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Certain Subclasses Of Harmonic Starlike Functions Associated
With g-Analouge Of Ruscheweyh Operator

S. R. Swamy"” and P. K. Mamatha?

Abstract.

In this work, we introduce and study a subclass of harmonic uniformly (3 - starlike functions defined by g-
analogue of Ruscheweyh derivative operator. Coefficient bounds, extreme points, distortion bounds,
convolution conditions and convex combination are determined for functions in this class. Also, properties of
the class preserving under the generalized Bernardi-Libera —Livingston integral operator and the g-Jackson

integral operator are discussed. Furthermore, many of our results are either extensions or new approaches to
those corresponding to previously known results.

1. INTRODUCTION

A continuous function f = w4+ v is a complex- valued harmonic function in a complex domain (2
it both u and v are real and harmonic in €2. In any simply-connected domain D C (2, we can write
f=h+7, where h and g are analytic in ). We call h the analytic part and g the co-analytic part
of [. A necessary and suflicient condition for [ to be locally univalent and orientation preserving in
D is that |R'(2)| > |¢'(z)] in D (see [8]).

Denote by &y the family of functions f = h + g which are harmonic, univalent and orientation
preserving in the open unit disc

U:={zeC : |z| <1}

so that f is normalized by f(0) = 1(0) = f.(0) — 1 = 0. Thus, for f = h 4+ 7 € S, the functions h
and ¢ analytic in U can be expressed in the following forms:

h(z) =2z + Zakzk, g(z) = Zbk:k (|b1] < 1), (1.1)
k=2 k=1

and f(z) is then given by

o0 T
f) =24 af ) bk (] < 1), (1.2)
k=2 k=1
We note that the family &, of orientation preserving, normalized harmonic univalent functions
reduces to the well known class § of normalized univalent functions if the co-analytic part of f is
identically zero (g = 0).
Also, we denote by &5 the subfamily of &4 consisting of harmonic functions of the form f = h+7
such that £ and g are of the form:
o0 o0
h(z) :,‘;—Z|ak K g(z) :Z\bki,‘;k. (1.3)

k=2 k=1

In [8] Clunie and Sheil-Small, investigated the class Sy as well as its geometric subclasses and its
properties. Since then, there have been several studies related to the class Sy and its subclasses.
Following Clunie and Sheil-Small [8], Ahuja [1, 2, 3], Al-Kharsani and Al-Khal [6], Dixit et al.
[9, 10, 11], Frasin [13], Frasin et al. [11], Jahangiri [17, 18, 19], Jahangiri et al. [20], Porwal et al.
[24], Silverman [27], Silverman and Silvia [28], Yalgin et al. [29] and others [4, 5, 12, 20, 21, 22, 23, 25]
and the references therein have investigated various subclasses of S and its properties.
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In 2001, Rosy et al. [25], defined a subclass 9 (v) C S, consisting of harmonic univalent functions
f(2) satisfying the following condition

R.e{(i—i—em)i{(:) —em} >, 0<vy <1, aeR, (1.4)
! 9 it ! d i0 . .
were 2’ = 0—8(.{ =re’), ['(2) = —=(f(z) = f(re?)), 0 <r < 1 and 0 is real. They proved that if
f="h+ g given by (1.2) and if
= 2% —1—~ 2k + 1+~
- _— < < 5
g; Tl 2; [ Il <1 0<y <L, (1.5)

then f is a Goodman-Ronning type harmonic univalent function in U. This condition is proved to be
also necessary if h and ¢ are of the form (1.3).

Let & denote the class of functions that are analytic in the open unit disc U. For 0 < ¢ < 1,
Jackson [15] defined the g—derivative of a function h € & is defined as follows:

h(z) — h(qz
@ugzzglgf)f 2#0, zeU

and 9,h(0) = 1'(0) and J7h(z) := 9, (9,h(=)) . Obviously,

Jy (Z ak,‘:k) = Z[ank;’“_l, EelN, e,

k=1 k=1

where [£], is defined by

i—qk .
fhkelN .
Ko=1¢ T-¢ ' (1.6)
0 itk =0.

Asq— Land k € N, [k], — k. Tn particular h(z) = =¥ for k , the g—derivative of h(z) is given by

2k — (gz)F .
J, (fk) = ﬁ = [k]qz‘!"l: ze U,

and
kﬂ@m@nzgﬂagﬁy:hbizfuL keN, :zel.

