Restructuring debt proposal in three hypothetical scenarios: Equal payments, different amounts and unknown payments

Elena, Moreno-García ${ }^{1}$, Arturo, García-Santillán ${ }^{2}$, Agustín, Bermúdez-Pérez ${ }^{3}$, Paulo César, Almeida-Fernández ${ }^{4}$
${ }^{1}$ Researcher at Universidad Cristóbal Colón, Veracruz MÉXICO
${ }^{2}$ Researcher at Universidad Cristóbal Colón, Veracruz MÉXICO
${ }^{3}$ Master program student at Universidad Cristóbal Colón
${ }^{4}$ Master program student at Universidad Cristóbal Colón

Abstract

To acquire products or services, people used to sign some promissory notes with different maturities. Derived from the potential problems of illiquidity, the need to renegotiate debts arises. Several methods are used to do this. In this paper it is presented a proposal with three hypothetical scenarios from modeling with equivalent equations. The aim is to set a practical methodology that allows identify a factor that could be used to calculate a new value of debt scheme, and furthermore, integrate the variables such as time, interest rate, coefficients, original value scheme and new value scheme. Results show that in the new payment scheme necessarily the creditor will have a benefit for getting an interest in debt restructuring, however the debtor wins too, getting a deferral through time, allowing a better management of his cash flow, improving the administration of his working capital, and generating better indicators of solvency and liquidity.

Keywords: Debt; Original value scheme; New value scheme; Equal payments; Promissory notes; Restructuring debt.

1. Introduction

Currently, one of the most frequent financial problems to which enterprises are facing, is the lack of funds to finance their current activities, either by the lack of charging customers or the costs incurred by normal operation of the enterprises, are increasing, coupled with this, inflation that affects the prices of the raw material, among other factors.

The economic situation where the country finds itself at the moment has caused uncertainty for the purchase and sale of some products or services. This brings a reduction in sales and therefore cash flow decreased because of less income. All this becomes an element which makes it more difficult to managing collection of accounts receivable, hence, also incurs non-payment of the debts owed to the suppliers or creditors

This may unchain a multiplier effect of debt, i.e. derived from non-payment; default interest is also generated, in addition to interest usually charged by creditors for extending credit in the acquisition of inputs, raw materials or products. Financial managers in enterprises have the authority to take financial decisions, because they are the responsible for finding practical solutions to the possible problems lack of liquidity and therefore, the non-payment of their liabilities incurred with their suppliers or creditors. All this, with the aim of overcomes the obstacles that appear by the lack of economic resources.

Following the proposals of García-Santillán and Vega-Lebrún (2008), García-Santillán, Venegas-Martínez and Escalera-Chávez (2014), in this paper a hypothetical model for a debt restructuring is proposed. On the assumption that the company presents an unfavorable event of illiquidity that would prevents pay their liabilities incurred in previous periods. This proposal is conditioned upon the creditor is willing to restructure debt, giving more time to the debtor in order to meet its commitments.

Review of Literature

About the issue of debt restructuring, we must first understand what is or where it came from, and later talk about a model of restructuring, as part of the strategy, all this, on the assumption that the debtor is facing a lack of liquidity, and derived from it, to the potential default in payment of the liabilities incurred. Therefore, the debt, we may understand as the link through which the debtor and creditor are linked as a result of some operation of purchase and sale on credit or financing. The debtor is obliged to pay to the creditor, financed capital with interest derived from this financial transaction as part of the agreement which they have signed between they and which also, the economic benefit is the object of the obligation assumed (García-Santillán et al, 2008; García-Santillán, VenegasMartínez and Escalera-Chávez, 2014).

Although it is true, the financing strategy is recommended to support the operation of enterprises, should also be considered at any moment some variables such as: the financial situation of the company, the profitability margins of the company and parallel the interest rates prevailing at the time of contracting debt, among other factors. A high level of indebtedness is appropriate only when the rate of return on total assets of the company is higher than the average cost of capital. In other words, if the company works with borrowed money, is good, whenever a net return than the interests that have to pay for financed money is achieved (Álvarez, 2015).

Debt indicators are designed to measure to what degree and in what way the creditors are participating in the financing of the company. Likewise, it seeks to identify their risk: the creditors and owners, and determine the convenience or inconvenience of a particular level of indebtedness for the company. The problems begin when the company requests and acquires a larger loan amount to which can actually pay, i.e. the profitability of the enterprise not enough to cover both principal and accrued interest.

The excessive debt is defined as the status of "consumer who, although not definitively be insolvent, is not able to meet their debts according to a rational plan of revenues" (Krausz, 2005). Another definition is "Excessive debt poses a number of serious risks to your business. While financing is a common way to raise capital, too much debt imposes short-term and long-term financial burdens on your business. Finding the right balance between debt capital and equity investing is a core financial matter for any business" (Kokemuller, 2015).

