent fibre bundles on ((B(ξ, υ)) in (Zn).
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