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Abstract

Let R be a commutative multiplicative hyperring. In this paper,
we introduce the concept of 2-absorbing primal hyperideals.
A non zero hyperideal I of a multiplicative hyperring R is called a
2-absorbing primal hyperideal of R if the set of all elements in R,
that are not 2-absorbing prime to [ forms a hyperideal of R. denoted
n(I)={de R, disnot a?2—absorbing prime to I}. We study
properties of 2-absorbing primal hyperideals and introduce a number
of results concerning 2-absorbing primal hyperideals illustrated by
several examples of 2-absorbing primal hyperideals.

keywords: Multiplicative hyperring, Prime hyperideal, Primary
hyperideal, irreducible hyperideal, 2-absorbing hyperideals,
2-absorbing prime hyperideals, 2-absorbing primal hyperideals.

1 Introduction

Marty Krasner was the first researcher who gave the idea of hyperstructure
theory in 1983, [9]. Hyperstructures have various application in applied and
pure sciences such as Latices, Geometry, Cryptography.
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In the sence of Matry, a hypergroup is a nonempty set H endowed by hy-
perstructure x : H x H — P*(H), where P*(H) is the set of all nonempty
subsets of H, which satisfy associative law and product axioms. The hyper-
rings were introduced by Marty Krasner. Krasner hyperrings are a gener-
alization of classical rings in which the multiplicative is a binary operation
while the addition is a hyperoperation. The theory of hyperrings has been
developed by many researchers see [1], [2], [7], [16]. There are various types
of hyperrings and one of the important classes of hyperrings, called multi-
plicative hyperring, was introduced in [7]. 2-absorbing ideals of commutative
ring have been introduced and studied by Badawi in [3], and continued to
2-absorbing ideals in semirings [5]. Then 2-absorbing primary hyperideals
of multiplicative hyperrings was introduced in 2018, [12]. Also in 2018, 2-
absorbing primal ideals was introduced in a commutative rings, [13].

This paper continue this study on 2-absorbing ideals, we introduce the
concept of 2-absorbing primal hyperideals on commutative multiplicative
hyperrings. We also study the effect of good homomorphisms on these
hyperideals and characterize all 2-absorbing primals of any qoutient
hyperring. We illustrate the results by several examples.

1.1 Preliminaries

There are various types of hyperrings and one of the important classes of
hyperrings, called multiplicative hyperring, was introduced in [7].

e (R, +, %) is called multiplicative hyperring if

(R,+) is abelian group.

(R,*) is hypersemigroup.

el

For any z,y,z € R, we have r x (y+ 2) Cxxy + o % 2.

For any z,y,z € R, we have (y+ 2) xx Cyxx + 2z x.

For any =,y € R, we have = * (—y) = (—x) xy = —(x * y).

o

Here, we mean by a multiplicative hyperring a hypersemigroup
by a nonempty set R with an associative hyperoperation x, i.e,
rx(y*z)=U rxt=U sxz=(r*y)*z,

te(yrz) sE(x*y)

for all z,y. 2 € R.
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e If R is a multiplicative hyperring with x xy =y * 2,V x,y € R, then
R is called a commutative multiplicative hyperring.

e (R, +,x) is called hyperring with identity element 1z € R if
rxlp=lgrxx =z, YreR, [l].

Throughout this paper (R, +, x) denotes a multiplicative hyperring,
and all hyperrings are assumed to be commutative with identity.

A nonempty subset A of a hyperring R is a left (right) hyperideal iff

l.abeA=a—-bCA
2. ae AreR=rxac A, (axreA), [2].

Remark 1.1 In a commutative hyperring a hyperideal is left if and
only if it is right. So we call hyperideal with out distinguish between
right and left hyperideals.

Remark 1.2 Let (Z,+,.) be the ring of integers. Corresponding to
every subset A € P*(Z)(|A| > 2), there exists a commutative
multiplicative hyperring (Za, +,x), called multiplicative hyperring over
ring of integers induced by A (or simply, multiplicative hyperring Z 4
of integers), Z, = Z and for any x, y € Zy, vy ={r.ay:ac A}
Moreover, every hyperideal of Z 4 is principal hyperideal. 1.e. Z4 is
the set of integers with hyperoperation x defined as before, [10].

e A hyperring R is called Noetherian if it satisfies the ascending chain
condition on hyperideals of IR, a hyperring I? is called Artenian if it
satisfies the descending chain condition on hyperideals of R, [2].

