Journal of Progressive Research in Mathematics
 www.scitecresearch.com/journals

Pi from Probability Approach

Pavan Kumar Thota

M.Sc. Agricultural Statistics, Bidhan Chandra Krishi Vishwavidyalaya,

Mohanpur, Nadia(dist.), West Bengal, India

Abstract

In this paper I introduced a new Probability mass function (Pmf) that is named as Pavan's Pmf, then used first and second raw moments of that distribution and De Moivre-Laplace theorem for large \mathbf{n} later equated probability functions of binomial and normal distribution at model value to derive the formula for Pi .

Keywords: Combination, De Moivre-Laplace theorem, Mode, Pi, Probability density function, Probability mass function.

1. INTRODUCTION

Pi is one of the remarkable constants discovered by mankind. The quest of finding digits after a decimal point was continued from ancient times. Thousands of Pi generating formulas available dueto extensive research by many mathematicians. Everyone has approached in a different way to findthe value of π, here I discovered a formula through probability approach that generates value of π.

Value of π

$$
\pi=\lim _{2 \mathrm{k} \rightarrow \infty} \frac{(\mathrm{k}+1)^{2}}{\mathrm{k}}\left(\frac{\mu_{1}^{\prime}}{\sqrt{\mu_{2}^{\prime}}}\right)^{4}
$$

where, $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are first and second raw moments of Pavan's Pmf respectively.

$$
\mu_{1}^{\prime}=\frac{2^{\mathrm{k}}}{\mathrm{k}+1} \mu_{2}^{\prime}=\frac{\binom{2 \mathrm{k}}{\mathrm{k}}}{\mathrm{k}+1}
$$

2. PROOF

Let us consider Pavan's probability mass function
$p\left(x_{i}\right)=\frac{2}{k+1}$ if $x_{i}=\binom{k}{0},\binom{k}{1},\binom{k}{i} \ldots \ldots \ldots, i=0,1,2, \ldots \ldots, \frac{k}{2}-1, \quad$ Where \mathbf{k} is an even number

$$
=\frac{1}{\mathrm{k}+1} \text { if } \mathrm{x}_{\mathrm{i}}=\binom{\mathrm{k}}{\frac{\mathrm{k}}{2}}, \mathrm{i}=\frac{\mathrm{k}}{2}
$$

$$
\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{p}\left(\mathrm{x}_{\frac{\mathrm{k}}{}}\right)=\frac{2}{\mathrm{k}+1}\left(\frac{\mathrm{k}}{2}\right)+\frac{1}{\mathrm{k}+1}=1
$$

Binomial expansion formula is

$(\mathrm{a}+\mathrm{b})^{\mathrm{k}}=\sum_{\mathrm{i}=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{i}} \mathrm{a}^{\mathrm{k}-\mathrm{i}} \mathrm{b}^{\mathrm{i}}$
if $\mathrm{a}=\mathrm{b}=1$
$2^{\mathrm{k}}=\sum_{\mathrm{i}=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{i}}$
$\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}\right)=\mu_{1}^{\prime}=\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1} \mathrm{x}_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{x}_{\frac{\mathrm{k}}{}}^{2} \mathrm{p}\left(\mathrm{x}_{\frac{\mathrm{k}}{}}^{2}\right)=\frac{2}{\mathrm{k}+1} \sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1}\binom{\mathrm{k}}{\mathrm{i}}+\frac{1}{\mathrm{k}+1}\binom{\mathrm{k}}{\frac{\mathrm{k}}{2}}$
take out common $\frac{1}{\mathrm{k}+1}$
$\frac{1}{k+1}\left(2 \sum_{i=0}^{\frac{k}{2}-1}\binom{k}{i}+\binom{k}{\frac{k}{2}}\right)=\frac{1}{k+1}\left(\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{i}+\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{i}+\binom{k}{\frac{k}{2}}\right)$
Since $\binom{k}{i}=\binom{k}{k-i}$, replace $\binom{k}{i}$ with $\binom{k}{k-i}$
Then

$$
\frac{1}{k+1}\left(\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{i}+\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{i}+\binom{k}{\frac{k}{2}}\right)=\frac{1}{k+1}\left(\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{i}+\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{k-i}+\binom{k}{\frac{k}{2}}\right)=\frac{2^{k}}{k+1}
$$

$$
\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}\right)=\mu_{1}^{\prime}=\frac{2^{\mathrm{k}}}{\mathrm{k}+1}
$$

Central binomial coefficient $\binom{2 \mathrm{k}}{\mathrm{k}}$ can be expressed as

$$
\binom{2 \mathrm{k}}{\mathrm{k}}=\sum_{\mathrm{i}=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{i}}\binom{\mathrm{k}}{\mathrm{k}-\mathrm{i}}
$$

