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Properties On A New Comprehensive Family Of Holomorphic
Functions Associated With Ruscheweyh Derivative and
Generalized Multiplier Transformations

S R Swamy*, Maslina Darus?, Y Sailaja®

Abstract.

In the present paper, a new comprehensive family of holomorphic functions, which includes various
new subfamilies of holomorphic functions as well as some very well-known ones, is introduced.
Sharp results concerning coefficient inequalities and distortion bounds of functions belonging to these
families are determined. Furthermore, functions with negative coefficients belonging to these families
are also investigated.

1-Introduction and Preliminaries

Let /A be the unit disc in the complex plane C and let H([U) be the space of holomorphic
functions in /. Let A/ be the set of natural numbers, I be the set of real numbers and ANy =
N U {0}. Let A denote the family of functions in H(U) of the form

f(z‘):z‘—l—Zakzk. (N
k=2
Makinde et al. in [5] have recently introduced a new generalized multiplier differential operator
5., as follows.
Definition 1.1. For f € A, the new generalized multiplier operator 175 © A — A is defined by
Dsnf(2) = f(2),
yf(z) +0zf(2) +nz(zf'(2))
Iﬁl._é:ﬂf{z:] — { .) - { :] ( ) .
Y+0+7
%_nf{z') = Iﬁ:é,?}{\jf::jjnlf{z)):
where m € Ny, 6 = 0,1 > 0and v € R such that v + é + 1 > 0.

Remark 1.1. Observe that for f(z) given by (1), we have the following representation for If";i_ﬂ.

":?1:51‘1.;0{2} =2+ Z VL (AJ".' d, 1, 'm')akzk'-‘ 2
k=2
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where

c kB2
g) @)

vy, 0,m,m) =
k(7,d,m,m) ( PO

Special cases of this operator include the operator [ ; f(2) = 15 f(2) introduced by Swamy
in [12], the Al-Oboudi operator I[" ; s, f(2) = Dmf(z [1] and also the generalized Al-Oboudi
operator I?;_s5qf(2) = [73f(2),l > —1, 6 = O(considered for [ = 0) investigated by Catas
[3]. D" f(z) was introduced by Saldgean [7] and was considered for m > 0 by Boosnurmath and
Swamy in [2].

Definition 1.2. [6] For m € Ny, f € A the operator R™ is defined by R™ : A — A,

RYF(2), RYf(2) = 2f'(2), ooy (M 4+ DR (2) = 2(R™ f(2)) + mR™f(2),2 € A.
Remark 1.2. If f(2) = 2 + Z arpz* € A then R f(z) = 2 + Z Uy(m)agz*, 2 € A, where

(m+k—1)!

Velm) = o o

“4)

We now state the following new operator.

Definition 1.3. Let f e A, me Ny, p> 0,6 >0, 1> 0and~y € R suchthaty +6 +1n > 0.

The operator RIT; .+ A — Ais defined by

R0, (2) = (L= p)R™ f(2) + pL75, f(2),2 € A

Remark 1.3. If f(z) = 2+ Z a2*,then from Remark 1.1 and Remark 1.2,we have

RL, o f(2) _z—l—zm(w 8,1, p,mag2t, 2 € A,
k=2
where @k(‘}, 5-.- Py ?’?1-:] = (1 - P)'I'k(m) + pyk(f}’s 5: 1, ?n,}: Vi (I}’- 5: 17, ?n,} and I'I'lk(?n) are as
defined in (3) and (4) respectively.

We now define the following by making use of the new operator RI;’% 0

Definition 1.4. Let f € A,m € No,p = 0,0 € [0,1),8 = 0,n = 0and v € R such that
v+ 0 +1n >0 Then f is in the family Smaq P(O’) if

(RIS, 0 ()
Re( RIE“?}Pf(} )}O’,ZEL\..

Tidime

Definition 1.5. Suppose that m € Ny,p = 0,0 € [0,1),6 = 0, = 0 and v € R such thar
v+ & +1n > 0, then the function f € A is said to be in the family KTT“ 5.p(0) I

. 2RIy, f(2)T
(R, f(2))

T.8:m,p

)>0,26&.

Definition 1.6. The function f € A is said to be in the family nynafq P(U) if
(BRI, FC)Y

(RITS, f(2))
wherem € Ny, p > 0,0 €[0,1),6 > 0,n > 0and v € R such that v + 6 +1n > 0.