About credit cards, Taylor (2015) makes an approach about how getting rid of the excessive credit card debt. Refers that if debtor try to eliminate his credit card debt, then should follow the next six step plan to do this: "Do whatever it takes to stop using the credit cards; Write down your current credit card debts; Prioritize them based on balance or interest rate; Start using every extra dollar in your budget and pay the first card off; Repeat that last step until all your cards are paid off; Enjoy being in control of your credit card debt" (sic).

In the Mexican context, the National Commission for the Protection and Defense of Users of Financial Services (Comisión Nacional para la Protección y Defensa de los Usuarios de Servicios Financieros) defines debt restructuring as "The modification of established credit terms for the benefit of the debtor when he says to the institution, the possibility of non-payment and to comply with the terms agreed, or because he would like to take new financial market conditions that most favor it"(CONDUSEF, 2015).
It is important to note that the debtor should permanently monitoring their cash flows, to avoid falling into the nonpayment of debts to the creditors and thereby avoid legal recovery actions, since the creditors will do everything necessary to recover the loan granted and the interests specified in the contract of funding. Hence, it is essential that in case of possible non-payment to consider the rapprochement with his creditor, in order to reach an agreement in which they carried out a debt restructuring with new payment schemes, suitable to the cash flow of the company, but mainly, the capacity to pay and times where they consider that they may do.

With the above exposed, and being able to develop a financial model with equivalent equations, it is necessary to propose an hypothetical case of a company seeking to restructure debt, considering that the company has suffered adjustments in their cash flows and therefore, cannot meet its commitments.

Methodology

Assuming that a year before the focal date carried out an agreement to restructure debt with all the promissory notes overdue and also, with those who have not expired, because the cash flow forecasting is not enough to pay debt (see table 1).

The data are following:

Table 1. ORIGINAL VALUE SCHEME ($O_{V S}$)

Promissory notes (PN)	Overdue or not expired	Date	Days	Interest rate	Amount
1	bfd	15/04/2014	320	Eir	\$450.00
2	$b f d$	08/05/2014	297	Eir	\$270.00
3	$b f d$	25/05/2014	280	Eir	\$125.00
4	$b f d$	23/08/2014	190	Eir	\$90.00
5	bfd	12/10/2014	140	Eir	\$197.00
6	bfd	10/11/2014	111	Eir	\$88.00
7	bfd	11/12/2014	80	Eir	\$245.00
8	bfd	31/12/2014	60	Eir	\$89.00
9	$b f d$	29/01/2015	31	Eir	\$156.00
10	$f d$	01/03/2015	0		\$50.00
11	afd	22/03/2015	21	Rir	\$171.50
12	afd	27/05/2015	87	Rir	\$152.00
13	afd	30/06/2015	121	Rir	\$184.00
14	afd	09/08/2015	161	Rir	\$322.00
15	afd	07/09/2015	190	Rir	\$156.00
16	afd	08/10/2015	221	Rir	\$190.00
17	afd	28/11/2015	272	Rir	\$87.50
18	afd	16/12/2015	290	Rir	\$47.00
19	afd	16/01/2016	321	Rir	\$150.00
20	afd	24/06/2016	481	Rir	\$450.00
					\$3,670.00

Where: bff before focal date; aff after focal date; $f f$ focal date;
Eir Effective interest rate; Rir Real interest rate
Source: own

The time line as follow:

OVS
days
PN

before focal date bfd									fd	after focal day afd									
320	297	280	190	140	111	80	60	31	0	21	87	121	161	190	221	272	290	321	481
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The debtor seeks to be financed and to do this, he presents to his creditor a new scheme of payments, which include the amounts and date to pay and at the end, leaves only one payment in approximately 30% of total debt (table 2).
The nominal interest rate is 18.5% compounded every 21 days, for all cases, with an inflation rate of 2.95%, so it should calculate the effective interest rate and the real interest rate. Should be calculated the Original Scheme Value with the effective interest rate for overdue promissory notes and a real interest rate in the case of any promissory notes that not yet mature in its term (table 3).
The hypothetical case to solve is presented in three scenarios:
The first hypothetical scenario with 20 equal payments (table 3), the second hypothetical scenario with different amounts and one payment at the end of the period (table 4), where the amount is unknown and therefore must be calculated (PN-20 as an unknown payment and should to solve), and the last hypothetical scenario with different amounts and three unknown payments (table 5), one at the beginning, another in the payment 12 and another at the end of the scheme ($\mathrm{PN}-1, \mathrm{PN}-12, \mathrm{PN}-20$ as an unknown payment and should to solve).