Moreover, it is worth mentioning that

o g2y e k=1, (K, ifkeN
Mh[{l if k=0.

Recently, in [5], Aldweby and Darus defined the g— analogue of Ruscheweyh operator %é\ e —
& for functions of the form A given in (Ll) as

[+ A —1], )
%M .z&
1l +§:[ = 1], ™

Further, we observe that

E+A—1]
;[]'[A—l] "

where 2% is Russcheweyh differential operator [26].
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In 2019, Elhaddad et al.[12] defined the operator @;‘ D S — Py for functions of the form
f="h+ggiven by (1.2) as

N FON — PN () o A .
Hy f(2) = Fh(z) + Hpg(z), ze U, (1.7)
where
+A-1], . [k 4+ A—1],!

3?,”\/ .::I” and  Zrg(z) = 7qb~. 1.8
X Z[/\ Tt ad A ;m e e
Motivated by the works of Ahuja et al. [1], Elhaddad et al. [12], Frasin and Magesh [14], Jahangiri
et al. [20], Magesh and Porwal [21], Magesh et al. [22] and Rosy et al. [25], we consider the subclass

Gw( N, i, q; [,7,t) of functions of the form (1.2) satistving the condition

20y (BM(2)) — 20, (Bg(2 .

o (Z)h(=)) Lg( ) — e’ b >, - e, (1.9)
R (z) + B (=)

where A, p € No, 7 20,0< vy < 1,0 € R, hy(z) = (1 — 1)z +1‘h(:)‘ gi(z) = tg(z), 0 <t < 1.

We further let G (A, 1, q: By, ) denote the subclass of Gy (N, 11, q; [,7,t) consisting of functions
f=h+7 e S, such that h and g are of the form (1.3).

é}e{u + Bei®)

We note that by specializing the parameters A, p, 5, v, t and ¢, we obtain well-known harmonic
univalent functions as well as many new ones. For example,
(1) Do (A A, g 0,7, 1) i =5 (N, g5 ) Elhaddad et al. [12].
(2) (a) 9w(0.0, 1; 0,7,1) == () Jahangiri [18].
(b) (1,1, 1;0,7,1) = Kup(7) Jahangiri [18].
(c) Forv=0 the classes S%, “(7) and K (v) were studied by Silverman and Silvia [28].
)

(d) For v =0 and b = 0 see [7, 27].
(3) DrO A 1 0,7,1) = FH(\ 7) (23]
(4) 9(0, 0, 1: 1,7v,1) == G(7) Rosy et al.[25].
(5) G (0,0, 1; B,7,1) := Gu(f, 7,1) Ahuja et al.[3].
(6) 9w(1, 1, 1;1,~,1) = HC(v) Kim et al. [10]
(T) F%(0, 0, 15 0,7,0) := 22 (7) Yalcin et al. [29].

In this paper, we give a sufficient condition for f = h+g given by (1.2) to be in @ (X, i1, q; 5,7,t)

and it is shown that this condition is also necessary for functions in %5(A, i, ¢; 3,7,t). We also

obtain extreme points, distortion bounds, convolution and convex comhination proporties. Further,
we obtain the closure property of this class under integral operators. We remark that the results
so obtained for these general families can be viewed as extensions and generalizations for various
subclasses of S as listed previously in this section.

2. COEFFICIENT BOUNDS
Our first theorem gives a sufficient condition for functions in ¥ (A, p, q; 5,7, 1).

Theorem 2.1. Let f = h+ g be so that h and g are given by (1.1). If

oy (A=Y P A LR et i)
i [(1+.d) ([)\};[ki]q!) (Ul\}qt)t(aﬂ)( +[i}q!1 )]W .

||

k=2

+
k=1
(2.1)

where A\, p €Ny, 20,0y <1,0<t<Tand0<g< 1 Then f € Gyp( pu, q¢; 5,7, 1).
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Proof. To prove that f € @y (A, i, q; 5,7.t), we only need to show that if (2.1) holds, then the
required condition (1.9) is satisfied. For (1.9), we can write

20 (Byh(2)) — 2 0y (B)g(2)) gl _gp { 4()} .-
Ry (z) + Fyg.(2) | B(z) F

Using the fact that ?R{w} >~ if and only if [1 — v +w| > |1 + v — w|, it suffices to show that

AG) + (1 =) BG) — [AE) — (149 B()] 2 0, (22)

&e{u + Be®)

where

A(z) = (1 + fei@) [; Oy (2h(2)) — = 0, (@39(;))] — Beie pﬂht( )+J5‘gt(;)]
and

B(z) = Zh(2) + Rl qu( ).

