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Abstract. In this paper, I examine twofold problem. The first one is concerned with finding the 

optimal location of a single facility in a network with demands randomly distributed over the edges. 

The second problem is about determining the optimal path between two specified nodes of the 

network of a moving vehicle that continuously interacts with randomly distributed requests for service 

over the edges. The problems are investigated using different performance measures and probability 

distributions of the demands.  
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1Introduction: 

   Facility location has attracted much research in discrete and continuous optimization over 

nearly four decades. Investigators have focused on both algorithms and formulations in 

diverse settings. Facility location analysis refers to the modeling, formulation, and solution of 

a class of problems that can best be described as locating facilities in some given space. The 

expressions deployment, positioning, and locating are frequently used as synonyms. The 

location decisions must often be made considering different types of performance measures. 

Choices for the best location(s) differ for various types of objectives. For example for a 

company that wants to build a warehouse for its retailers, it may be important to find a 

location that minimizes the sum of the distances from the warehouse to the retailers. 

However, for the location of an emergency facility such as a fire station, the most suitable 

objective could be to minimize the maximum distance from the facility to the demand points 

in order for the fire station to respond quickly enough to the farthest point. Another example 

might be the location of a waste incinerator for a local municipality. Residents might want 

that the facility be located as far as possible from residential areas, while the municipality 

wants it to be close enough to transport the waste. In that case, an objective that maximizes 

the minimum distance of the facility from the residential areas would be more appropriate. 

Several models were presented to summarize the core components of the location problem in 

literature. Erkut et al. [7] has provided an illustrative study of location models containing 

Continuous, Discrete and Network Location models. This study states that in case of 

continuous location model, facilities can be located in some d-dimensional space while 

discrete location model shows that the facilities can be located at some specified points. On 

the other hand, network location model states that the facilities can be located on network. 

http://www.scitecresearch.com/journals
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They have also considered about forbidden zones, which represents restricted sites that 

cannot be candidate site for a facility. Labbe [13] have presented a voting approach to solve 

the obnoxious facility location problem on network. Labbe presented a comparison between 

the anti Condorcet points and anti-median points. Karkazis et al. [11] has proposed an 

algorithm for location of facilities causing atmospheric pollution in plane. The objective of 

this algorithm was to minimize the sum-weighted risk factors for each vertex summed over 

all possible wind directions. Giannikos [9] have presented a multi objective programming 

discrete model for locating treatment sites and routing of hazardous waste. Ben-Moshe et al 

[2] has proposed an algorithm for k-facilities, n-demand node and m regions. The objective of 

this algorithm was to maximize the minimum distance between demand nodes and facility. 

Cappanera [5] has proposed a model known as Obnoxious Facility Location and Routing 

(OFLR) model. He has implemented this using the Branch and Bound method. Chabini [6] 

have provided a study of all to one dynamic shortest paths problem. Chabini’s algorithm has 

proven an optimal run time complexity that equals to the complexity of problem.                      

 Depending on the application being modeled, the facilities and demand points may be nodes 

in a network or points in a planar region. Facility analysis involves as well the problem of 

determining a path of a moving service vehicle, which during its journey provides service to a 

set of demand points. Research work on moving vehicle on networks or the plane with 

deterministic or random demands is relatively very scarce. In the plane, Sherali and Kim [5] 

have introduced a new class of problems involving the determination of an optimal 

constrained path for a moving service vehicle that interacts with a set of fixed existing 

facilities. Using weighted-distance related cost function, they have analyzed both the total 

cost and the average cost problems. Later, Kim and Choi[8] extended the model of Sherali 

and Kim[19] to a larger class that includes a general cost structure. Foul [8] has determined 

an optimal straight-line route of a moving facility on the plane with random demand points. 

The problem of finding optimal paths on networks with deterministic demands have been   

investigated in ([1], [3], [4], and [12]).                                                                                         

In this paper, we focus on two fold problem. The first one is concerned with finding the 

optimal location of a single facility in a network with demands randomly distributed over the 

edges. The second problem is about finding the optimal travel path for a service vehicle, 

which moves between two specified nodes through a network and interacts with a number of 

requests for service that are generated randomly over the edges. Servicing the random 

demands is performed over all instants of time during the travel period. Consider for 

example, the case of determining a route in a transportation network for a patrol car 

maintaining radio contacts with a number of users and it unknown which one will request 

service. The problems are investigated using different performance measures and probability 

distributions of the demands.                                                                                                        

The remaining of the paper is organized as follows. In Section 2, the problem is analyzed and 

main results are described. Illustrative examples are provided. 

2  Analysis: 

2.1   Location of a single facility: 

 

Let G = (𝑁, 𝐸) be an undirected network, where 𝑁 the set of nodes with, 𝑁 = {1,2, . . , 𝑛} and 
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𝐸a set of undirected edges. The length of any edge (𝑖, 𝑗) is denoted by 𝑙 𝑖, 𝑗 and d(𝑖, 𝑗) is 

defined as the shortest distance between nodes 𝑖, 𝑗𝝐𝑁.Let 𝑤𝑖𝑗  a positive weight associated 

with each edge  𝑖, 𝑗 ∈ 𝐸 and  {𝑌𝑖𝑗 = ;  𝑖, 𝑗 ∈ 𝐸} be a set of independent randomly 

distributed demands over the edges { (𝑖 , 𝑗):  𝑖, 𝑗 ∈ 𝐸 } . 𝑓𝑌𝑖𝑗  𝑦  is the density function and 

𝐹𝑌𝑖𝑗 (𝑦)  is the cumulative distribution function of 𝑌𝑖𝑗 ,  𝑖, 𝑗 ∈ 𝐸 . 