Table 2. NEW VALUE SCHEME ($N_{V S}$)

Promissory notes (PN)	Overdue or not expired	date	Days	Interest rate
1	bfd	$05 / 05 / 2014$	300	Eir
2	bfd	$04 / 07 / 2014$	240	Eir
3	bfd	$13 / 08 / 2014$	200	Eir
4	bfd	$12 / 09 / 2014$	170	Eir
5	bfd	$01 / 12 / 2014$	90	Eir
6	bfd	$10 / 01 / 2015$	50	Eir
7	bfd	$14 / 02 / 2015$	15	Eir
8	fd	$01 / 03 / 2015$	0	
9	afd	$31 / 03 / 2015$	30	Rir
10	afd	$30 / 04 / 2015$	60	Rir
11	afd	$30 / 05 / 2015$	90	Rir
12	afd	$29 / 08 / 2015$	181	Rir
13	afd	$27 / 10 / 2015$	240	Rir
14	afd	$06 / 12 / 2015$	280	Rir
15	afd	$05 / 01 / 2016$	310	Rir
16	afd	$14 / 02 / 2016$	350	Rir
17	afd	$15 / 03 / 2016$	380	Rir
18	afd	$24 / 04 / 2016$	420.75	Rir
19	afd	$24 / 05 / 2016$	450.5	Rir

afd
12/10/2016
591
Where: $b f f$ before focal date; aff after focal date; ff focal date;
Eir Effective interest rate; Rir Real interest rate

Source: own

The time line as follow:

before focal date bfd							$f d$		after focal day afd											
300	240	200	170	90	50	15		0	30	60	90	181	240	280	310	350	380	420.75	450.5	591
1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17	18	19	20

Data Analysis

Scenario 1
To become $N_{i r}$ in its effective rate, we must calculate $E_{i r}$ (we utilized effective rate to accumulation with all promissory notes overdue). Also to become $N_{i r}$ in its Real interest rate, we must calculate $R_{i r}$

$$
E_{i r}=\left[\left(1+N_{i r} / m\right)^{t / m}-1\right] * 100 \quad \text { and } \quad R_{i r}=\frac{\left(E_{i r}-I_{n l}\right)}{\left(1+I_{n l}\right)} * 100
$$

Where: $E_{i r}=$ effective interest rate; $N_{i r}=$ nominal interest rate; $t=$ time and $m=$ type of capitalizations; $I_{n l}=$ Inflation rate

$$
\begin{array}{ll}
E_{i r}=\left[\left(1+N_{i r} / m\right)^{t / m}-1\right] * 100 & R_{i r}=\frac{\left(E_{i r}-I_{n l}\right)}{\left(1+I_{n l}\right.} * 100 \\
E_{i r}=\left[(1+[0.185 * 21 / 365)]^{355 / 21}-1\right] * 100 & R_{i r}=\frac{(0.202042-0.0295)}{(1+0.0295)} * 100 \\
E_{i r}=\left[(1+[0.01064384)]^{17.3809524}-1\right] * 100 & \\
E_{i r}=\left[(1.01064384)^{17.3899524}-1\right] * 100 & R_{i r}=\frac{(0.172542)}{(1.0295)} * 100 \\
E_{i r}=[1.2020420-1] * 100 & R_{i r}=(0.1675979) * 100 \\
E_{i r}=0.2020420 * 100 & R_{i r}=16.75979 \% \\
E_{i r}=20.20420 &
\end{array}
$$

To calculate $\boldsymbol{O}_{V S}$, we utilize for all promissory notes overdue $\sum P N_{b f d}$ the effective interest rate $E_{i r}$ in its capitalization format and for all promissory notes that not overdue $\sum P N_{a f d}$, we utilize $R_{i r}$ in its capitalization format as well. Therefore, we have:

$$
O_{V S}=\sum P N_{b f d}\left[1+\left(\frac{E_{i r}}{t} * m\right)\right]^{t / m}+P N_{f d}+\frac{\sum P N_{a f d}}{\left[1+\left(\frac{R_{i r}}{t} * m\right)\right]^{t / m}}
$$

Solving, we have:

$$
O_{V S}=\$ 450(1.0116243)^{15.2380952}+\$ 270(1.0116243)^{14.1485711}+\$ 125(1.0116243)^{13.33333333}+\ldots
$$

$$
\$ 90(1.0116243)^{9.04719}+\$ 197(1.0116243)^{6.66666667}+\$ 88(1.0116243)^{5.2857143}+\$ 245(1.0116243)^{3.8095238}+\ldots
$$

$$
\ldots+\$ 89(1.0116243)^{2.8571429}+\$ 156(1.0116243)^{1.4711095}+\$ 50+\frac{\$ 171.5}{(1.0096426)^{1}}+\frac{\$ 152}{(1.0096426)^{4.428571}}+\ldots
$$

$$
\ldots+\frac{\$ 184}{(1.0096426)^{5.7619048}}+\frac{\$ 322}{(1.0096426)^{7.66666667}}+\frac{\$ 156}{(1.0096426)^{9.047619}}+\frac{\$ 190}{(1.0096426)^{10.5238095}}+\frac{\$ 87.50}{(1.0096426)^{12.952381}}+\ldots
$$