Also,
[k+)\—1} ‘ 2 kA1)
20, (Z}h(2)) = «.JrZ[R TN = 1], apz* and 20, (#,9(z)) = Z[qubkzk
k=1 T T
and
N ket p—1], = k-1,
Jf‘“hg z+ Zl‘ 'L; —), g 2F and f@é‘gt(/) = Z t w by, 2*
k=1 g a

Substituting for A(=) and B(=) in (2.2) and making usc of (2.1), we obtain
[A(z) + (1 =) B(z)| = [A(z) = (1 +7)B(=)|
:‘ 1+ Bei) [;a (%Ah(z)) —W] _ B [2%,:( )+ Brgu(- )]
I CANOEzmE)]
’(1+ ge) [0 (Ji’)‘h( ) == 0, (#9(2))| - e [ @) + Zf ()
) (#

i) + B a(2) )|
2201 =kl -3 2 [(Ha) (Wri=is) W= ese) (W)]||| ¢

=320+ (i) e (gt ) |

>2(1—7) i [(1 - (H) {?q;t(ﬁﬂ) (U\iﬁiﬂ) ] Jag |2
g (BEA= U (e
5 o Criie), [i“:’“” (i )Lbknzlk_l
- *i [(1+.3) (H) [i‘]itil‘(ﬁ—&-“;) (%ﬁ) ] o

k=2

Volume 16, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 3112]




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

o [(1 + ) (H) K]y + (5 +7) (“‘1";‘7];”5) ] N
-

- 1 =

>0

which implies that f € (N, 1, q; 5,7, 1).
The coefficient bound (2.1) is sharp for the harmonic function

o0 1 L
flz) = f‘-’Jrz : ! : rpz”
oo (ALY (=
040 (pgrp=tty) W+ ()
. 1-n -
+Z [ yk:k:
AL N | [ty
k=1 (14 73) (M) (klq + (8 +7) (@)

o0 o0
where > |zi| + >° |yk| = 1, shows that the coefficient bound given by (2.1) is sharp. 1
k=2 k=1

Next, we show that the above sufficient condition is also necessary for functions in the class

G (A, gy g Bo,L).

Theorem 2.2, Let f = h+ g be so that h and g are given by (1.3). Then f € %(A, 1, q; 5,7, 1)
if and only if

F+A—1],! ) k=1,
< 0+ (prgm) oo ()
Z q q T q ||

k=2
w (14 0) ([qu h— Hq!> [’\]q +t(F+7) ( [1e]q! ) |b1.E <1,

> =

!

=

where A, p €Ng, 520,0<~y<1,0<t<1and0<qg<1.

Proof. Since %57(A, 1, q; 8,7.1) C Gwl(A, p, q; 3,7,1), we only need to prove the only if part of
the theorem. To this end, for functions f of the form (1.3), we notice that the condition (1.9) is

equivalent to

[ 5 [ on () =0 )] - e [spe) + R\
Bhhe(=) + Ry il =) 120

= r < 1, the above inequality

Upon choosing the values of = on the positive real axis where 0 <

B | Gpra) oo () |
1_ i ; ([A. + - 1}4.!) e g:lf ([,1- +p— 1}q!) g1

k=2 (]! (]!

reduces to
\
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(e i}fq!!) = (B ) it

—R dem
: = [+ — 1]q.) |t o0 ([L +p— l]q[) et
: ;CZJ( e e 2T )
Since Re(—e'*) > —|e™| = —1, the above inequality reduces to
o e A=100N o (R — 1] el
a-n-F o+ )(m i) e ()
£ R
Bl (5 o (1550
= * > 0.
(k4 p—1]! wlr [k+p—1]g! ke -
CE() E“*Ef( )
(2.4)

If the condition (2.4) does not hold then the numerator in (2.4) is negative for r sufficiently close
to 1. Thus there exists zg = rg in (0, 1) for which the quotient in (2.4) is negative. This contradicts
the condition for f € %(\, i, q; 5,7, t). Hence the proof is complete.