)}J,ZE&,
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Definition 1.7. Form € Ny, p 20,0 €[0,1), 6 = 0, n = 0and vy € R such that v+d5+n > 0.
The function f € Ais said to be in the family 375 . (o) if

2/ Tm "
e ([z i{,ifﬁnp;i;)] ) >0z € A

728,10,

Definition 1.8. Let f € A, m € Ny, p = 0,0 € [0,1),6 = 0,7 = 0and v € R such that
Y+ 0 +1 > 0. Then f is said ro be in rhefamif} e 57”3( ) if

2[2(RI5, f(2))7
dG o SREE

Definition 1.9. Let f € A m e Ny, 720, p>0,0€[0,1),6 = 0,n > 0and~ € R such
that v + 6 +1n > 0. Thenf.f.smrhefamzh EHm {U)tf

z2(R 2)) z(RI™ 2))!
Re ( Lﬁnp.f( )) 14T [: 'yd'npf( )}! >O':ZE&. (5)
RLTs, f(2) (RI7s,, . (2)
In the following definition, a new comprehensive class of holomorphic functions containing the
operator 'RI Vs, 18 introduced.

Definition 1.10. LerfEA,mE.Mu,TED,DECgl T2(p=20,0e0,1),020,n>

0, v € R such that v + 6 +n > 0. Then [ is in the family Jiff";g p(cr} if

(R 0,f(2) + ng(Rf;na ool ()"
Re(( = ORI, fG) =GR, f) ) 775

The family L/l{rm ¢ (J) is of special interest for it contains many well-known as well as new

families of hc-]omorhlc functions. In view of this, we deem it worthwhile to note the relevance of

the family JVm + (o) with families defined above. Indeed we have i). /J{T“;gg[ o) =875, (7).

(6)

. . m,lf?,l/? m . m,1,1 m m,0,1/2
M}J)}’/}'J{?gl { :] Kﬁénp(o—)‘in)%éﬂp(g— tE*]fEr;rp( } ,}"’4;57};3 (J)_ 157”3[:0-)
v) A ﬂfp () = £7°5, (o) and i) A5 7 (o) = RTS (). The families ST (),

K5, 0(0) and C75 (o) are considered in [9], while the famjlles J'5.0(0) and Eﬂf 5-73 (o) are

defined in [10].Further we note that . w;g=p(g) ’“CJ () (See [11]).

Throughout this paper, unless and otherwise memloned we shall assume that ¢y (7, 4,7, p, m)
= (1—p)¥r(m)+ pri(vy,9,n,m),ve(7y, d,n,m).where vi(v,d,1,m) and ¥ (m) are as defined
in (3) and (4) respectively.

2. COEFFICIENT ESTIMATES

In this section, we obtain sufficient coefficient bound for f € A to be in the family . 4" m‘: {U
following the paper of Darus and Ibrahim [4].

Theorem 2.1. Let f e Ame Ny, 720,0<(<1,7>2(p=20,0€[0,1),0=0,n=0
and v € R such that v + 6 +n > 0. If

3 (k= 0) + (k= 1)(kr — a)lgx (7, 6,7, p,m)|ax| < (1 —0), (7
k=2
then f € JV“E E?’P(U) The result (7) is sharp.
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(R, J@)+722 (R )" . X
Proof. 1t suffices to show that the values of ((1 ORI FEFCRIT,, TE)) lie in a circle

centred at 1 with radius 1 — 7. Clearly

H(RI7s, 1)) + T2 (R, )" )
= ORI, )+ 2RI, )Y

v40.11.0

V.81

Z (k - 1)(1 + Tk — C}@i(’}) 5! n.p, ?TIJ(I;.Z"‘_
k=2

+ é;;{l + (k= 1)) k(7. 8,7, p, m) a2k

o0

kz_:{k—l)(l—l—'rk ) (7, 9,7, p, m)|a;t||z|* 1

I

— 5 (1 (k= 1))k, 6,1, p, ) ag] 241
k=2

Z (k - 1)(1 + Tk — C}G:’L("T 6! 1, 2, ?H)l&,{-l
< E=2 :
1= (14 (k= 1)), 0,1, p,m)|ax]
k=2
The last expression is bounded above by 1 — o if

