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Abstract. In this paper I introduced a new Probability mass function (Pmf) that is named as Pavan’s Pmf, then 

used first and second raw moments of that distribution and De Moivre-Laplace theorem for large n later equated 

probability functions of binomial and normal distribution at model value to derive the formula for Pi. 
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1. INTRODUCTION 

Pi is one of the remarkable constants discovered by mankind. The quest of finding digits after a decimal point 

was continued from ancient times. Thousands of Pi generating formulas available dueto extensive research by 

many mathematicians. Everyone has approached in a different way to findthe value of π, here I discovered a 

formula through probability approach that generates value of π. 
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where, μ1
′ , μ2

′  are first and second raw moments of Pavan′s Pmf respectively. 
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2. PROOF 

Let us consider Pavan's probability mass function 
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Binomial expansion formula is 

  a + b k =   k
i
 ak−ibik

i=0  

if a=b=1 
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Since  k
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Central binomial coefficient  2k
k
  can be expressed as 
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Var xi = E xi
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Here  2k
k
 

1

22k  looks similar to binomial distribution with n=2k, calculating probability at x= k and p =
1

2
 . 

we can write like p x = k =  2k
k
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Probability mass function of Binomial Distribution of a random variable X is 

p x =  
n

x
 px 1 − p n−x  

where p is probability of success of Bernoulli's trail and n is number of Bernoulli's trails.   

0 < 𝑝 < 1, 𝑝 + 𝑞 = 1, x = 0,1, 2,….,n. Take p =
1

2
, for n=2k the range of x is 0,1, 2,….,2k. 

E x = np = k, Var x =  npq =  
k
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For  p =
1

2
  the skewness of binomial distribution is 

q−p

 npq
= 0 hence the distribution is symmetric. 

Since n = 2k it is an even number, then the value of    2k + 1 p =
2k+1

2
= k +

1

2
 is a non-integer value. So, the 

model value Gupta (2000) is integral part of  k +
1

2
, it means k is modal value.                                                     
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Probability density function of Normal Distribution of a random variable X is 

f x =
1

σ 2π
e−
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−∞ < 𝑥 < ∞,−∞ < 𝜇 < ∞,σ2 > 0 

where, μ is mean and σ2 is variance. 

De Moivre–Laplace theorem Papoulis (2002) States that as n grows large, for x in the neighbourhood of np we 

can approximate 
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in the sense that the ratio of the left-hand side to the right-hand side converges to 1 as n → ∞ 

for n=2k 
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Substitute (1) in (2) it results into  
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Squaring on both the sides 
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RESULT 

Value of π 

π = lim
2k→∞
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where, μ1
′ , μ2

′  are first and second raw moments of Pavan′s Pmf respectively. 
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