The problem we address in this section is of locating a single facility by considering the three 

following objectives functions:  

 Minisum Problem: Minimizes the weighted sum of the expected distances between the 

facility and the random demands distributed over the edges. 

 

 Minimax Problem: Minimizes the maximum weighted expected distances between the 

facility and the random demands distributed over the edges. 

 

 Maximin Problem: Maximizes the minimum weighted expected distances between the 

facility and the random demands distributed over the edges. 

Let 𝑥 ∈ 𝐸, denotes the single facility. The problems can be stated respectively as: 

 

𝑚𝑖𝑛𝑥∈𝐸(𝐹1 𝑥 =  𝑤𝑖𝑗 𝐸[𝑑 𝑥, 𝑌𝑖𝑗   𝑖,𝑗  ∈𝐸 )                  (𝑃1) 

𝑚𝑖𝑛
𝑥∈𝐸

(𝐹2 𝑥 = 𝑚𝑎𝑥
 𝑖,𝑗  ∈𝐸

{ 𝑤𝑖𝑗 𝐸[𝑑 𝑥 , 𝑌𝑖𝑗  ]}                (𝑃2) 

𝑚𝑎𝑥
𝑥∈𝐸

(𝐹3 𝑥 = 𝑚𝑖𝑛
(𝑖,𝑗 )∈𝐸

⁡{𝑤𝑖𝑗 𝐸 𝑑 𝑥, 𝑌𝑖𝑗  ]                 (𝑃3) 

 

where 𝐸[. ] represents expected value of a random variable. 

 

Definition 1  A point   𝑥 𝑝,𝑞 
∗ on an edge 𝑝, 𝑞  of  𝐸is a local optimum location, if for every 

𝑥 ∈  𝑝, 𝑞 ,  

𝐹1 𝑥 𝑝,𝑞 
∗  ≤ 𝐹1 𝑥   for problem 𝑃1 ,   

𝐹2 𝑥 𝑝,𝑞 
∗  ≤ 𝐹2 𝑥 for problem 𝑃2  

  and    𝐹3 𝑥 𝑝,𝑞 
∗  ≥ 𝐹3 𝑥 for problem 𝑃3  , respectively. 

 

Definition 2  A point  𝑥 ∗ ∈  𝐸 is global optimum location, if  for every  𝑥 ∈ 𝐸,   

 

𝐹1 𝑥
∗ ≤ 𝐹1 𝑥 for problem 𝑃1 ,   

𝐹2 𝑥
∗ ≤ 𝐹2 𝑥 for problem 𝑃2  

and    𝐹3 𝑥
∗ ≥ 𝐹3 𝑥 for problem 𝑃3  , respectively. 

 

The objectives functions of problems  𝑃𝑘  , 𝑘 = 1,2,3 dependent on the expected value 

𝐸[𝑑 𝑥, 𝑌𝑖𝑗  ]  and by definition, [𝑑 𝑥, 𝑌𝑖𝑗  =   𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑙(𝑖 ,𝑗 )

0
 . Therefore in order to 
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Figure 2. 

Figure 1. 

express the objectives functions 𝐹𝑘(𝑥) , 𝑘 = 1,2,3, as functions of 𝑥 and 𝑦, we need to 

express explicitly 𝑑 𝑥, 𝑦 as a function of 𝑥and 𝑦. Let's consider that 𝑥is in some edge  𝑝, 𝑞  

of  𝐸.We have two cases : 

 

Case 1 𝑥, 𝑦 =  𝑝, 𝑞 . (see Figure 1)   

In this case, 𝑥 and 𝑦  belong to the same edge, therefore 𝑑 𝑥, 𝑦 =  𝑥 − 𝑦  and  

𝐸[𝑑 𝑥, 𝑌𝑖𝑗  =   𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦

𝑙 𝑖,𝑗  

0

=    𝑥 − 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦

𝑙(𝑖 ,𝑗 )

0

 

 

 

 

 

Case 2 𝑥, 𝑦 ≠  𝑝, 𝑞 . (see Figure 2)   

In this case, and according to Figure 2, the expression of 𝑑 𝑥, 𝑦  is given by  

𝑑 𝑥, 𝑦 = 𝑚𝑖𝑛

 
 

 
 

𝑥 + 𝑦 + 𝑑 𝑝, 𝑖 

𝑥 − 𝑦 + 𝑙(𝑖, 𝑗 + 𝑑 𝑝, 𝑗 

−𝑥 + 𝑦 + 𝑙 𝑝, 𝑞 + 𝑑 𝑞, 𝑖 

−𝑥 − 𝑦 +  𝑙 𝑝, 𝑞 + 𝑙 𝑖, 𝑗 + 𝑑 𝑞, 𝑗  
 

 
  

 

 

 

 

 

 

𝑑 𝑥, 𝑦 can be written as   

𝑑 𝑥, 𝑦 = 𝑚𝑖𝑛  𝑦 + 𝑐1 𝑥  ,−𝑦 + 𝑐2 𝑥  , 𝑦 + 𝑐3 𝑥  , −𝑦 + 𝑐4 𝑥                                  (1) 