e Let M be a proper hyperideal of a hyperring R. The hyperideal M is
called a maximal hyperideal of R if the only hyperideals of R that
contains M are M itself and R, [2].

e A proper hyperideal P of a hyperring R is called a prime hyperideal
of R if for every pair of elements a,b € R whenever a xb C P, then
either a € P or b € P. A prime hyperideal P of a hyperring R is
called a minimal prime hyperideal over a hyperideal I of R if it is
minimal (with respect to inclusion) among all prime hyperideals of R
containing 7, [2].
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[t is well known that, in a commutative unitary hyperring R, for any
proper hyperideal I of R, there exists a maximal hyperideal containing
I. Moreover, in such a hyperring, each maximal hyperideal is prime
hyperideal, so there exists at least one prime hyperideal in R, [2].

e Let () be a proper hyperideal of a hyperring R. The hyperideal ) is
called a primary hyperideal of R if for cach a,b € R whenever
a*b C @, then either a € Q or b™ C () for some n € N, [7].

Definition 1.1 [12] Let C be the class of all finite hyperproducts of
elements of a multiplicative hyperring R. i.e.
C={rixro*xrsx...mp.rn € Ryi=123...n, nis finite}. Let I be
a hyperideal of R. If for any Ay C C, where Ay is the class of all J
hyperproducts of elements of R, (Uj_{A;) NI #0 = (U}j_A;) C 1,
then I is said to be C'-union hyperideal of R and denoted by
Cy-hyperideal.

e Let I be a hyperideal of a multiplicative hyperring (R, +,*). The
intersection of all prime hyperideals of ? containing I, is called the

prime radical of I, being denoted by Rad(I), VI C Rad(I) where
VI = {z,a" C I, for somené& N}.

The equality holds when [ is a C,-hyperideal of R.
If the multiplicative hyperring R does not have any prime hyperideal

containing /, we define Rad(l) = R, [10].

e Let [ be a proper hyperideal of a hyperring R. The hyperideal [ is
called a 2-absorbing hyperideal of R if axb*c¢ C [, then axb C [ or
bxcCIloraxcClforanya, b, c€ R, [12].

e Let [ be a proper hyperideal of a hyperring R. The hyperideal [ is
called a 2-absorbing primary hyperideal of R if axbxc¢ C [, and

a*bZ I then bxcC VT or axecC VI forany a, b, ¢ € R, [12].

Theorem 1.1 [12] If Py, Py are prime hyperideals of R, then Py N Py is a
2-absorbing hyperideal of R.

It clear that every 2-absorbing hyperideal is a 2-absorbing primary hyper-
ideal. The converse is not true, as is shown in the following example.
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Example 1.1 [12]

(1) Let R = (Z,+, %) be the ring of integers for all x, y € Z. We define the
hyperoperation xxy = {2xy, dxy} then (Z,4+,%) is a multiplicative hyperring.
The subsets 20Z = {20n,n € Z} is a 2-absorbing primary hyperideal of Z
that is not a 2-absorbing hyperideal of Z. Because (2x2)x5 = {80, 200, 500} C
207, but 2% 2= {20, 8} € 207 and also 2 x5 = {20, 50} Z 20Z.

Note that every primary hyperideal is a 2-absorbing primary hyperideal.

In fact, let I be a primary hyperideal of R. Suppose that axbxc¢ C [ and
axb Z I for any a, b, ¢ € R. Since [ is a primary hyperideal, then ¢ C v/T.
Hence there exist n > 0 such that ¢* C [. Since [ is a hyperideal, we have
A+ CTand b xc™ C 1. Thus axc C VI and bxc C /I and so I is
a 2-absorbing primary hyperideal, [12]. The following example shows that a
2-absorbing primary hyperideal need not to be primary hyperideal.

Example 1.2 [12]

(1) Consider R = (Z,4,%) in Example 1.1(1). The hyperideal 207 is a
2-absorbing primary hyperideal of Z. But 20Z is not a primary hyperideal
of Z. Clearly 4 x5 = {40, 100} C 20Z, but neither 4 € 20Z, nor 5" C
20Z, for any positive integer n > 1 and also neither 5 € 20Z, nor 4™ C
20Z, for any positive integer n > 1.

2 On 2-absorbing Primal Hyperideal Of Mul-
tiplicative Hyperring

In this section, we infroduce the concept of 2-absorbing primal hyperideal
illustrated by several examples.