Z(k—l}(1+fk—r;)¢,;.('y, 5,1, p,m)|ay| < (1—o) (1 — Z(l + (k= 1)C) vy, &, m, p,m) |a;.|) ,

k=2 k=2

( 2RI o, () +22(RIT  F(2)"” ) _ 1' “1_0

which is equivalent to (7). Hence ORI, G }+§ (Rfflawf 2

and the theorem is proved. Il

The assertion (7) is sharp and extremal function is given by

l—0 !
z+z[(k—tr k—l)(kr—cr(_;)]@;(wc?npm)z'(’zE&'
Corollary 2.1. Let the hypothesis of (7) be satisfied. Then

l1-0 )
S (s oy gy o P o e R

On taking i)¢ = 0,7 = 0,ii)¢ = 1/2,,7 = 1/2,iii)¢ = 1,7 = 1,iv)¢ = 0,7 = 1/2 and
v){ =1/2,7 = 1in Theorem 2.1, we obtain

Theorem 2.2. Let f € Am € Ny, p = 0,0 € [0,1),8 = 0,7 = 0and v € R such that
v+d+n>0.

i) Iff:( k—0)oe(v.8,m,p,m)|a| < (1—0), then f € 575 (o).
ii) IfZ (A2) (k = o)du(, 8,m, p,m) || < (1 — ), then f € K s0.000):
iii) ngk( — 0)¢i(7,0,m, p.m)|ax| < (1— o) then f € CT5 (o).

) f . (452 — o) e(7.8,m,p.m) x| < (1= 0), then f € 375, (o).
k=2 :
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V) sz (2 — (5L) o] (v, 6.m,p,m)|ax| < (1 — o), then f € L5 mp(O):
All resulrs are sharp.
The following inclusion theorem can be proved using Theorem 2.1.
Theorem 2.3. Let 0 < g1 < g9 < 1. Then J;’__’;__-‘g:;{ag) Enp{al)
Taking { = 0 in Theorem 2.1 we obtain

Theorem 24. Let fe Am e Ny, 7>0,p>0,0<[0,1),d >0, n > 0and~ € R such tha
Yy+d+n>0If f: [((k—a)+ (k— 1)kt]dx(v,0,m p,m)|ax] < (1 — o), then f € %?gﬂp(o)
The result is s:"m.f',it;:C=2

Taking p = 0O and p = 1 in Theorem 2.4, we get

Corollary 2.2. Ler f € Am € No, 7 =2 0,0 € [0,1),8 = 0,1 = 0and vy € R such that
Y+0+1n>0

@ IF 3 [(k — 0) + (k — Dr]¥y(m)|ax| < 1 — o, then
k=2

(ii) If f [(k — o)+ (k= 1)ktve(y,0,m,,m)|ax| <1 — o, then
k=2

A5, f(2)) 2075, (2)
Re{(W) (HTW)} Tores
The results are sharp.

3. DISTORTION BOUNDS

In this section we obtain a distortion bound for RI; | f(2) and f(2)

Theorem 3.1. Let f e Am e Ny, 7>20,0<(<1,72(p>0,0c[0,1),0>0,7>0
and'}ERsuchﬁ'mr']'+0+n>D.{f

D (k=) + (k= 1)(kr — oQ)]ex(v, 6,7, p,m)|ax] <1 -0,

k=2
then
2] - L0 P <RI, ) e aPae A
(2—0)+ (21 —0() TP 2—a)+ 27 —0al) "’

Proof. By Theorem 2.1,it is easy to verify that
[(2-0)+ (21 —0o()] Z Gk(7, 6,7, pym)|ax|

o0

<3 lk=0)+ (= Dier —oOhln b pmilad 1=
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So kz:g O (v, 0,m, p,m)|ag| < Mﬁ Hence we obtain

IRITs, o f(2)] < |2l + > de(, 8,1, p,m)|ax||2]*
=2

< 2l + 1217 (v, 8,1, p.m) x|
k=2

2_0)+(2r—a0)"

<2l +

The other assertion can be proved as follows.

[RITs o ()] 2 |21 =D 6u(,6,m, p,m) a2
k=2

> 2| = 21> (v, 8,m, p.m) x|
k=2
l—o |z|2.
(2—0)+ (21 —0()
This completes the proof of the theorem. O

> |2 =

Taking { = 0 in Theorem 3.1 we get

Theorem 3.2. Let fe Ame Ny, 7>0,p>0,0[0,1),8 20, n = 0and~y € R such that
Y+o4+n>0If

Z[(k - g:] + (k - l}k?—]@i(ﬂ} ‘5'.- M Py ﬂl:]lﬂ_(-l <1- a,
k=2
then

l1-0o 9 r l-o
- - < |RMT < -
ol = g5 2 < R, S () S lel + g5

Theorem3.3. Let fe Ame Ny, 7>20,0<(<1,7>(p=0,0e[0,1),6>=0,7=>0
and v € B such that v + § +n > 0. If

1212,z € A.