Where  𝑐1 𝑥 = 𝑥 + 𝑑 𝑝, 𝑖  ,    𝑐2 𝑥 =  𝑥 + 𝑙(𝑖, 𝑗 + 𝑑 𝑝, 𝑗  , 

𝑐3 𝑥 =  −𝑥 + 𝑙 𝑝, 𝑞 + 𝑑 𝑞, 𝑖   ,    𝑐4 𝑥 =  −𝑥 +  𝑙 𝑝, 𝑞 + 𝑙 𝑖, 𝑗 + 𝑑 𝑞, 𝑗  

Taking into consideration that 
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min⁡{𝑐1 𝑥  , 𝑐3 𝑥 } = min  𝑥 + 𝑑 𝑝, 𝑖  , −𝑥 + 𝑙 𝑝, 𝑞 + 𝑑 𝑞, 𝑖  = 𝑑 𝑥, 𝑖  

andmin⁡{𝑐2 𝑥  , 𝑐4 𝑥 } = min  𝑥 + 𝑙 𝑖, 𝑗 + 𝑑 𝑝, 𝑗  , −𝑥 + 𝑙 𝑝, 𝑞 + 𝑙 𝑖, 𝑗 +  𝑞, 𝑗   

= min  𝑥 + 𝑑 𝑝, 𝑗  , −𝑥 + 𝑙 𝑝, 𝑞 + 𝑑 𝑞, 𝑗  + 𝑙(𝑖, 𝑗) = 𝑑 𝑥, 𝑗 + 𝑙(𝑖, 𝑗) 

From (1),  𝑑 𝑥, 𝑦 can then be written as 

𝑑 𝑥, 𝑦 = 𝑚𝑖𝑛  𝑦 + 𝑑 𝑥, 𝑖 ,−𝑦 + 𝑑 𝑥, 𝑗 + 𝑙(𝑖, 𝑗)    

or𝑑 𝑥, 𝑦 =  
𝑦 + 𝑑 𝑥, 𝑖           ,              0 ≤ 𝑦 ≤ 𝑦 

−𝑦 + 𝑑 𝑥, 𝑗 + 𝑙(𝑖, 𝑗)    , 𝑦  ≤ 𝑦 ≤ 𝑙(𝑖, 𝑗)
  

where  𝑦 =
𝑙 𝑖,𝑗  +𝑑 𝑥,𝑗  −𝑑(𝑥,𝑖)

2
. Clearly, 𝑦  satisfies  0 ≤ 𝑦  ≤ 𝑙 𝑖, 𝑗 . 

Hence𝐸[𝑑 𝑥, 𝑌𝑖𝑗  =   𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑙 𝑖,𝑗  

0
= 

=  (𝑦 + 𝑑 𝑥, 𝑖  )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑦 

0
+  (−𝑦 + 𝑑 𝑥, 𝑗 + 𝑙 𝑖, 𝑗 )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦

𝑙 𝑖 ,𝑗  

𝑦 
                         (2) 

To integrate, we need to specify a distribution for the random variable 𝑌𝑖𝑗 . Due to the 

difficulty to obtain an analytical form of the objective function𝐹𝑘 𝑥  , 𝑘 = 1,2,3 

 of  problem  𝑃𝑘  , 𝑘 = 1,2,3. In what follows, we will solve the problem   𝑃𝑘  , 𝑘 = 1,2,3 

numerically by considering some probability distributions of the random variable 𝑌𝑖𝑗 . 

Case when 𝑌𝑖𝑗  follows the uniform distribution over [𝟎, 𝒍𝒊𝒋],  𝒊, 𝒋 ∈ 𝑬: 

The probability density function is   

𝑓𝑌𝑖𝑗 (𝑦) =  

1

𝑙(𝑖, 𝑗)
          ,              0 ≤ 𝑦 ≤ 𝑙(𝑖, 𝑗)

0          ,     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                      

  

 

and  from (2), we will have  𝐸[𝑑 𝑥, 𝑌𝑖𝑗  =   𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑙 𝑖,𝑗  

0
= 

 (𝑦 + 𝑑 𝑥, 𝑖  )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑦 

0
+  (−𝑦 + 𝑑 𝑥, 𝑗 + 𝑙 𝑖, 𝑗 )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦

𝑙 𝑖,𝑗  

𝑦 
= 

=
 (𝑙 𝑖, 𝑗 + 𝑑 𝑥, 𝑖 + 𝑑(𝑥, 𝑗))2 − 2(𝑑 𝑥, 𝑖 2  + 𝑑 𝑥, 𝑗 2) 

4𝑙(𝑖, 𝑗)
 

In this case, the objective functions 𝐹𝑘 𝑥  , 𝑘 = 1,2,3can then be written as 

𝐹1 𝑥 =  𝑤𝑖𝑗

  𝑙 𝑖,𝑗  +𝑑 𝑥,𝑖 +𝑑 𝑥,𝑗   
2
−2 𝑑 𝑥,𝑖 2 +𝑑 𝑥,𝑗  2  

4𝑙 𝑖,𝑗  
+ 𝑤𝑝𝑞 (𝑥2

 𝑖,𝑗  ∈𝐸,
(𝑖,𝑗 )≠(𝑝,𝑞)

− 𝑥𝑙 𝑝. 𝑞 +
𝑙 𝑝,𝑞 2

2
). 
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𝐹2 𝑥 = 𝑚𝑎𝑥  𝑚𝑎𝑥  𝑖,𝑗  ∈𝐸,
(𝑖,𝑗 )≠(𝑝,𝑞)

 𝑤𝑖𝑗

  𝑙 𝑖,𝑗  +𝑑 𝑥,𝑖 +𝑑 𝑥,𝑗   
2
−2 𝑑 𝑥,𝑖 2  +𝑑 𝑥,𝑗  2  

4𝑙 𝑖,𝑗  
 , 𝑤𝑝𝑞 (𝑥2 −

𝑥𝑙𝑝.𝑞+𝑙𝑝,𝑞22) . 

