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Abstract.  

This paper deals with the stability of numerical solutions for a coupled differential equation 

with piecewise constant arguments. A sufficient condition such that the system is 

asymptotically stable is derived. Furthermore, when the linear   -method is applied to this 

system, it is shown that the linear  -method is asymptotically stable if and only if 
1

1
2

  . 

Finally, some numerical experiments are given. 
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1 Introduction 

   In this article, we consider the following coupled differential equation with piecewise 

constant arguments (EPCA) 

                        

0 0

'( ) ( ) ([ ]) ,

'( ) ( ) ([ ]) ,

(0 ) , (0 ) ,

x t a x t b y t

y t c y t d x t

x x y y

 

 

 

                                                                           (1) 

where 
0 0

, , , , ,a b c d x y R R are given initial values and    denotes the greatest integer 

function. System (1) can be written in matrix form 
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0

'( ) ( ) ( [ ] ) ,

( 0 ) ,

t t t 



X A X B X

X X
                     (2) 

where 
0 0

( ) ( ( ) , ( ) ) , ( 0 ) ( , )
T T

t x t y t x y X X  and 

                        
0 0

, .
0 0

a b

c d

   
    
   

A B   

The general form of EPCA is 

0

'( ) ( , ( ) , ( ( ) ) ) ,

( 0 ) ,

X t f t X t X t

X X




                     (3)  

where the argument ( )t  has intervals of constancy. In recent years, much research has been 

focused on the solutions of EPCA. Many properties such as stability [1,2,3], oscillation [4,5], 

periodicity [6,7], bifurcation [8,9] and asymptotic behavior [10,11] are included. These 

systems can be found in a wide variety of scientific and engineering applications such as 

biology, ecology, spread of some infectious diseases in humans and so on. The general theory 

and basic results for EPCA have by now been thoroughly investigated in the book of Wiener 

[12]. On the other hand, it is observed that the research on the numerical solutions of EPCA 

has been conducted for several years. Liu et al. [13] investigated the stability of the Runge-

Kutta methods for EPCA with one delay 
0

'( ) ( ) ([ ])u t a u t a u t  . In [14, 15], oscillations of 

numerical solutions in  -methods and Runge-Kutta methods for a linear EPCA 

'( ) ( )x t a x t   
1

( [ 1]) 0a x t   were considered, respectively. Wen et al. [16] studied the 

dissipativity of analytic solution and numerical solution of a class of nonlinear EPCA. For 

more information of numerical treatment for EPCA, the interest reader can see [17-20]. To 

the best of our knowledge, until now very few results dealing with the numerical solution of 

multi-dimensional EPCA have been reported except for [21]. Different from [21], in our 

paper, we will consider the numerical stability of (1) in a more direct and easy to understand 

way. 

In the next section, we will give the expression of analytic solution of (1) and a 

sufficient condition under which the analytic solution of (1) is asymptotically stable will be 

shown. 
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2 Analytical Stability 

In this section, we shall address a sufficient condition under which the analytic solution 

of (1) is asymptotically stable.  

Definition 2.1 ([12]) A solution of (2) on [0 , )  is a function ( )tX  satisfies the conditions: 

( )tX  is continuous on [0 , ) ; the derivative '( )tX  exists at each point [0 , )t   , with the 

possible exception of the points [ ] [0 , )t    where one-sided derivatives exist; System (2) is 

satisfied on each interval [ , 1) [0 , )k k     with integral end-points. 

Theorem 2.1 ([22]) System (2) has on [0 , )  a unique solution 

[ ]

0 0 0
( ) ({ } ) ,

t
t tX Q B X  

where 

1 1

0 0
( ) ( ) , ( ) ,

t t
t e e e e

 
     

A A A A
Q I A B B I A B  

where { }t  is the fractional part of t  

Definition 2.2 If any solution ( )tX  of (2) satisfies 

lim ( ) 0 ,
t

t
 

X  

then the zero solution of (2) is called asymptotically stable. 