Since $\quad\binom{k}{i}=\binom{k}{k-i}$

$$
\binom{2 \mathrm{k}}{\mathrm{k}}=\sum_{\mathrm{i}=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{i}}^{2}
$$

$$
\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}^{2}\right)=\mu_{2}^{\prime}=\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1} \mathrm{x}_{\mathrm{i}}^{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{x}_{\frac{k}{2}}^{2} \mathrm{p}\left(\mathrm{x}_{\frac{\mathrm{k}}{}}^{2}\right)=\frac{2}{\mathrm{k}+1} \sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1}\binom{\mathrm{k}}{\mathrm{i}}^{2}+\frac{1}{\mathrm{k}+1}\binom{\mathrm{k}}{\frac{\mathrm{k}}{2}}^{2}
$$

take out common $\frac{1}{k+1}$
$\frac{1}{\mathrm{k}+1}\left(2 \sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1}\binom{\mathrm{k}}{\mathrm{i}}^{2}+\binom{\mathrm{k}}{\frac{\mathrm{k}}{2}}^{2}\right)=\frac{1}{\mathrm{k}+1}\left(\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1}\binom{\mathrm{k}}{\mathrm{i}}^{2}+\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1}\binom{\mathrm{k}}{\mathrm{i}}^{2}+\binom{\mathrm{k}}{\frac{\mathrm{k}}{2}}^{2}\right)=\frac{\binom{2 \mathrm{k}}{\mathrm{k}}}{\mathrm{k}+1}$
Since $\left(\sum_{i=0}^{\frac{k}{2}-1}\binom{\mathrm{k}}{\mathrm{i}}^{2}+\sum_{\mathrm{i}=0}^{\frac{\mathrm{k}}{2}-1}\binom{\mathrm{k}}{\mathrm{k}-\mathrm{i}}^{2}+\binom{\mathrm{k}}{\frac{\mathrm{k}}{2}}^{2}\right)=\sum_{\mathrm{i}=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{i}}^{2}=\binom{2 \mathrm{k}}{\mathrm{k}}$
$\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}^{2}\right)=\mu_{2}^{\prime}=\frac{\binom{2 \mathrm{k}}{\mathrm{k}}}{\mathrm{k}+1}$
$\operatorname{Var}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}^{2}\right)-\left(\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}\right)\right)^{2}=\frac{\binom{2 \mathrm{k}}{\mathrm{k}}}{\mathrm{k}+1}-\frac{2^{2 \mathrm{k}}}{(\mathrm{k}+1)^{2}}$
take the ratio of terms

$$
\begin{equation*}
\mathrm{R}=\frac{\mu_{2}^{\prime}}{\left(\mu_{1}^{\prime}\right)^{2}(\mathrm{k}+1)}=\frac{\binom{2 \mathrm{k})}{2^{2 \mathrm{k}}}}{(2)} \tag{1}
\end{equation*}
$$

Here $\binom{2 \mathrm{k}}{\mathrm{k}} \frac{1}{2^{2 \mathrm{k}}}$ looks similar to binomial distribution with $\mathrm{n}=2 \mathrm{k}$, calculating probability at $\mathrm{x}=\mathrm{k}$ and $\mathrm{p}=\frac{1}{2}$.
we can write like $\mathrm{p}(\mathrm{x}=\mathrm{k})=\binom{2 \mathrm{k}}{\mathrm{k}} \frac{1}{2^{2 \mathrm{k}}}$
Probability mass function of Binomial Distribution of a random variable \mathbf{X} is

$$
\mathrm{p}(\mathrm{x})=\binom{\mathrm{n}}{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{x}}
$$

where \mathbf{p} is probability of success of Bernoulli's trail and \mathbf{n} is number of Bernoulli's trails.
$0<p<1, p+q=1, \mathrm{x}=0,1,2, \ldots, \mathrm{n}$. Take $\mathrm{p}=\frac{1}{2}$, for $\mathrm{n}=2 \mathrm{k}$ the range of x is $0,1,2, \ldots, 2 \mathrm{k}$.

$$
\mathrm{E}(\mathrm{x})=\mathrm{np}=\mathrm{k}, \quad \operatorname{Var}(\mathrm{x})=\sqrt{\mathrm{npq}}=\sqrt{\frac{\mathrm{k}}{2}}
$$

For $\mathrm{p}=\frac{1}{2}$ the skewness of binomial distribution is $\frac{\mathrm{q}-\mathrm{p}}{\sqrt{\mathrm{npq}}}=0$ hence the distribution is symmetric.
Since $\mathrm{n}=2 \mathrm{k}$ it is an even number, then the value of $(2 \mathrm{k}+1) \mathrm{p}=\frac{2 \mathrm{k}+1}{2}=\mathrm{k}+\frac{1}{2}$ is a non-integer value. So, the model value Gupta (2000) is integral part of $\mathrm{k}+\frac{1}{2}$, it means \mathbf{k} is modal value.
probability of \mathbf{x} at Model value is $\mathrm{p}(\mathrm{x}=\mathrm{k})=\binom{2 \mathrm{k}}{\mathrm{k}}\left(\frac{1}{2}\right)^{2 \mathrm{k}}$
Probability density function of Normal Distribution of a random variable \mathbf{X} is