3. EXTREME POINTS AND DISTORTION BOUNDS

In this section, our first theorem gives the extreme points of the closed convex hulls of @52(A\, i, q; 3,7, t).

Theorem 3.1. Let f be given by (1.5). Then f € Fz(N, p, q; 5., t) if and only if

F(2) = (Xehi(2) + Yage(2)), (3.1)
where

hi(z) = z,

hp(z) =z — (SN 1-7 iy 2F k=2 3, ---
e () e ()

171\

)=z FrA—1],! j e R

a0 () o ()

E (Xe+Ye) =1, Xp >0, Yr > 0. In particular, the extreme points of %5\, 1, q; B,v,t) are {hi}
k=

a"nd {gr}-

Proof. For functions f of the form (3.1), we have

F2) = D0 (Xehu(2) + Yig(2)
(o) o0 1 —~
= > (Xe+Yi)z—), _ : : Xy
- e (FHATY oy (e
= S o (o) B ()

Volume 16, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 3114




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

+ i Y, zF
P [k+ A } ) P [k+p— l]q!
=+ “(H uuy)““*“j+”( R )
Then
o (R ] 0o (B —1)!
s (l“ﬂ(wam—mJ[%“5+”( N )
X L i ,ka

[k +A—1] ' ooy (k= 1!
(1+”(Mwu—wh>““‘“ﬂ+”( R )

_ et A — 1], kAt p— 1!
ii U+ﬁ)G%IE—ﬁ;)Mh+ﬂﬁ+ﬂ(L_iE_L)

k=1 /

+

X 1 : y;c
[+ A —1],! [k + e — gt
00 (=)t e (S )
SN Y N=1ox <1
k=2 k=1

and so f € clco G5( P, U: 3,7, t). Conversely, suppose that [ € clcoz(A, p, q; 3,7, t). Setting

[+ A —1],! ‘ [k + g —1],!
(1) (XA NEY gy (BT
){k: ([Mq'[i‘uq%) 17? ( [H}Q’l ) lakls ]\::2, R

o [ EEA=1] ‘ [k +p—1],!
A (e ) BB+ (ot

and

o0
where Y (X; 4+ Y¥;) = 1. Then note that by Theorem 2.2, 0 < X}, <1 (k=2,3,---)and 0 <Y, <1
k=1

(k=1,2,3,--+). We define Xj =1— Z Xp — Z Y% and by Theorem 2.2 ; X1 > 0. Consequently,

=2 k=1
we obtain f(2) = Y (Xphe(z) + Yigr(2)) .
=1

Using Theorem 2.2, it is easily seen that %5z (\, p1. ¢ 3., t) is convex and closed, so clco@ (A, 11, q; 5,7, 1)
=%\ 1, q; 8,7, t). In other words, the statement of Theorem 3.1 is really for f € ¥=(A, i, ¢;:5.7,t). 1

The following theorem gives the distortion bounds for functions in % (\, . ¢: 3,7, t) which yields
a covering result for this class.

Theorem 3.2. Let f € ¥(\, p, q; 5.7, 1) and

| A=t e, (=1l
A<(1+4) (m) [Klg —H(B + f)( ld! ) ’

, [+ X — 1], | [k +p— 1],
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Jor k > 2, where A = min {(1 + 8)Aa[2]; — t(8 + ¥)pa, (14 B)A2[2]y + (8 + 7)p2} . Then
1—7 + 3)A + (0 + )
SIS Qo+ (157 - LD (B2,
A A
and

1£(2) g

Proof. Let f € %z(\, 1, q; 3,+,t). Taking the absolute value of f, we obtain

I > (1— |bl|)7'— (1 _A'}' _ (1 +5))‘1[ ] + B+ )#1|bll) 2

F < U+ bl + D (lar] + [be))r*
< (U [ba)r + 72> (Jag] + [bx])
k=2
= (Lo + = ’PZ |(1A|+ T|bk|)
. o B+ A=1]! ) k+p— 1]y
A+ a7 ) Me—tB+) ( —F37—
< (14 |b])r 1—7 QZ ([/\]q![’lt_l]q!) — ( (]! ) ||
AL ) [k + 1 — 1],!
(1+5) (m) [kl +t(3+7) (T)
+ q q T q ‘bkl
g
<

17»\
(14 |by|)r + 1 ! (1

1—7 14+ 8)Aq[L B+ v)p

and similarly,

(L+ ANy + B+, 1\ o
1 — |b1| T
-

1f(z)] = (L—|b|)r — (1 ;'"f' - (1+ 5))‘1[1]114“ tHB+y)m |b1> r2

The upper and lower bounds given in Theorem 3.2 are respectively attained for the following
functions.