Lemma 2.1 ([12]) The zero solution of (2) is asymptotically stable if and only if 
0

( ) 1 B , 

where 
0

( ) m ax (| |) ,
i

i

 B  , 1, 2
i

i  are the eigenvalues of 
0

B . 

Theorem 2.2 ([21]) The zero solution of (2) is asymptotically stable if 

[ ] 0 ,

[ ] ,








 



A

B A
 

where   denotes the matrix norm induced by a vector norm on 
2

C  and [ ]   denotes the 

logarithmic norm of the matrix, defined by 

2

0

1
[ ] lim


 

  




I L
L , 
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here 
2

I  is the 2 2  identity matrix. 

Corollary 2.1 System (1) is asymptotically stable, if 

   m ax , 0 , m ax{ | |, | |} m ax , .a c b d a c              (4) 

Proof: System (1) is asymptotically stable if and only if System (2) is asymptotically stable. 

So we only need to consider the stability of System (2). By the following formulas 

*

*

m a x
[ ] , ( ) ,

2
  

 
  

 

L L
L L L L  

we can obtain 

 [ ] m ax , , m ax{ | |, | |} .a c b d  A B  

In view of Theorem 2.2, Condition (4) is got. 

Remark 2.1 From Corollary 2.1, the following inequality can be easily obtained 

1,
b d

a c
                             (5) 

in fact, there are four cases in (4). (i) If | | | |b d , 0 a c   then | |b a  ; (ii) If | | | |b d , 

0 a c   then | |d a  ; (iii) If | | | |b d , 0a c   then | |b c  ; (iv) If | | | |b d , 0a c   

then | |d c  . Therefore, regardless of which case, the coefficients , ,a b c  and d  are all 

satisfy (5). 

3 Stability of the Linear  -Method 

Let 
1

h
m

  be a given stepsize with integer 1m   and the gridpoints 
n

t n h  1, 2 ,n   , 

we consider the linear  -method to (1),          

1 1

1 1

{ ( ([( 1) ])) (1 )( ([ ]))} ,

{ ( ([( 1) ])) (1 )( ([ ]))} ,

h h

n n n n

h h

n n n n

x x h a x b y n h a x b y n h

y y h cy d x n h cy d x n h

 

 

 

 

      

      

       (6) 

where   is a parameter with 0 1  . ([ ])
h

x n h  and ( [ ( 1) ])
h

x n h  are approximations to 

([ ])x t  of (1) at 
n

t  and 
1n

t


, respectively. Similarly, ([ ])
h

y n h  and ( [ ( 1) ])
h

y n h  are 
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approximations to ([ ])y t  of (1) at 
n

t  and 
1n

t


, respectively. Let n km l  , 0 ,1, , 1l m  . 

Then ( [ ] )
h

n
x t h  and ( [ ] )

h

n
y t h , 0 1   can be defined as 

k m
x  and 

k m
y  according to 

Definition 2.1, respectively. So (6) reads 

               
1 1

1 1

{ ( ) (1 )( )} ,

{ ( ) (1 )( )} ,

n n n km n km

n n n km n km

x x h a x b y a x b y

y y h cy d x cy d x

 

 

 

 

     

     
                                          (7)      

that is      

                    
1

1

1 (1 )
,

1 1

1 (1 )
,

1 1

n n km

n n km

h a h b
x x y

h a h a

h c h d
y y x

h c h c



 



 





 
 

 

 
 

 

                                                             (8) 

Denote 

 
1 2

1 (1 )
0 0

1 1
, ,

1 (1 )
0 0

1 1

h a h b

h a h a

h c h d

h c h c



 



 

    

   
 

    
    

   
    

M M    

thus (8) gives 

1

1 2

1

n n km

n n km

x x x

y y y





     
      

     

M M .                                            (9) 

Let 

 1 1 1 1
, , , , , , , ,

T

n n n n n km km km km
x y x y x y x y

   
Z  , 

then (9) can be written as 

1n n
Z G Z ,                                                              (10) 

where 
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1 2 

 

 

 

 

 
 
 

M 0 0 M

I 0 0 0

G 0 I 0 0

0 0 I 0







 



, 

with 

1 0

0 1

 
  
 

I , 
0 0

0 0

 
  
 

0 . 