$$
\ldots+\frac{\$ 47}{(1.0096426)^{13.8095238}}+\frac{\$ 150}{(1.0096426)^{15.2857143}}+\frac{\$ 450}{(1.0096426)^{22.904719}}
$$

$$
\begin{aligned}
& O_{V S}=\sum P N_{b f d}\left[1+\left(\frac{E_{i r}}{t} * m\right)\right]^{t / m}+P N_{f d}+\frac{\sum P N_{a f d}}{\left[1+\left(\frac{R_{i r}}{t} * m\right)\right]^{t / m}} \\
& O_{V S}=\$ 450\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{320 / 21}+\$ 270\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{297 / 21}+\$ 125\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{288 / 21}+\ldots \\
& \ldots+\$ 90\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{199 / 21}+\$ 197\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{140 / 21}+\$ 88\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{111 / 21}+\ldots \\
& \ldots+\$ 245\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{80 / 21}+\$ 89\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{60 / 21}+\$ 156\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{31 / 21}+\ldots \\
& \ldots+\$ 50+\frac{\$ 171.5}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{21 / 21}}+\frac{\$ 152}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{87 / 21}}+\frac{\$ 184}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{12 / 21}}+\ldots \\
& \ldots+\frac{\$ 322}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{161 / 21}}+\frac{\$ 156}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{199 / 21}}+\frac{\$ 190}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{221 / 21}}+\ldots \\
& \ldots+\frac{\$ 87.5}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{227 / 21}}+\frac{\$ 47}{\left.[1.0116243) 1+\left(\frac{0.1675979}{365} * 21\right)\right]^{290 / 21}}+\frac{\$ 150}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{321 / 21}}+\ldots \\
& \ldots+\frac{\$ 450}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{481 / 21}}
\end{aligned}
$$

$O_{V S}=\$ 450(1.1925699)+\$ 270(1.1775696)+\$ 125(1.1666038)+\$ 90(1.1102283)+\$ 197(1.0800943)+\ldots$
$\ldots+\$ 88(1.0629928)+\$ 245(1.0450112)+\$ 89(1.033572)+\$ 156(1.0172071)+\$ 50+\frac{\$ 171.5}{(1.0096426)}+\ldots$
$\ldots+\frac{\$ 152}{(1.0405574)}+\frac{\$ 184}{(1.0568508)}+\frac{\$ 322}{(1.0763465)}+\frac{\$ 156}{(1.0907054)}+\frac{\$ 190}{(1.1062664)}+\frac{\$ 87.50}{(1.1323514)}+\ldots$
$\ldots+\frac{\$ 47}{(1.1417039)}+\frac{\$ 150}{(1.1579925)}+\frac{\$ 450}{(1.2458318)}$
$O_{V S}=\$ 536.66+\$ 317.94+\$ 145.83+\$ 99.92+\$ 212.78+\$ 93.54+\$ 256.03+\$ 91.99+\$ 158.68+\$ 50.00+\ldots$ $\ldots+\$ 169.86+\$ 146.08+\$ 174.10+\$ 299.16+\$ 143.03+\$ 171.75+\$ 77.27+\$ 41.17+\$ 129.53+\$ 361.20$ $O_{V S}=\$ 3,676.52$

Now, we calculate $N_{V S} 20$ equal payments (which mean that every payment has value 1)

$$
N_{V S}=\sum 1_{b f d}\left[1+\left(\frac{E_{i r}}{t} * m\right)\right]^{t / m}+1_{f d}+\frac{\sum 1_{a f d}}{\left[1+\left(\frac{R_{i r}}{t} * m\right)\right]^{t / m}}
$$

$$
\begin{aligned}
& N_{V S}=1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{300 / 21}+1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{240 / 21}+1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{200 / 21}+\ldots \\
& \ldots+1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{176 / 21}+1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{90 / 21}+1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{50 / 21}+\ldots \\
& \ldots+1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{15 / 21}+1+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{30 / 21}}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{6 / 21}}+\ldots \\
& \ldots+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{90 / 21}}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{181 / 21}}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{240 / 21}}+\ldots \\
& \ldots+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{280 / 21}}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{310 / 21}}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{350 / 21}}+\ldots \\
& \ldots+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{380 / 21}}+\frac{1}{\left.[1.0116243) 1+\left(\frac{0.1675979}{365} * 21\right)\right]^{420.75 / 21}+\ldots} \\
& \frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]} \\
& {\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{591 / 21}}
\end{aligned}
$$