1=~ (14BN, + B+~ B
f(':) :?Jr‘bll?“r ( 4 I ( ! ) 1[ }';14 ( )’ulbll) 32

and

F(2) = (1= [by])z — (1 ;3 o +3)>\1[1}QA+ 1B+ y) Ibll)

|
The following covering result follows from the left hand inequality in Theorem 3.2.
Corollary 3.1. Let f of the form (1.3) be so that f € Gz, 1, q; 5,7,t) and
F+A—1]! ) ) ([k+,u1}!)
A< (1+p ( k B+ —F—7T
O =) e T

and

A< (14 5) (w) (Mg + (8 + ) (W)  fork>2,
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where A = min{(1 + F)A2[2]; — (B +7)pa, (L + B)A[2], + (B + 7y)u2}. Then
A+1—v A-— 1 + 9
{w Hw| < + |bl|} C f(U).

A
4. CONVOLUTION AND CONVEX COMBINATIONS

In this section we show that the class ¥2(\, p. ¢: £.7,1) is closed under convolution and convex
c:ombinations Now we need the following doﬁnition of conv olution of two harmonic functions. For

flz)=2z—- Z ag |2+ Z b|7* and F(z) E | Ag|=* + Z |B[Z*, we define the convolution of

two harmomc fun(tlons f and F' as
([*F)=z)=f(z)*F(z) =2z — Z || Ag|2* + Z \be|| Br|Z". (4.1)
k=2 k=1

Using the definition, we show that the class ¥ (A, p, q; 58,7,1) is closed under convolution.
Theorem 4.1. For 0 < ~v < 1, let f € @\, pn, ¢ 5,7, 1) and F € G(\, 1, q; 3,7,t). Then
fxFe%m(\ puoq 5,7,1).

Proof. Let f(z) 72 |ax|z k+z |b|Z* and F(z) ,Z |Ag|z kJrZ | Br[Z* be in @57( A\, 1, ¢ 5,7, 1).

Then the convolutlon f x 7 1s given by (4.1). We wish to bhou that the coeflicient of f *x [ satisty
the required condition given in Theorem 2.2. For F' € (A, 1, q; 5,7,t), we note that |4, <1
and |Bg| < 1. Now for the convolution function f * F, we obtain

‘ k+A—1]! ( ko — 1!
= 009 (i) e 00 ()
) T

kA1 [k+p— 1]
S ([)\]q! [k 1}q!) — ( n ) eI Byl

o B+ A=1]] [k + p—1],!
< i (1+5) (Wq! [k — 1]qf) [i}_ . H6+7) ( [1q! ) s

k=2 /

(e A— 1], [k + o — 1],
o (1+0)| =777 ) Klg+t(B+7) | ————
+Z ([/\]q' U‘ - ”qI) — ( [qu! ) |bk‘

k=

|ak| | Ak
k=2

—

<1,
since f € G(A, p, q; 3,7, t). Therefore f* F € G-\ p, q¢; 5,7.1). 1
Next, we show that the class %-(\. i1, q: 3,7,1) is closed under convex combination of its members.
Theorem 4.2. The class %57(\, p, q; 5,7,t) is closed under convexr combination.
Proof. For 1 =1,2,3,--- let fi(z) € %(\, 1, ¢; 3,7,t), where f; is given by

fE == Jaalt 4+ 3 h
k=2 k=1

>0
For > #; = 1,0 <{; <1, the convex combination of f; may be written as
i—1

thfz(i.) = I — Z (Z t,-|a,-k|) Ck + Z (Z f’zlbtk) z
i=1 k=2 i=1 k=1 i=1

—k
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Since,

kA1 | [+ — 1,
> 40 (i) W0 ()

- |a‘ik|
k=2 1 -7
N A R 1 k+p—1],!
e () (e Tt ) Wy i+ (FA R
+Z (P\]q! [k — 1]q[> — ( [1]q! ) bl < 1.