The stability of the linear  -method can be given by the following theorem. 

Theorem 3.1 The linear  -method applied to System (1) with Condition (4) is 

asymptotically stable if and only if 
1

1 .
2

   

Proof: Assume that 
1

1
2

  , after some calculations, we get the characteristic polynomial of 

G  as follows 

1

1 2
( ) d e t[ ]

l l
P z z z


  I M M                                                                                              (11) 

1

1

1 (1 )
0 0

0 1 1
d e t

1 (1 )0
0 0

1 1

l

l

l

l

h a h b
z

z h a h a

h c h dz
z

h c h c



 



 





      

       
       

      
         

 

2 ( 1 ) 2 1 2 1 21 (1 ) 1 (1 ) 1 (1 ) 1 (1 )

1 1 1 1

l l l lh a h c h a h c
z z z z

h a h c h a h c

   

   

         
   

   
 

  

2

(1 ) (1 )

h b d

h a h c 


 
. 

For brevity, we set 

1 2

1 2

1 2

1 (1 ) 1 (1 )
( ) , ( )

1 1

x x
R x R x

x x

 

 

   
 

 
, 

where 
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1 2
,x h a x h c  , 

then (11) gives 

2 ( 1 ) 2 1 2 1 2

1 2 1 2 1 2
( ) ( ) ( ) ( ) ( ) ( ( ) 1)( ( ) 1)

l l l l b d
P z z R x z R x z R x R x z R x R x

a c

  
         (12) 

2

1 2 1 2
( ( ))( ( )) ( ( ) 1)( ( ) 1)

l b d
z z R x z R x R x R x

a c
       

2 1 2

1 2

1 2

( ( ) 1)( ( ) 1)
( ( ))( ( ))

( ( ))( ( ))

l R x R xb d
z R x z R x z

a c z R x z R x

  
    

  

. 

It is obvious that ( )P z  has two zeros 
1

( )R x  and 
2

( )R x  of order 1, respectively. By 

virtue of [23] and the property of stability function of the linear  -method we have 

1
( ) 1R x   and 

2
( ) 1R x   for 

1
1 .

2
   

Let 

2 1 2

1 2

( ( ) 1)( ( ) 1)
( ) , ( )

( ( ) ) ( ( ) )

l R x R xb d
f z z g z

a c z R x z R x

 
  

 
, 

for any m  and | | 1z  , by (5) we have 

21 2

1 2

( ( ) 1)( ( ) 1)
| ( ) | 1 | ( ) |

( ( ))( ( ))

lR x R xb d b d
g z z f z

a c z R x z R x a c

 
     

 
. 

By Rouches theorem, we know that ( )f z  and ( ) ( )f z g z  have the same number of 

zeros inside the unit circle. It is observed that ( )f z  has 2 l  zeros, so ( ) ( )f z g z  also has 2 l  

zeros inside the unit circle. Hence all roots of characteristic polynomial ( )P z  have modulus 

less than 1, which means that ( ) 1 G , where ( ) G  denotes the spectral radius of matrix G

. 

According to Lemma 5.6.10 in [24], there exists a norm   such that 1G . So from 

(10) we have 

1n n n
Z Z Z


 G , 
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which implies that the linear  -method is asymptotically stable. 

Conversely, for (6), the linear  -method is asymptotically stable implies that 

lim 0 , lim 0
n n

n n

x y
   

  . 