𝐹3 𝑥 = 𝑚𝑖𝑛  𝑚𝑖𝑛  𝑖,𝑗  ∈𝐸,
(𝑖,𝑗 )≠(𝑝,𝑞)

 𝑤𝑖𝑗

  𝑙 𝑖,𝑗  +𝑑 𝑥,𝑖 +𝑑 𝑥,𝑗   
2
−2 𝑑 𝑥,𝑖 2  +𝑑 𝑥,𝑗  2  

4𝑙 𝑖,𝑗  
 , 𝑤𝑝𝑞 (𝑥2 −

𝑥𝑙𝑝.𝑞+𝑙𝑝,𝑞22) . 

 

Case when 𝑌𝑖𝑗  follows the exponential distribution with parameter  𝝀𝒊𝒋,  𝒊, 𝒋 ∈ 𝑬 : 

The probability density function is   

𝑓𝑌𝑖𝑗 (𝑦) =  
𝜆𝑖𝑗 𝑒

−𝜆𝑖𝑗 𝑦           ,              0 ≤ 𝑦 ≤ +∞

0          ,     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                      
  

In this case, the objective functions 𝐹𝑖 𝑥  , 𝑖 = 1,2,3,are given by  

𝐹1 𝑥 =
1

𝜆𝑖𝑗
2  𝑤𝑖𝑗 [𝜆𝑖𝑗  𝑥 − 𝑑 𝑥, 𝑗  𝑒−𝜆𝑖𝑗 𝑙 𝑖,𝑗  −  𝜆𝑖𝑗 𝑙 𝑖, 𝑗 + 2 𝑒−𝜆𝑖𝑗

𝑙 𝑖,𝑗  +𝑑 𝑥,𝑗  −𝑑 𝑥 ,𝑖 

2 + 𝑖,𝑗  ∈𝐸,
(𝑖,𝑗 )≠(𝑝,𝑞)

𝜆𝑖𝑗𝑑𝑥,𝑖+1𝑒𝜆𝑖𝑗𝑙𝑖,𝑗+𝑑𝑥,𝑗−𝑑𝑥,𝑖2 ]+(2𝑒−𝜆𝑖𝑗𝑥+𝜆𝑖𝑗𝑥−1). 

𝐹2 𝑥 =

𝑚𝑎𝑥  𝑚𝑎𝑥  𝑖,𝑗  ∈𝐸,
(𝑖,𝑗 )≠(𝑝,𝑞)

 𝑤𝑖𝑗 [𝜆𝑖𝑗  𝑥 − 𝑑 𝑥, 𝑗  𝑒−𝜆𝑖𝑗 𝑙 𝑖,𝑗  −  𝜆𝑖𝑗 𝑙 𝑖, 𝑗 + 2 𝑒−𝜆𝑖𝑗
𝑙 𝑖,𝑗  +𝑑 𝑥,𝑗  −𝑑 𝑥,𝑖 

2 +

𝜆𝑖𝑗𝑑𝑥,𝑖+1𝑒𝜆𝑖𝑗𝑙𝑖,𝑗+𝑑𝑥,𝑗−𝑑𝑥,𝑖2 ],  (2𝑒−𝜆𝑖𝑗𝑥+𝜆𝑖𝑗𝑥−1) . 

𝐹3 𝑥 =

𝑚𝑖𝑛  𝑚𝑖𝑛  𝑖,𝑗  ∈𝐸,
(𝑖,𝑗 )≠(𝑝,𝑞)

 𝑤𝑖𝑗 [𝜆𝑖𝑗  𝑥 − 𝑑 𝑥, 𝑗  𝑒−𝜆𝑖𝑗 𝑙 𝑖,𝑗  −  𝜆𝑖𝑗 𝑙 𝑖, 𝑗 + 2 𝑒−𝜆𝑖𝑗
𝑙 𝑖,𝑗  +𝑑 𝑥,𝑗  −𝑑 𝑥,𝑖 

2 +

𝜆𝑖𝑗𝑑𝑥,𝑖+1𝑒𝜆𝑖𝑗𝑙𝑖,𝑗+𝑑𝑥,𝑗−𝑑𝑥,𝑖2 ],  (2𝑒−𝜆𝑖𝑗𝑥+𝜆𝑖𝑗𝑥−1) . 

Due to the complicated forms of the objectives functions, finding closed forms of the optimal 

solution of problem  𝑃𝑘  , 𝑘 = 1,2,3 is quite an unreachable task. For illustration, we give an 

example. 