Definition 2.1 An element k of R is said to be 2-absorbing prime to proper
hyperideal I of R, if for any a, b, ¢ € R, axbxcxk C I, then axb C
LorbxeCIloraxcClI.

Definition 2.2 An element d of R is said to be not 2-absorbing prime to
proper hyperideal I of R, if there exist a, b, ¢ € R with axbxcxd C I such
that ax b, bxc and axc C R\I. We denote by ju(I) the set of all elements
in R that are not 2-absorbing prime to 1.
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Definition 2.3 Let I be a proper hypierideal of R, and pu(1I) be the set of all
d € R such that d is not a 2-absorbing prime to 1. [ is said to be 2-absorbing
primal hyperideal of R if u(1) forms a hyperideal in R.

Definition 2.4 An element r € R is prime to a proper hyperideal I of R, if
r+s C I, for any element s € R, implies s € I, that is, the residual

([:r)={s€eRrxsCI}=1.
Note that I C (I :7), for any hyperideal I. Thus r is prime to 1 if (1 :r) C I.

Definition 2.5 Let I be a hyperideal of . The adjoint set of I. which is
denoted as adj(I) ={a € R:axb C [ for some be R—1TI}. i.e. adj(I) is

the sct of all elements that are not prime to I.

Definition 2.6 Let R be a multiplicative hyperring. A proper hyperideal I
of R is said be primal hyperideal of R if adj(1) = ~(I) forms a hyperideal of
R.

Lemma 2.1 [n the multiplicative hyperring of integers Z o with scalar iden-
tity 1. Let I be a proper hyperideal of Za, let u(1) be the set of elements of
Z 4 that are not 2-absorbing prime to I. Then I C pu(I).

Proof. Let r € I. We can assume that r # 0 (since 0 € p(I)). As
OFr=1%x1x1xrCTwithl &I, 1x1Z I, we must have r is not a
2-absorbing prime hyperideal to I, then r € p(I). Thus I C p(I).

Lemma 2.2 Suppose that I is a proper hyperideal of R with scalar identity
1. Then ~(I) C ().

Proof. Let d € v(I). Then there exists r € R — I such that rxd C I.
Let a =b=1and c =1 thenaxbxcxd C I, withaxb, bxc and
axcC R\I. Henced e p(l).

Theorem 2.1 If I is a 2-absorbing primal hyperideal of R, with (1) # R,
then p(I) is a prime hyperideal of R.

Proof. Let a, b € R such that a b C pu(1). Then 3 r, s, t € R, with
rxsxtx(axb) C I such that rxs, rxt and s+t C R\I.

Assume that a & (). We must show that b € u([l).

Since 7 x (s xb) xt xa C I and a & p(I), we must have r x (s x b) or
(skb)xtorrxt C I, butrxt C R\I. Thusrx(sxb) C [ or (sxb)xt C .
If r*(sxb) C I, since rxs Z [ then b€ pu(l). Similarly, if (s xb) xt C I,
since s xt Z I then b € pu(I). Therefore, p(I) is a prime hyperideal of R.
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Example 2.1 Let R = (Z,+,*) be the ring of integers for all z,y € Z. We
define the hyperoperation xxy = {2xy, 4y}, then (Z,+,*) is a multiplicative
hyperring. The hyperideal I = 8Z is a 2-absorbing primal hyperideal of R
with p(I) =2. Since 1 € Z, 1x1x1x1={2,4} x1x1={4.8 16} x1 =
{8,16,32,64} C8Z =1, but 1 x1 ={2,4} € 8Z. So 1 € u(I). Now, for
any a € 4, 1 x 1 x1xa={8a,16a,32a,64a} C8Z =1, with 1 x1 ={2,4}
8Z. Hence a € pu(I). Therefore, u(I) = Z.

Theorem 2.2 Let R = (Z,+, %) be the ring of integers for all x, y € Z. De-
fine the hyperation:

r*y = {pry, qry, where p and q are prime numbers with ged(p, q)=1}. Then

(i) I = pZ, J = qZ are 2-absorbing primal hyperideals of R with p(pZ) =
pZ, (q2) = qZ.

(ii) J = pqZ, is not a 2-absorbing primal hyperideal of R with p(pqZ) =
pZ UqZ.

Proof.