$$
\begin{aligned}
& N_{V S}=1(1.0116243)^{14.2857143}+1[1.0116243]^{11.4285714}+1[1.0116243]^{9.5238095}+\ldots \\
& \ldots+1[1.0116243]^{8.0952381}+1[1.0116243]^{4.2857143}+1[1.0116243]^{2.3809524}+\ldots \\
& \ldots+1[1.0116243]^{0.7142857}+1+\frac{1}{[1.0096426]^{1.4285714}}+\frac{1}{[1.0096426]^{2.8571129}}+\ldots \\
& \ldots+\frac{1}{[1.0096426]^{4.2857143}}+\frac{1}{[1.0096426]^{8.6190476}}+\frac{1}{[1.0096426]^{11.4285714}}+\ldots \\
& \ldots+\frac{1}{[1.0096426]^{1.33333333}}+\frac{1}{[1.0096426]^{14.7619048}}+\frac{1}{[1.0096426]^{16.6666667}}+\ldots \\
& \ldots+\frac{1}{[1.0096426]^{18.0952381}}+\frac{1}{[1.0096426]^{20.0357143}}+\frac{1}{[1.0096426]^{21.452381}}+\ldots \\
& \ldots+\frac{1}{[1.0096426]^{28.1428571}}
\end{aligned}
$$

$$
N_{V S}=1(1.1795154)+1(1.141203)+1(1.1163552)+1(1.0980751)+1(1.0507783)+\ldots
$$

$$
\ldots+1(1.0278994)+1(1.0082894)+1+\frac{1}{(1.0138036)}+\frac{1}{(1.0277976)}+\frac{1}{(1.0419849)}+\ldots
$$

$$
\ldots+\frac{1}{(1.0862288)}+\frac{1}{(1.1159134)}+\frac{1}{(1.1364986)}+\frac{1}{(1.1521863)}+\frac{1}{(1.1734406)}+\ldots
$$

$$
\frac{1}{(1.1896382)}+\frac{1}{(1.2119988)}+\frac{1}{(1.2285883)}+\frac{1}{(1.3100566)}
$$

$$
N_{V S}=1.1795154+1.141203+1.1163552+1.0980751+1.0507783+1.0278994+\ldots
$$

$$
\ldots+1.0082894+150+0.9863843+0.9729542+0.9597068+0.9206164+\ldots
$$

$$
\ldots+0.8961269+0.8798955+0.8679152+0.8521948+0.8405917+0.8250833+\ldots
$$

$$
\ldots+0.8139423+0.7633258
$$

$$
N_{V S}=19.2008530
$$

To calculate Y (equal payments) $Y=\frac{O_{V S}}{N_{V S}} Y=\frac{\$ 3,676.52}{19.2008530} Y=\$ 191.48$
The new scheme payments is as follow (considering equal payments)

Table 3. New Value Scheme ($N_{V S}$)

Promissory notes (PN)	Overdue or not expired	date	Days	Interest rate	Y
1	bfd	05/05/2014	300	Eir	\$191.48
2	bfd	04/07/2014	240	Eir	\$191.48
3	bfd	13/08/2014	200	Eir	\$191.48
4	bfd	12/09/2014	170	Eir	\$191.48
5	bfd	01/12/2014	90	Eir	\$191.48
6	bfd	10/01/2015	50	Eir	\$191.48
7	bfd	14/02/2015	15	Eir	\$191.48
8	fd	01/03/2015	0		\$191.48
9	afd	31/03/2015	30	Rir	\$191.48
10	afd	30/04/2015	60	Rir	\$191.48
11	afd	30/05/2015	90	Rir	\$191.48
12	afd	29/08/2015	181	Rir	\$191.48
13	afd	27/10/2015	240	Rir	\$191.48
14	afd	06/12/2015	280	Rir	\$191.48
15	afd	05/01/2016	310	Rir	\$191.48
16	afd	14/02/2016	350	Rir	\$191.48
17	afd	15/03/2016	380	Rir	\$191.48
18	afd	24/04/2016	420.75	Rir	\$191.48
19	afd	24/05/2016	450.5	Rir	\$191.48
20	afd	12/10/2016	591	Rir	\$191.48
				Total	\$3,829.54

Source: own
The time line as follow:

NVS
days
PN

before focal date						
300	240	200	170	90	50	15
1	2	3	4	5	6	7

Scenario 2
Effective interest rate $E_{i r}=20.20420 \%$
Real interest rate $R_{i r}=16.75979 \%$
We utilize the value of $O_{V S}$ which calculate in scenario $1 O_{V S}=\$ 3,676.52$
To calculate $N_{V S 20}$

$$
\begin{aligned}
& N_{V S 20}=\frac{\sum 1_{a f d}}{\left[1+\left(\frac{R_{i r}}{t} * m\right)\right]^{t / m}} N_{V S 20}=\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{591 / 21}} \\
& N_{V S 20}=+\frac{1}{[1.0096426]^{28.1428571}} \\
& N_{V S 20}=\frac{1}{(1.3100566)}=N_{V S 20}=0.7633258
\end{aligned}
$$