Z[{k - O') + {k - 1}{:kT - UC}]E:DK{T*EJ "]I‘.‘P:'m-}|ﬂ.(-| <1- a,

k=2
then L
= — . AN
T2 - e v —atimm amam 7 * €
and )
1f(2)] < |2 + —7 22,2 € A

[(2 - O—) + (27— - JC)]@Q{?' d, 1, 0, TR)

Proof. In virtue of Theorem 2.1, we have

[(2—0) + (27 —a)lga(y, 8.m,p.m) > _ |al <
k=2

> [tk —0) + (k= 1)(kT — 0Q)] (7, 8,m, p.m) x| <10
k=2
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1—
ThUSkZ_: lax] < 2— a}+{2-—a§h]¢l2{"r Bm,pm)” So we get
o l1—0o
f2)] < |2 + |2 a| < |z] + ; 2f*
()] = J2] + 2] EJ | <2 [(2—r:r:l—l—(2?—cnf)]f;)ﬁ(’}uE'i_"?ll‘nﬁ'.""”l)| |
On the otherhand

— 2 S S
S e S PR s PR T Yo L

Taking ¢ = 0 in Theorem 3.3 we get

Theorem 3.4. Let f e Ame Ny, 720,p>0,0<[0,1),6 >0, = 0and~ € R such that
y+o+n>0If

Z[(k - O-) + {k - l}kT](.‘:ig(":r'. '5: 'T?;P:'m-)|ak| <1l-o,

k=2
then .
< . = R AN
P = el + (2 —0+27)da(y,d,1,p,m) 2% 2 € &,
and
l1-0 9
> R AN
IF(2) 2 I - (2 —0+27)p2(7,9,7,p, m)l Iz €

4. FUNCTIONS WITH NEGATIVE COEFFICIENTS

o0

Let T denote the subclass of A consisting of the form f(2) =2 — 3 a;2* a; > 0.We denote

(o) and T A" i P(J} the classes of functions f(z) € T satisfying (5) and (6) respec-
tlvely We study the coefﬁ(:]ent estimates, distortion theorems and other properties of the classes

TR iy np(cr ) and TA{::;ET p(cr following the paper of Silverman [8].

We now provide the necessary and sufficient coefficient bound for f € T tobe in T4 ”; f} P{U)

Theorem 4.1. A function f € T is in Tﬂ”;’f? P(U} if and only if

> k= 0) + (k = 1) (kT — aC)]¢e(v, 8,m, p,m)|ax| < 1 -0, (8)
k=2

where me Np, 7> 0,0=<(<1,>(p=20,0<]0,1),6 = 0,17 = 0and~v € R such that
v+ & +mn > 0. The result is sharp.

Proof. In view of Theorem 2.1, it suffices to prove the only if part. Assume that

o (2RI, () + TR FC))
\T=orIm, O+ G®RIT, R
- %O: (1 + T(k - 1,}61({’:"‘ 5: s -m.)kakz“' O
Re L >0
L\ Z = I;ZZ:Q(]_ + C(‘k - 1)(;’&(’?5 6: .2, 'm'}akz'&
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Clearing the denominator in (9) and letting = — 1~ through the real values, we get

1- Z[l + T(k - 1]]‘1’.{(7 6: .2, ?H}kﬂ,& =0 1— Z[l + C(k - 1)]@&{”"‘ IEIF": URyLs 'm'}a.i'
k=2 k=2
Hence we obtain (8), and the proof is complete. O

Finally, we note that assertion (8) of Theorem 4.1 is sharp, extremal function being

[ w)

l—0o ]
I6) =2 o G O O F 22 E A

Our coefficient bounds enable us the following:

Theorem 4.2. If a function f € T isinT. ﬂx;’g-‘;(cr}, then

1—p
Al (s g P R T L

and

I—p
[(2 - O—.} + (27— - GC)](;}?(A:! ‘5': n, o, ?’T!-)
wherem e Np, 7> 0,0< (<1, 7> p=20,0e]0,1),8 20,17 > 0andy € R such that
¥ + 0 + 1 > 0. The result is sharp.

IF(2)] < 2] + 2%,z € A,

Taking { = 0 in Theorem 4.1 and Theorem 4.2 , we obtain

Theorem 4.3. Ifa function f € T is in TR’y (o), then

1—p 2
= — . - N AN
RAS U o = o s L

and

L—p 2
z) < |zl + , z|%,z € A,
wherem e Np, 720, p>0,0€[0,1),6 >0, 7> 0and v € R such that v + 6 + 1 > 0. The
result is sharp.
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