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-} \frac{1}{2}\left(\frac{\mathrm{x}-\mu}{\sigma}\right)^{2} \\
-\infty<x & <\infty,-\infty<\mu<\infty, \sigma^{2}>0
\end{aligned}
$$

where, μ is mean and σ^{2} is variance
De Moivre-Laplace theorem Papoulis (2002) States that as \mathbf{n} grows large, for \mathbf{x} in the neighbourhood of $\mathbf{n p}$ we can approximate

$$
\binom{n}{x} p^{x}(1-p)^{n-x} \approx \frac{1}{\sqrt{n p q 2 \pi}} e^{-\frac{1}{2}\left(\frac{x-n p}{\sqrt{n p q}}\right)^{2}}
$$

in the sense that the ratio of the left-hand side to the right-hand side converges to $\mathbf{1}$ as $\mathrm{n} \rightarrow \infty$ for $n=2 k$

$$
\binom{2 \mathrm{k}}{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{2 \mathrm{k}-\mathrm{x}} \approx \frac{1}{\sqrt{2 \mathrm{kpq} 2 \pi}} \mathrm{e}^{-\frac{1}{2}\left(\frac{\mathrm{x}-2 \mathrm{kp}}{\sqrt{2 \mathrm{kpq}}}\right)^{2} . \quad \text {. }{ }^{2} .}
$$

Substitute $\mathrm{p}=\frac{1}{2}$

$$
\binom{2 \mathrm{k}}{\mathrm{x}} \frac{1}{2^{2 \mathrm{k}}} \approx \frac{1}{\sqrt{\mathrm{k} \pi}} \mathrm{e}^{-} \frac{1}{2}\left(\frac{\mathrm{x}-\mathrm{k}}{\sqrt{\frac{\mathrm{k}}{2}}}\right)^{2}
$$

at modal value \mathbf{k}

$$
\begin{array}{r}
\binom{2 \mathrm{k}}{\mathrm{k}} \frac{1}{2^{2 \mathrm{k}}} \approx \frac{1}{\sqrt{\mathrm{k} \pi}} \\
\sqrt{\mathrm{k}}\binom{2 \mathrm{k}}{\mathrm{k}} \frac{1}{2^{2 \mathrm{k}}} \approx \frac{1}{\sqrt{\pi}} \tag{2}
\end{array}
$$

Substitute (1) in (2) it results into

$$
\begin{gathered}
\sqrt{\mathrm{k}} \frac{\mu_{2}^{\prime}}{\left(\mu_{1}^{\prime}\right)^{2}(\mathrm{k}+1)} \approx \frac{1}{\sqrt{\pi}} \\
\sqrt{\pi} \approx \frac{\mathrm{k}+1}{\sqrt{\mathrm{k}}} \frac{\left(\mu_{1}^{\prime}\right)^{2}}{\mu_{2}^{\prime}}
\end{gathered}
$$

Squaring on both the sides

$$
\begin{array}{r}
\pi \approx \frac{(\mathrm{k}+1)^{2}}{\mathrm{k}}\left(\frac{\mu_{1}^{\prime}}{\sqrt{\mu_{2}^{\prime}}}\right)^{4} \\
\pi=\lim _{2 \mathrm{k} \rightarrow \infty} \frac{(\mathrm{k}+1)^{2}}{\mathrm{k}}\left(\frac{\mu_{1}^{\prime}}{\sqrt{\mu_{2}^{\prime}}}\right)^{4}
\end{array}
$$

RESULT

Value of π

$$
\pi=\lim _{2 \mathrm{k} \rightarrow \infty} \frac{(\mathrm{k}+1)^{2}}{\mathrm{k}}\left(\frac{\mu_{1}^{\prime}}{\sqrt{\mu_{2}^{\prime}}}\right)^{4}
$$

where, $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are first and second raw moments of Pavan's Pmf respectively.

$$
\mu_{1}^{\prime}=\frac{2^{\mathrm{k}}}{\mathrm{k}+1} \quad \mu_{2}^{\prime}=\frac{\binom{2 \mathrm{k}}{\mathrm{k}}}{\mathrm{k}+1}
$$

ACKNOWLEDGEMENTS

We know of no conflicts of interest associated with this publication, and there has been no significantfinancial support for this work that could have influenced its outcome.

REFERENCES

[1] Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables, and stochastic processes. Tata McGraw-Hill Education Publishers, 4th edition, pages 7.12-7.13,ISBN 81-7014-791-3, 2002.
[2] Gupta. SC and Kapoor VK. Fundamentals of mathematical statistics: A modern approach. Sultan Chand and Sons publishers India,10th edition, pages 105,ISBN 0-07-112256-7,2000.