Example 1 

Let us consider the network in Fig. 3. The number next to each edge (𝑖, 𝑗)  in the network 

represents the length 𝑙 𝑖, 𝑗 . 𝑌𝑖𝑗 is taken to be uniformly distributed over the interval 

[0, 𝑙 𝑖, 𝑗 ] for every 𝑖, 𝑗 ∈ 𝐸 and 𝑤𝑖𝑗 = 1,  𝑖, 𝑗 ∈ 𝐸.  
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Figure 3. 

 

 

 

 

 

 

An algorithm for finding the global optimum of an undirected graph G can be simply 

described as follows. ( Apply the algorithm for each problem 𝑃𝑘 , 𝑘 = 1,2,3. ). 

Step 1 :  For each edge  𝑝, 𝑞  of E. find the local optimum𝑥(𝑝,𝑞)
∗  . 

Step 2 :  Among all the local optimums  𝑥(𝑝,𝑞)
∗ ,  𝑝, 𝑞 ∈ 𝐸, choose the one with the 

smallest𝐹𝑘 𝑥 𝑝,𝑞 
∗  for 𝑘 = 1,2 and greatest 𝐹𝑘 𝑥 𝑝,𝑞 

∗  for 𝑘 = 3 . That local optimum is also 

the global optimum 𝑥∗of G. 

Mathematica software was used to find the local optimums for each problem which are 

illustrated in the following tables: 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸𝑑𝑔𝑒 (𝑝, 𝑞) (1,2) (1,3) (2,3) (2,4) (3,5) (4,5) 

𝑥(𝑝,𝑞)
∗  2 0 0 0 0 0 

𝐹1(𝑥 𝑝,𝑞 
∗ ) 9.85 17.41 9.85 9.85 11.18 13.85 

𝐸𝑑𝑔𝑒 (𝑝, 𝑞) (1,2) (1,3) (2,3) (2,4) (3,5) (4,5) 

𝑥(𝑝,𝑞)
∗  2 4 0 0.031 0.75 0 

𝐹2(𝑥 𝑝,𝑞 
∗ ) 2.5 3.25 2.5 2.47 2.75 4.43 

𝐸𝑑𝑔𝑒 (𝑝, 𝑞) (1,2) (1,3) (2,3) (2,4) (3,5) (4,5) 

𝑥(𝑝,𝑞)
∗  2 4 0.5 0 0 0.5 

𝐹3(𝑥 𝑝,𝑞 
∗ ) 0.5 0.5 0.25 0.5 0.5 0.26 
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Summary of results: 

 The global optimum location of problem 𝑃1 is at node 2 with objective function value 

equal to 9.85. 

 The global optimum location of problem 𝑃2 is at node 2 with objective function value 

equal to 2.5. 

 The global optimum location of problem 𝑃3 is at node 2 or node 3 with objective 

function value equal to 0.5. 

 

2.2   Location of a moving facility: 

 

Let G = (𝑁, 𝐸) be an undirected network, where 𝑁 = {1,2, . . , 𝑛} is the set of nodes and 𝐸 is a 

set of undirected edges. The length of any edge (𝑖, 𝑗) is denoted by 𝑙(𝑖, 𝑗) and 𝑑(𝑖, 𝑗) is 

defined as the shortest distance between nodes 𝑖, 𝑗𝝐𝑁. 

Let {𝑌𝑖𝑗 = ;  𝑖, 𝑗 ∈ 𝐸} be a set of independent randomly distributed demands over edges       

{(𝑖 , 𝑗):  𝑖, 𝑗 ∈ 𝐸 } .  𝑓𝑌𝑖𝑗  𝑦  is the density function and 𝐹𝑌𝑖𝑗 (𝑦)  is the cumulative 

distribution function of 𝑌𝑖𝑗 ,  𝑖, 𝑗 ∈ 𝐸  . Let 𝑤𝑖𝑗  a positive weight associated with each edge 

 𝑖, 𝑗 ∈ 𝐸, and {S , D } two specified nodes of 𝑁.Suppose that there is a vehicle moving in the 

network along a path at constant velocity v, starting from some origin S and arriving at a 

destination located at D.  

The problem we address here is to determine the optimal path from S to D to this moving 

vehicle that continuously gives service over some time framework T to requests generated 

randomly over the edges.  The problem is studied by considering three objectives functions as 

follows 

 

 minimizes the weighted sum of the expected travel times between the moving facility 

and the random demands distributed over the edges. 

 

 minimizes the maximum weighted expected travel times between the moving facility 

and the random demands distributed over the edges. 

 

 maximizes the minimum weighted expected travel times between the moving facility 

and the random demands distributed over the edges. 

If we denote by  

X(t) : Position of the moving facility at time t . 