We focus on the special case that 0b d   and 0a  , 0c  . Obviously, (4) is satisfied 

in this case. Then (9) can be written as 

1

1

1

n n

n n

x x

y y





   
   

   

M .                                                          (13) 

Similar to the analysis in [25], we can easily get this proof. 

4 Numerical Experiments 

In this section, four numerical examples be addressed to test the correctness of the results 

in the paper. 

Firstly, we consider the following coupled EPCA  

                        

'( ) 5 ( ) 2 ([ ]) ,

'( ) 4 ( ) 3 .5 ([ ]) ,

(0 ) (0 ) 1 .

x t x t y t

y t y t x t

x y

  

  

 

                                                                          (14)     

By computation we have that  m ax , 4 0a c    and  m ax | |, | | 3 .5 4b d     

 m ax ,a c . So Corollary 2.1 is satisfied, then the analytic solution of (14) is asymptotically 

stable. In Fig. 1, we plot the 2-norm of numerical solution of (14) with 0 .8   and 50m  . 

From this figure we can see that the numerical solution of (14) is asymptotically stable, which 

is agree with Theorem 3.1. 
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Fig. 1 The numerical solution of (14) with 0 .8   and 50m  . 

Secondly, we consider another coupled EPCA  

                      

'( ) 4 .5 ( ) 1 .5 ([ ]) ,

'( ) 5 ( ) 3 ([ ]) ,

(0 ) (0 ) 1 .

x t x t y t

y t y t x t

x y

  

  

 

                      (15)     

Through some simple computations we get that  m ax , 4 .5 0a c     and 

   m ax | |, | | 3 4 .5 m ax ,b d a c    . Thus, Corollary 2.1 holds, then the analytic solution of 

(15) is asymptotically stable. Set 0 .6   and 50m  , in Fig. 2, we draw the 2-norm of 

numerical solution of (15). We observe from this figure that the numerical solution of (15) is 

asymptotically stable, which is in accordance with Theorem 3.1.  
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Fig. 2 The numerical solution of (15) with 0 .6   and 50m  .  

Thirdly, for the coupled EPCA  

                      

'( ) 6 ( ) 3 ([ ]) ,

'( ) 7 ( ) 2 ([ ]) ,

(0 ) (0 ) 1 .

x t x t y t

y t y t x t

x y

  

  

 

                       (16)     

we can easily see that the coefficients 6a   , 3b  , 7c    and 2d   meet Corollary 2.1, 

so the analytic solution of (16) is asymptotically stable. In Fig. 3, we draw the 2-norm of 

numerical solution of (16) with 0 .7   and 50m  . From this figure we can see that the 

numerical solution of (16) is asymptotically stable, which shows no difference with Theorem 

3.1. 
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                          Fig. 3 The numerical solution of (16) with 0 .7   and 50m  . 

Finally, we consider a coupled EPCA 

                        

'( ) 4 .6 ( ) 2 .7 ([ ]) ,

'( ) 3 ( ) 2 ([ ]) ,

(0 ) (0 ) 1 .

x t x t y t

y t y t x t

x y

  

  

 

                   (17)     

It is not difficult to see that the coefficients 4 .6a   , 2 .7b  , 3c    and 2d    satisfy 

Corollary 2.1, hence the analytic solution of (17) is asymptotically stable. Set 0 .9   and 

50m  , in Fig. 4, we plot the 2-norm of numerical solution of (17). We observe from this 

figure that the numerical solution of (17) is asymptotically stable, which is identical with 

Theorem 3.1. 



                                                              Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                               

ISSN: 2395-0218     

 
Volume 16, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                          2966| 

 

 

 

                        Fig. 4 The numerical solution of (17) with 0 .9   and 50m  . 

Conclusions 

In this paper, the stability of numerical solutions for a coupled differential equation with 

piecewise constant arguments are investigated. It is proven that the linear  -method is 

asymptotically stable if and only if 
1

1 .
2

   The process is more convenient than that in 

[21]. We will consider the more general case in our future work. 
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