To calculate Y_{20}

$$
\begin{aligned}
Y_{20}= & \frac{O_{V S}-\left(\sum P N_{1} \ldots . \mathrm{PN}_{19}\right)}{N_{V S 20}} \\
& \$ 3,676.52-(\$ 85.00+\$ 70.00+\$ 25.00+\$ 60.00+\$ 111.00+\$ 120.00 \ldots+ \\
& \ldots+\$ 145.00+\$ 150.00+\$ 97.00+\$ 150.00+\$ 121.00+\$ 282.00+\$ 124.00 \ldots+ \\
Y_{20}= & \ldots+\$ 348.00+\$ 176.00+\$ 290.00+\$ 187.50+\$ 67.00+\$ 45.00) \\
Y_{20}= & \frac{\$ 3676.52-\$ 2653.50}{0.7633258} \\
Y_{20} & \$ 1,026.02 \\
Y_{20}= & \$ 1,340.21
\end{aligned}
$$

The new payments scheme, considering the last payment as unknown, is as follow:
Table 4. New Value Scheme ($N_{V S}$)

Promissory notes (PN)	Overdue or not expired		date	Days	Interest rate	Amount
$\mathbf{1}$	aff	$05 / 05 / 2014$	300	Y		
$\mathbf{2}$	aff	$04 / 07 / 2014$	240	Eir	$\$ 85.00$	$\mathbf{\$ 8 5 . 0 0}$
$\mathbf{3}$	aff	$13 / 08 / 2014$	200	Eir	$\$ 25.00$	$\mathbf{\$ 2 5 . 0 0}$
$\mathbf{4}$	aff	$12 / 09 / 2014$	170	Eir	$\$ \mathbf{6 0 . 0 0}$	$\mathbf{\$ 6 0 . 0 0}$
$\mathbf{5}$	aff	$01 / 12 / 2014$	90	Eir	$\mathbf{\$ 1 1 1 . 0 0}$	$\mathbf{\$ 1 1 1 . 0 0}$
$\mathbf{6}$	aff	$10 / 01 / 2015$	50	Eir	$\mathbf{\$ 1 2 0 . 0 0}$	$\mathbf{\$ 1 2 0 . 0 0}$
$\mathbf{7}$	aff	$14 / 02 / 2015$	15	Eir	$\mathbf{\$ 1 4 5 . 0 0}$	$\mathbf{\$ 1 4 5 . 0 0}$
$\mathbf{8}$	ff	$01 / 03 / 2015$	0		$\mathbf{\$ 1 5 0 . 0 0}$	$\mathbf{\$ 1 5 0 . 0 0}$
$\mathbf{9}$	dff	$31 / 03 / 2015$	30	Rir	$\mathbf{\$ 9 7 . 0 0}$	$\mathbf{\$ 9 7 . 0 0}$

10	$d f f$					
		30/04/2015	60	Rir	\$150.00	$\$ 150.00$
11	dff	30/05/2015	90	Rir	\$121.00	\$121.00
12	dff	29/08/2015	181	Rir	\$282.00	\$282.00
13	dff	27/10/2015	240	Rir	\$124.00	\$124.00
14	$d f f$	06/12/2015	280	Rir	\$348.00	\$348.00
15	$d f f$	05/01/2016	310	Rir	\$176.00	\$176.00
16	$d f f$	14/02/2016	350	Rir	\$290.00	\$290.00
17	$d f f$	15/03/2016	380	Rir	\$187.50	\$187.50
18	$d f f$	24/04/2016	420.75	Rir	\$67.00	\$67.00
19	$d f f$	24/05/2016	450.5	Rir	\$45.00	\$45.00
20	$d f f$	12/10/2016	591	Rir		\$1,340.21
					Total	\$3,993.71

Source: own
The time line as follow:
NVS

before focal date						
300	240	200	170	90	50	15
1	2	3	4	5	6	7

Scenario 3
Effective interest rate $E_{i r}=20.20420 \%$
Real interest rate $R_{i r}=16.75979 \%$
We utilize the value of $O_{V S}$ which calculate in scenario $1 O_{V S}=\$ 3,676.52$
To calculate $N_{V S I, 12,20}$

$$
N_{V S: 1,12,20}=\sum S\left[1+\left(\frac{E_{i r}}{t} * m\right)\right]^{t / m}+\ldots . .+\frac{\sum S}{\left[1+\left(\frac{R_{i r}}{t} * m\right)\right]^{t / m}}
$$

$N_{V S: 1,12,20}=1\left[1+\left(\frac{0.202042}{365}\right) * 21\right]^{300 / 21}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{181 / 21}}+\frac{1}{\left[1+\left(\frac{0.1675979}{365} * 21\right)\right]^{591 / 21}}$
$N_{V S S, 112,20}=1(1.0116243)^{14.2857143}+\frac{1}{[1.0096426]^{8.6190476}}+\frac{1}{[1.0096426]^{28.1428571}}$

$$
\begin{aligned}
& N_{V S: 1,12,20}=1(1.1795154)+\frac{1}{(1.0862288)}+\frac{1}{(1.3100566)} \\
& N_{V S: 1,12,20}=1.1795154+0.9206164+0.7633258 \\
& N_{V S: 1,12,20}=2.8634576
\end{aligned}
$$