P : Set of all paths from S  to D. 

p : a path of the set P. 
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 The problems can be stated as: 

min𝑝∈𝑃(𝐹1 𝑥 =   𝑤𝑖𝑗 𝐸[𝑑 𝑋 𝑡  , 𝑌𝑖𝑗  𝑡∈𝑇𝑝
] 𝑖,𝑗  ∈𝐸 𝑑𝑡                                            (3) 

min𝑝∈𝑃(𝐹2 𝑥 = max(𝑖,𝑗 )∈𝐸{  𝑤𝑖𝑗𝐸 𝑑 𝑋 𝑡  , 𝑌𝑖𝑗    𝑑𝑡𝑡∈𝑇𝑝
}                                     (4) 

       max
𝑝∈𝑃

(𝐹3 𝑥 = min(𝑖,𝑗 )∈𝐸{  𝑤𝑖𝑗 𝐸[𝑑 𝑋 𝑡  , 𝑌𝑖𝑗  ]
𝑡∈𝑇𝑝

𝑑𝑡}                                   (5) 

 

where𝑇𝑝  represents the time spent by the moving facility to travel from S to D along the path 

p. Since 𝑇𝑝 =   𝑇𝑝(𝑘, 𝑙(𝑘,𝑙)∈𝑝 ), where𝑇𝑝(𝑘, 𝑙) is the time spent by the moving facility to 

travel from node 𝑘to node 𝑙along the path p, then 

 𝑤𝑖𝑗𝐸[𝑑 𝑋 𝑡  , 𝑌𝑖𝑗  ]
𝑡∈𝑇𝑝

𝑑𝑡 =   𝑤𝑖𝑗𝐸 𝑑 𝑋 𝑡  , 𝑌𝑖𝑗   𝑑𝑡
𝑡∈𝑇𝑝 (𝑘,𝑙)(𝑘,𝑙)∈𝑝

 

Let 𝑥 = 𝑋 𝑡  and suppose that facility is moving at constant speed v = 1 that is: 

v = 
𝑑𝑥

𝑑𝑡
 = 1                    𝑑𝑥 = 𝑑𝑡 

By using a change of variable from ttox, we have  

𝐸 𝑑 𝑋 𝑡 , 𝑌𝑖𝑗   =  𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑙(𝑖,𝑗 )

0

 

and therefore Problems (3) – (5) become 

 

𝑚𝑖𝑛
𝑝∈𝑃

    𝑤𝑖𝑗  𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑙(𝑖,𝑗 )

0(𝑖,𝑗 )∈𝐸

 𝑑𝑥
𝑙(𝑘,𝑙)

0

                          (6)

(𝑘,𝑙)∈𝑝

 

 

𝑚𝑖𝑛
𝑝∈𝑃

  𝑚𝑎𝑥
(𝑖,𝑗 )∈𝐸

{   𝑤𝑖𝑗 𝑑 𝑥, 𝑦 𝑓𝑌𝑝𝑞  𝑦 𝑑𝑦
𝑙(𝑖,𝑗 )

0

 𝑑𝑥}
𝑙(𝑘,𝑙)

0

                       (7)

(𝑘,𝑙)∈𝑝

 

 

𝑚𝑎𝑥
𝑝∈𝑃

  𝑚𝑖𝑛
(𝑖,𝑗 )∈𝐸

{   𝑤𝑖𝑗𝑑 𝑥, 𝑦 𝑓𝑌𝑝𝑞  𝑦 𝑑𝑦
𝑙(𝑖 ,𝑗 )

0

 𝑑𝑥
𝑙(𝑘,𝑙)

0

 }                      (8)

(𝑘,𝑙)∈𝑝

 

 

Consider problem (6). The following steps can be similarly applied to problems (7) and (8). 

 

Let𝑓 𝑘,𝑙  𝑥 =  𝑤𝑖𝑗  𝑑 𝑥, 𝑦 𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑙(𝑖,𝑗 )

0(𝑖,𝑗 )∈𝐸 ,  for 𝑥 ∈  𝑘, 𝑙 ,  

 

and let  𝐿 𝑘, 𝑙 =  𝑓 𝑘,𝑙  𝑥 𝑑𝑥
𝑙(𝑘,𝑙)

0
. Then Problem (6) can then be written as 

 

                             𝑚𝑖𝑛𝑝∈𝑃  𝐿(𝑘, 𝑙)(𝑘,𝑙)∈𝑝                                                       (9) 

 

If 𝐿(𝑘, 𝑙) is considered as the new length of edge (𝑘, 𝑙), (𝑘, 𝑙)𝝐𝐸 ,   then problem (9) 

represents the shortest path problem from node S to node D. 
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The lengths 𝐿 𝑘, 𝑙 , (𝑘, 𝑙)𝝐𝐸depend on the distance 𝑑 𝑥, 𝑦 , and according to section 2.1, are 

given by  

𝐿 𝑘, 𝑙 =    𝑤𝑖𝑗   (𝑦 + 𝑑 𝑥, 𝑖  )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑦 

0
+  (−𝑦 + 𝑑 𝑥, 𝑗 +

𝑙 𝑖,𝑗  

𝑦  𝑖,𝑗  ∈𝐸
(𝑖,𝑗 )≠(𝑘,𝑙)

𝑙(𝑘,𝑙)

0

𝑙𝑖,𝑗)𝑓𝑌𝑖𝑗𝑦𝑑𝑦𝑑𝑥+𝑤𝑘𝑙0𝑙(𝑘,𝑙)𝑥−𝑦𝑓𝑌𝑖𝑗𝑦𝑑𝑦                                                       (10) 

 

In problem (7), if we let  𝑓 𝑘,𝑙  𝑥 =  𝑚𝑎𝑥(𝑖,𝑗 )∈𝐸{   𝑤𝑖𝑗𝑑 𝑥, 𝑦 𝑓𝑌𝑝𝑞  𝑦 𝑑𝑦
𝑙(𝑖 ,𝑗 )

0
 }

𝑙(𝑘,𝑙)

0
,  

𝑥 ∈  𝑘, 𝑙 and   𝐿′ 𝑘, 𝑙 =  𝑓 𝑘,𝑙  𝑥 𝑑𝑥
𝑙(𝑘,𝑙)

0
, then Problem (7) can then be written as 

 

                          𝑚𝑖𝑛𝑝∈𝑃  𝐿′(𝑘, 𝑙)(𝑘,𝑙)∈𝑝                                                    (11) 

 

If 𝐿′(𝑘, 𝑙) is considered as the new length of edge (𝑘, 𝑙), (𝑘, 𝑙)𝝐𝐸, then problem (11) 

represents the shortest path problem from node S  to node D. 