(i) Let d € p(I), 3 a, b, ¢ € Z such that axbxcxd C pZ. So

{p?abe, pqabe, *abe} * d = {p*abed, p?qabed, pqPabed, *abed} C pZ, implies
that p divides any elements in axbxcxd. Thus p\abed. If d =1, then
p\abc. So p\a or p\b or p\c¢. ThusaxbC pZ or axc CpZ or bxc C pZ.
Hence 1 & (1), which implies that p(I) # Z. Let d € pZ, then a =b = c¢ =
L satisfies axb=axc=bxc={p, q} € pZ with axbxcxd =

{p*d, p*qd, pg*d, ¢*d} C pZ. Henced € p(pZ). So pZ C u(pZ).
Now, let d € u(pZ). Then 3 a, b, ¢ € Z such that axbxcxd C pZ with
axb, axcandbxcZ pZ. Hencep Xa, p Xband p Xc. But p\abed implies
p\d and therefore, d € pZ. So p(pZ) C pZ and hence u(pZ) = pZ is a
hyperideal of R. Thus I = pZ is a 2-absorbing primal hyperideal of R, with
w(pZ) = pZ. Similarly, J = qZ is 2-absorbing primal hyperideal of R, with
waZ) =qZ.

(ii) Let d € pZ, then a =b=1 and ¢ = q satisfy that axb={p, q} € pqZ,
axc=bxc={qp, ¢*} € pqZ with axbxc*d={p’qd, p*¢*d, pq*d, ¢*d} C
pqZ, since d € pZ. Thus pZ C p(pqZ). Now, letd € qZ, thena=b=1
and ¢ = p satisfy that a x b, axc and bx ¢ € pqZ with axbxcxd C pqZ.
Then d € p(pqZ). Hence qZ C pu(pqZ). Therefore, pZ U qZ C u(pqZ).
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Let d € u(pgZ). Then 3 a, b, ¢ € R such that axb*cxd C pqZ with

axb, axcandbxc L pqgZ. Thus pq divides any elements in axbxcxd. Dut
axb, axcandbxcZ pqgZ implies axbxc L pqZ. Hence we have p\d or
g\d. Thus d € pZ UqZ and hence p(pqZ) = pZ U qZ is not a hyperideal of
R. So J = pqZ is not a 2-absorbing primal hyperideal of R.

Example 2.2 Let R = (Z,+,*) be the ring of integers for all x,y € Z. We
define the hyperoperation xxy = {3xy, 2xy}, then (Z,+, ) is a multiplicative
hyperring. The hyperideal I = 2Z is a 2-absorbing primal hyperideal of
R with p(I) = 2Z, Also The hyperideal J = 3Z is a 2-absorbing primal
hyperideal of R with pu(J) = 3Z, by Theorem 2.2 (i).

FExample 2.3 If R and the hyperoperation are defined as in Example 2.2, ther
I =207 is a 2-absorbing primal hyperideal of R, with u(I) = Z.

In fact, 2 € Z, 2x2x5%1 = {12,8} x5+ 1 = {120,180,80} » 1 =
{240,360, 540,160} C 207, while 2 %2 = {12,8} € 20Z, 2 x5 = {20,30} £
20Z, So 1 € p(207). Also, Ya € Z, 2x2x5*a = {240,360, 540, 160} C
20Z with 2 %2 € 20Z, 2 %5 = {20,30} € 20Z, implies a € p(202).
Thus (202) = Z. Also, a hyperideal J = 247 is a 2-absorbing primal
hyperideal of R, because 2, 3, 4 € Z, with 23 x4 %1 = {1218} x4+ 1 =
{96,144,216} » 1 = {192,288,432,648} C J, but 2 x3 = {12,18} < J,
24 ={16,24} € J, 3x4 ={24,36} £ J. So 1 e pu(J). Thus u(J) = Z,
since p(J) is a hyperideal of R, then J = 247 is a 2-absorbing primal hyper-
ideal of R.

Now, we start with the following result about 2-absorbing primal
hyperideals of multiplicative hyperring.

Theorem 2.3 FEvery prime hyperideal of R with scalar identity 1 is a 2-
absorbing primal hyperideal of R, with pu(I) = 1.

Proof. Let I be a prime hyperideal of R. It is clear by Lemma 2.1 that

I C p(l). Now, let d € u(I). Then 3 a, b, ¢ € R, such that axbxcxd C I,
with axb, bxc and axc Z I. Therefore a, b, ¢ & I, because I s a
hyperideal of R. Now ax (bxcxd) C I, where I is a prime hyperideal with
a & I implies that bxcxd C I. Similarly 1 is a prime hyperideal with b & 1
implies cxd C 1. Now, since ¢ € I and [ is a prime hyperideal, then d € [
and therefore, p(1) C I. Thus p(I) = 1 is a hyperideal of R. So I is a
2-absorbing primal hyperideal of R.
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Theorem 2.4 FEvery primal hyperideal of R with scalar identity 1 is a 2-
absorbing primal hyperideal.