To calculate $Y_{1,12,20}$
$Y_{1,12,20}=\frac{O_{V S}-\left[\left(\sum P N_{2} \ldots . . P N_{11}\right)\right]+\left[\left(\sum P N_{13} \ldots . . P N_{19}\right)\right]}{N_{V S 1,12,20}}$
$\$ 3,676.52-(\$ 70.00+\$ 25.00+\$ 60.00+\$ 111.00+\$ 120.00+\$ 145.00+\$ 150.00+\$ 97.00 \ldots+$
$Y_{1,12,20}=\frac{\ldots+\$ 150.00+121.00+\$ 124.00+\$ 348.00+\$ 176.00+\$ 290.00+\$ 187.50+\$ 67.00+\$ 45.00)}{0.7633258}$
$Y_{1,12,20}=\frac{\$ 3,676.52-\$ 2,286.50}{2.8634576}$
$Y_{1,12,20} \frac{\$ 1,390.02}{2.8634576}$
$Y_{1,12,20}=\$ 485.43$ \qquad every __ payment
The new payment scheme, considering the first, the twelfth and last payment as unknown, is as follows:
Table 5. New Value Scheme ($N_{V S}$)

Promissory notes (PN)	Overdue or not expired		date	Days	Interest rate	Amount
Y						
$\mathbf{1}$	bfd	$05 / 05 / 2014$	300	Eir		$\$ 485.43$
$\mathbf{2}$	bfd	$04 / 07 / 2014$	240	Eir	$\$ 70.00$	$\$ 70.00$
$\mathbf{3}$	bfd	$13 / 08 / 2014$	200	Eir	$\$ 25.00$	$\$ 25.00$
$\mathbf{4}$	bfd	$12 / 09 / 2014$	170	Eir	$\$ 60.00$	$\$ 60.00$
$\mathbf{5}$	bfd	$01 / 12 / 2014$	90	Eir	$\$ 111.00$	$\$ 111.00$
$\mathbf{6}$	bfd	$10 / 01 / 2015$	50	Eir	$\$ \mathbf{1 2 0 . 0 0}$	$\$ \mathbf{1 2 0 . 0 0}$
$\mathbf{7}$	bfd	$14 / 02 / 2015$	15	Eir	$\$ \mathbf{1 4 5 . 0 0}$	$\$ \mathbf{1 4 5 . 0 0}$
$\mathbf{8}$	fd	$01 / 03 / 2015$	0		$\$ 150.00$	$\$ 150.00$
$\mathbf{9}$	bfd	$31 / 03 / 2015$	30	Rir	$\$ 97.00$	$\$ 97.00$
$\mathbf{1 0}$	bfd	$30 / 04 / 2015$	60	Rir	$\$ \mathbf{1 5 0 . 0 0}$	$\$ 150.00$
$\mathbf{1 1}$	bfd	$30 / 05 / 2015$	90	Rir	$\$ \mathbf{1 2 1 . 0 0}$	$\$ \mathbf{1 2 1 . 0 0}$
$\mathbf{1 2}$	bfd	$29 / 08 / 2015$	181	Rir		$\$ 485.43$
$\mathbf{1 3}$	bfd	$27 / 10 / 2015$	240	Rir	$\$ \mathbf{1 2 4 . 0 0}$	$\$ \mathbf{1 2 4 . 0 0}$

$\mathbf{1 4}$	bfd	$06 / 12 / 2015$	280	Rir	$\$ 348.00$	$\$ 348.00$
$\mathbf{1 5}$	bfd	$05 / 01 / 2016$	310	Rir	$\$ \mathbf{1 7 6 . 0 0}$	$\$ \mathbf{1 7 6 . 0 0}$
$\mathbf{1 6}$	bfd	$14 / 02 / 2016$	350	Rir	$\$ 290.00$	$\$ 290.00$
$\mathbf{1 7}$	bfd	$15 / 03 / 2016$	380	Rir	$\$ \mathbf{1 8 7 . 5 0}$	$\$ 187.50$
$\mathbf{1 8}$	bfd	$24 / 04 / 2016$	420.75	Rir	$\$ 67.00$	$\$ 67.00$
$\mathbf{1 9}$	bfd	$24 / 05 / 2016$	450.5	Rir	$\$ 45.00$	$\$ 45.00$
$\mathbf{2 0}$	bfd	$12 / 10 / 2016$	591	Rir		$\$ 485.43$

Source: own

Summary

Scenario 1		Scenario 2		Scenario 3	
Sum of all promissory notes	$\$ 3,670.00$	Sum of all promissory notes	$\$ 3,670.00$	Sum of all promissory	
$O_{V S}$	$\$ 3,676.52$	$O_{V S}$	$\$ 3,676.52$	notes	
$E_{i r}$	20.20420%	$E_{i r}$	20.20420%	$O_{V S}$	$\$ 3,676.52$
$R_{i r}$	16.75979%	$R_{i r}$	16.75979%	$E_{i r}$	20.20420%
$N_{V S}$	$\$ 3,829.54$	$N_{V S}$	$\$ 3,993.71$	$R_{i r}$	16.75979%
Equal payments		$N_{V S}$		$\$ 3,742.80$	

Source: own

Results and Discussion

Using equivalent equations, this paper presents three scenarios to carry out a debt restructuring, on the assumption that the debtor cannot meet their commitments.