 

The lengths 𝐿′ 𝑘, 𝑙 , (𝑘, 𝑙)𝝐𝐸are given by  

𝐿′ 𝑘, 𝑙 =  𝑚𝑎𝑥{ 𝑚𝑎𝑥
 𝑖,𝑗  ∈𝐸

(𝑖,𝑗 )≠(𝑘,𝑙)

{  𝑤𝑖𝑗   (𝑦 + 𝑑 𝑥, 𝑖  )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑦 

0
+  (−𝑦 + 𝑑 𝑥, 𝑗 +

𝑙 𝑖,𝑗  

𝑦 

𝑙(𝑘,𝑙)

0

𝑙𝑖,𝑗)𝑓𝑌𝑖𝑗𝑦𝑑𝑦}  ,𝑤𝑘𝑙0𝑙(𝑘,𝑙)𝑥−𝑦𝑓𝑌𝑖𝑗𝑦𝑑𝑦}𝑑𝑥                                                           (12) 

 

In problem (8), if we let  𝑓 𝑘,𝑙  𝑥 =  𝑚𝑖𝑛(𝑖,𝑗 )∈𝐸{   𝑤𝑖𝑗 𝑑 𝑥, 𝑦 𝑓𝑌𝑝𝑞  𝑦 𝑑𝑦
𝑙(𝑖,𝑗 )

0
 }

𝑙(𝑘,𝑙)

0
,  

𝑥 ∈  𝑘, 𝑙 and   𝐿′′  𝑘, 𝑙 =  𝑓 𝑘,𝑙  𝑥 𝑑𝑥
𝑙(𝑘 ,𝑙)

0
, then Problem (6) can then be written as 

 

                               𝑚𝑎𝑥𝑝∈𝑃  𝐿′′  𝑘, 𝑙 (𝑘,𝑙)∈𝑝                                          (13) 

 

If 𝐿′′  𝑘, 𝑙  is considered as the new length of edge (𝑘, 𝑙), (𝑘, 𝑙)𝝐𝐸, then problem (13) 

represents the longest path problem from node S  to node D. 

 

The lengths 𝐿′′  𝑘, 𝑙 , (𝑘, 𝑙)𝝐𝐸are given by  

𝐿′′  𝑘, 𝑙 =  𝑚𝑖𝑛{ 𝑚𝑖𝑛
 𝑖,𝑗  ∈𝐸

(𝑖,𝑗 )≠(𝑘,𝑙)

{  𝑤𝑖𝑗   (𝑦 + 𝑑 𝑥, 𝑖  )𝑓𝑌𝑖𝑗  𝑦 𝑑𝑦
𝑦 

0
+  (−𝑦 + 𝑑 𝑥, 𝑗 +

𝑙 𝑖,𝑗  

𝑦 

𝑙(𝑘,𝑙)

0

𝑙𝑖,𝑗)𝑓𝑌𝑖𝑗𝑦𝑑𝑦}  ,𝑤𝑘𝑙0𝑙(𝑘,𝑙)𝑥−𝑦𝑓𝑌𝑖𝑗𝑦𝑑𝑦}𝑑𝑥                                                           (14) 

 

Example 2  

Let us consider the network in Fig. 4. The number next to each edge (𝑖, 𝑗)  in the network 

represents the length 𝑙 𝑖, 𝑗 . The origin node of travel is node 1 and the destination is node 6. 
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𝑌𝑖𝑗  is taken to be uniformly distributed over the interval [0, 𝑙 𝑖, 𝑗 ] for every 𝑖, 𝑗 ∈ 𝐸 and 

𝑤𝑖𝑗 = 1,  𝑖, 𝑗 ∈ 𝐸.  

 

 

 

 

 

 

 

 

 

 

 

Mathematica software was used to compute the new lengths 

𝐿 𝑖, 𝑗 , 𝐿′ 𝑖, 𝑗 , and 𝐿′′  𝑖, 𝑗 , given by  10 ,  12 , and  14 , for every edge 𝑖, 𝑗 of 𝐸. The 

following table gives the new lengths.  

 

Consequently,  

 The optimal minisum path is𝑝∗ =(1 , 3 ,4, 6)  and the objective value is 71. 

 The optimal minimax path is 𝑝∗ =(1 , 3 , 4 , 6)  and the objective value is 13.35. 

 The optimal maximin path is 𝑝∗ =(1 , 2 , 5 , 4 , 3 , 6)  and the objective value is 

12.67. 

 

Case of maximin location of a moving facility with fixed demands : 

The problem we address here is to determine the optimal path from S to D of a moving 

vehicle that continuously gives service over some time framework T  to fixed demand nodes. 