from the above equation we obtain

[k+Xx—1],! [k + p = 1],!
O+ o) We—tB+ (77 ) =
Qﬂgu ug)lT ( [11]! )E:Mmd

(A1), , bt 1],
o L+ () Me B+ () =
3 (WJM 1@0 e ( [1],! :)Egh&k

k=1

o [ EEAT]N N AR R
a0 () e o= ()

E
Il
b
=
|
—_

, e+ A—1], = 1),
1+ (i) W0+ (i

This is the condition required by (2.4) and so > #;fi(z) € G5\, 1, q;: 5,7.t). B

=1
5. CLASS PRESERVING INTEGRAL OPERATORS
Finally, we consider the closure property of the class ¥z(\, p, ¢; 5,7v,t) under the generalized
Bernardi-Libera -Livingston integral operator L£.[f(z)] and the g-Jackson integral operator Fy.

(1) The generalized Bernardi-Libera -Livingston integral operator £.[f(z)] for f(2) = h(z)+g(2)
given by (1.1) is

&[f(:-)]—‘“/gf Leyde. o> —1.

0

(2) For f(z) = h(z) 4+ g(z) given by (1.1), the ¢-Jackson integral operator Fy is defined by the
relation

Fy(z) = [C}QL/ uh(u)d, u+”1f ucq(u)dgu, (5.1)
=t Jo Jo
where [¢]; is the g-number defined by (1.6).
Theorem 5.1. Let f & %p(X, 1, q: 5,7, 1), then L[f(2)] € G5(X, p. q; B,7,1).

Proof. From the representation of L.[f(z)], it follows that

z

ot f £e-g(¢)de

Lf(2)] C+1fglh ) +
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z o } 1 z 50
c‘:i—c /56_1 (5 _ Z Eak|5k) dé + C 4; [€g1 (Z |bkfk) de
- k=2 S k=1

0 =
= — Z 4k,‘_’k — i B, k
k=2 k=1
where A;, = Eii |ag| and By, = :jr_i |bg|. Hence
oA ‘ [k+p—1],!
fi“*”(uwu:1u>“%“d+”( iy )<c+ﬂ )
; ayg,
p 1—~ c+k
o R+ A1) ) P [k + p— 1],
+§iu+ﬁ)Qﬂ¢M—ﬂ¢)Hh+ﬂj+J( RE )(6+Hm0
— 11—y e+ k
oo (A=Y oo (=1
S (i 15) S o) "
k=2 !
(A1), (k-1
o 1+8) | v ) g +tB+7) | ———
n Z ([Mq! k- Hq!) — ( 1] ) |bx|
k=1 !
< 1,~

since f € %(A, 11, q; ,7,1), therefore by Theorem 2.2, L.(f(2)) € %5\, 1, q; B.7.1). 1

In the next theorem, we show that the class %-(\, p, q: 3,7.t) is closed under the g—integral
operator defined by (5.1).

Theorem 5.2. Let f(z) = h(z)+g(z) be given by (1.3) and | € G5 (N, i1, q; 5,7,1) where A, € Ng,
8200<y<1,0<t<1and0 < q < 1. Then F, defined by (5.1) is also in the class
Gz (A w1, q; By, 1).

Proof. Let

o0 o0

Fz) = 2= an|=m + > by
k=2 k=1

be in ¥(A, p, q; B.7.1). Then by Theorem 2.2, the condition (2.4) is satisfied.
From the series representation (5.1) of I, it follows that,

i lh+c+1 T h+c+1
Since
kdctl e kel
k+c+1]g—[dq= q — q“:Zgz>O
i=0 i=0 i=c
[c]q
[k+c+1]g > [dq (or) [A+c+1]q<1
Now,
o R+ A =1 ) [k+p—1]g!
= 0 () W ()
2 1 -~ [f'f+c:+1}qE s
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e+ A—1], , [k + p —1]!
(1+7) (q) [klg +t(B+7) (q)
]! [k — 1], [1]! la
2 1—~ [k+c+1}ngk|

—1 !

<y D (i) B (M >|ak
L—7

0+ (i) s ()

(=]
k=

+

= [14]!
+ by,
> - i
k=1
<1
Thus the proof of Theorem 5.2 is established.
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