Starting from overdue promissory notes and not yet overdue, we could establish the proposal of hypothetical scenarios. In the case of overdue promissory notes we can see in the new proposal of payments (Table 2 and 3), that these would be paid at other dates, or at least, in different dates to which they had agreed.

It is important to note that the original debt scheme is being displayed one year before it happens, hence, overdue promissory notes, would be paid on a different date, than originally had, as well as a different amount.
Therefore, the scenarios proposed for the financial modeling are performed, considering that the debtor has displayed over time (a year before the event occurs), a possible default in payment of all promissory notes which they are due, and under this premise, a new payment scheme is proposed.

Conclusions

Throughout this paper, we could observe a serious problem that permanently the debtor is faced, this is, the lack of control over their cash flows, i.e., serious financial problems when there are commitments to fulfill.

The proposal described in this paper aims to provide an alternative solution for those debtors who, for lack of financial resources, should consider a debt restructuring with its creditors, which would allow them reach an agreement in order to pay their debts.

Equivalent equations models seek to encourage to all involved, firstly the debtor who for some reason was unable to fulfill the obligation to cover some payments and the creditor, for recovering the money given on the debtor by financing or credit.

In their seminal works Garcia-Santillán and Vega-Lebrun (2008), García-Santillán, Venegas-Martínez and EscaleraChavez (2014), suggest identify a common factor based on the valuation of original debts and the new proposal scheduled payments dates, which allows to establish a parameter in the timeline, which also seek a balance between the overdue and not yet overdue promissory notes, which favor both, the debtor and the creditor.

In the new payment scheme necessarily the creditor will have a benefit for getting an interest in debt restructuring, however the debtor wins too, getting a deferral through time, allowing a better management of his cash flow, improving the administration of his working capital, and generating better indicators of solvency and liquidity.

References

[1] CONDUSEF (2015) Comisión Nacional para la Protección y Defensa de los Usuarios de Servicios Financieros [National Comission to Protect and Defense of User of the Financial Services]. Retrieved from:
http://www.condusef.gob.mx/index.php/component/seoglossary/glossary/1/138/reestructura-de-deuda
[2] GARCÍA-SANTILLÁN, A., (2011). Financial Management I. EuroMediterranean Network, Full text at: Universidad de Málaga, ISBN-13: 978-84-693-7162-6 Retrieved from: http://www.eumed.net/libros/2010c/729/index.htm.
[3] GARCÍA-SANTILLÁN, A., and Vega-Lebrún, C. (2008). Debt restructuring through a common factor and equivalent equation modeling. Contributions to Economics, April 2008. ISSN: 1696-8360.
[4] GARCÍA-SANTILLÁN, A. Venegas-Martínez, F., Escalera-Chávez, M. (2014). Modeling Restructuring Debt with Equivalent Equations: Theoretical and practical implications. American Review of Mathematics and Statistics Vol 2 (2) pp.91-106 ISSN: 2374-2348 DOI: 10.15640/arms.v2n2a5.
[5] KRAUSZ, A. (lunes 22 de agosto de 2005). http://alankrausz.blogspot.com/2005/08/elsobreendeudamiento html . Recuperado el 20 de abril de 2012.
[6] MARIN AZABE, C., \& Araya Vega, S. (2008). http:// recerconsultores.cl/crecer/art23.html. Recuperado el 20 de abril de 2012.

Authors' Biography

Arturo García-Santillán

Researcher Professor at Universidad Cristóbal Colón. Member of the National System of Researchers in Mexico. He has a Postdoctoral studies in Mathematics (Escuela Superior de Economía del Instituto Politécnico Nacional ESE-IPN). PhD in Management (mayor) Financial (minor). MBA (Universidad Autónoma de Ags.México) and Bachelor in Financial Management. He obtained the Fischler award in USA for his research and publications on Financial Mathematics teaching, among others. He published more than ninety papers in indexing journals.

Elena Moreno-García

Researcher Professor at Universidad Cristóbal Colón. Member of the National System of Researchers in Mexico. She has a PhD in Economics from Almeria University, Spain, a master degree in finance from Universidad de las Américas Puebla and a Bachelor in Economics. She has published more than fifteen papers in indexing journals about math anxiety, financial education and regional and urban economics.

Agustín, Bernúdez-Pérez

Master program student at Universidad Cristóbal Colón

Paulo César, Almeida-Fernández

Master program student at Universidad Cristóbal Colón