 The problem is   

maximizes the minimum weighted travel times between the moving facility and the 

demand nodes. 

𝐸𝑑𝑔𝑒 (𝑖, 𝑗) (1,2) (1,3) (2,4) (2,5) (3,4) (3,6) (4,5) (4,6) (5,6) 

𝐿(𝑖, 𝑗) 101.1 21.46 14.17 70.72 35.4 136.08 16.01 16.14 38.54 

𝐿′(𝑖, 𝑗) 17.66 4 4.01 14.22 6.1 23.94 3.25 3.25 8.01 

𝐿′′ (𝑖, 𝑗) 4.12 0.33 0.5 2.46 0.99 4.7 0.33 0.33 1.2 

Figure 4 
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Following the same assumptions and analysis as in section 2.2, the problem can be stated as 

follows: 

𝑚𝑎𝑥𝑝∈𝑃( [ 𝑚𝑖𝑛𝑘𝜖𝑁 {𝑤𝑘 𝑑 𝑥, 𝑘 }𝑑𝑥
𝑙(𝑖 ,𝑗 )

0 𝑖,𝑗  𝜖𝑝 ])                                             

𝑤𝑖  is a fixed demand from node 𝑖  and 𝑑 𝑥, 𝑘 = 𝑚𝑖𝑛 𝑥 + 𝑑 𝑖, 𝑘 ,−𝑥 + 𝑙(𝑖, 𝑗 + 𝑑(𝑗, 𝑘).  

 If we let  𝐿  𝑖, 𝑗 =    𝑚𝑖𝑛𝑘𝜖𝑁 {𝑤𝑘 𝑑 𝑥, 𝑘 }𝑑𝑥
𝑙(𝑖 ,𝑗 )

0
, then problem (13) becomes  

                                  𝑚𝑎𝑥𝑝∈𝑃  𝐿  𝑖, 𝑗 (𝑘,𝑙)∈𝑝                                                        

 

If 𝐿  𝑖, 𝑗  is considered as the new length of edge (𝑖, 𝑗), (𝑖, 𝑗)𝝐𝐸 , then problem (14) represents 

the longest path problem from node S  to node D. 

 

Suppose w.o.l.o.g that 𝑤𝑘  = 1 for all 𝑘 ∈  𝑁, then 

𝐿 (𝑖, 𝑗)=  min𝑘𝜖𝑁 { 𝑑  𝑥, 𝑘 }𝑑𝑠
𝑙(𝑖,𝑗 )

0
,  where 𝑁 = 𝑁1 ∪ 𝑁2, 𝑁1 =  𝑁\{𝑖}  , 𝑁2 =  𝑁\{𝑗} 

Let 𝑑𝑖 = 𝑚𝑖𝑛𝑘𝜖𝑁1
{𝑑 𝑖, 𝑘 }    and     𝑑𝑗 = 𝑚𝑖𝑛𝑘𝜖𝑁2

{𝑑 𝑗, 𝑘 }, then 

𝑚𝑖𝑛
𝑘𝜖𝑁

{𝑑 𝑥, 𝑘 } = min 𝑥 + 𝑑𝑖  , −𝑥 + 𝑙 𝑖, 𝑗 + 𝑑𝑗  ,             0 ≤ 𝑥 ≤ 𝑙(𝑖, 𝑗) 

Let   𝑎𝑖𝑗  =   
𝑙 𝑖 ,𝑗  +𝑑𝑗−𝑑𝑖

2
. 𝐿  𝑖, 𝑗 is given according by   

 

𝐿  𝑖, 𝑗 =

 
  
 

  
 

𝑙2(𝑖, 𝑗)

2
 +  𝑑𝑗 𝑙 𝑖, 𝑗 ,                 𝑖𝑓   𝑎𝑖𝑗 ≤ 0

𝑙2(𝑖, 𝑗)

2
+ 𝑑𝑗 𝑙 𝑖, 𝑗 − 𝑎𝑖𝑗

2 ,         𝑖𝑓  0 < 𝑎𝑖𝑗 < 𝑙 𝑖, 𝑗 

𝑙2(𝑖, 𝑗)

2
 +  𝑑𝑖 𝑙 𝑖, 𝑗 ,          𝑖𝑓  𝑎𝑖𝑗 ≥  𝑙 𝑖, 𝑗 

  

 

Example 3 Let us consider the network in Fig. 5. The number next to each edge (𝑖, 𝑗)  in the 

network represents the length 𝑙 𝑖, 𝑗 .The origin node of travel is node 1 and the destination is 

node 7.  

Excel solver is used to compute the new lengths 𝐿  𝑖, 𝑗  for the following network : 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following table gives the new lengths.  

The maximin optimal path for the moving facility is given by the longest path from node 1 to 

node 7, that is 𝑝∗ =  1 , 2 , 3 , 5, 7  with total length 50. 

3The conclusion:  

In this paper, I studied a twofold problem. The first one is concerned with finding the optimal 

location of a single facility in a network with demands randomly distributed over the edges. 

The second problem is about finding the optimal travel path for a service vehicle, which 

moves between two specified nodes through a network and interacts with a number of 

requests for service that are generated randomly over the edges. Servicing the random 

demands is performed over all instants of time during the travel period. I have determined 

optimal solutions to the stated problems numerically. Future work might be, the possibility of 

determining optimal solutions to the problems analytically and under set restriction. 
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