Proof. Let I be a primal hyperideal of R. Then ~(I) is a hyperideal of R, we
need to show that I is a 2-absorbing primal hyperideal of R. We must show
that pu(1) is a hyperideal of R. There are 2-cases:

If n(I) = R, then I is a 2-absorbing primal hyperideal of R.

If w(I) # R, Then 1 & u(I). We show that ~(I) = u(I). It is clear that
v(I) C u(l), by Lemma 2.2. Let d € p(I), then there exist a, b, ¢ € R with
a*xbxcxd C I such that axb, bxc andaxec 1. Ifaxbxc C I, then
1 € u(l). Thus we can show that p(I) = R which is a contradiction. So
axbxc € I and d € ~v(I). Thus p(I) C ~(I), which implies that v(I) =
(). Therefore I is a 2-absorbing primal hyperideal.

The converse of Theorem 2.3 need not be true.

Example 2.4 Consider the ring (Zy, @®,x), that a@®b and @ * b are re-
mainder of % and “‘Tb which + and . are ordinary addition and multi-
plication for all a,b € Zy. For all @, b € Z4, we define the hyperopera-
tion ax b = {0, ab, 2ab, 3ab}. (Zs,@®,*) is a commutative multiplicative

hyperring.

The hyperoperation and multiplication as in the following table:

D 0 T 2 3

0 {or {1 [ {2t {3}
1 {1y | {2} [ {3+ |{0}
2 {23 {30 {0y {1}
3 {3p {0y [{1} {2}

W v = 2l *+

The hyperideals: Iy = {0}, I, = {0,2}, where Iy are mazimal, prime hyper-
ideal, which implies that Iy is a 2-absorbing primal hyperideal, with p(1;) =
I, which is a hyperideal of R. Note that, Iy is not a prime hyperideal, because
242 ={0} C Iy, but 2 & I.
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Iy is a 2-absorbing primal hyperideal. In fact, 1, 2, 3 € Z;, 1243 xd C
Iy, with 12, 2%3 and 1x3 € Iy, which implies that d =0, 2. The sets of all
elements in Zy that are not 2-absorbing primal to Iy denoted, pu(Ily) = {0,2}
which is a hyperideal of R.

The converse of Theorem 2.4 need not be true.

Example 2.5 In Example 2.2, I = 127 is a 2-absorbing primal hyperideal
of R. In fact, 2, 3€ Z, 2x3x2+1 ={12,18} 2% 1 = {48,72, 108} x 1 =
{96,144,216,324} C I, but 23 = {12,18} Z I, 2x2 = {8, 12} € I. So
1 e p(l). Thus p(I) = Z, and (1) is a hyperideal of R. But I is not a
primal hyperideal of R, because (1) = 3Z J2Z is not a hyperideal of R.

Theorem 2.5 [f I is a primary hyperideal of R with scalar identity 1, then
I is a 2-absorbing primal hyperideal of R.

Proof. Let I be a primary hyperideal of R, we need to show that I is a
2-absorbing primal hyperideal of R, we must show that pu(I) is a hyperideal
of R.

There are 2- cases: If u(I) = R, then I is a 2-absorbing primal hyperideal
of R. If u(I1)# R. To show that I is 2- absorbing primal hyperideal of R,
it is enough to show that u(I) = VI. Let a € VI, then there exists smallest
positive integer n, such that a™ C I. By induction, if n =1, then

acl Cu(l). Ifn>1. Suppose xxy*a"txaCl. Letxz=y=1and
z=a"1 thena" 'xa CIanda™ ' I, soxxy, yxzand xxzZ I, so
for we get that a € p(I). Thus, VI C u(I). Conversely, let a € u(I), then
there exist v, y. z € R such that wxy* zxa C I with r %y, y* 2z and
xxzC R\I. Sincexxy € I, we have that zxa C VI, because I is a
primary hyperideal and since = € V1, because if = C /1, then let m be the
smallest positve integer such that, 2™ C [ which implies that 1 € p(I) which
is a contradiction, since we assumed that (1) # R, therefore, 2™ a™ C I,
for some m >0 and 2™ € I so, a™ C VI implies a € VT and

hence p(I) € VI. Thus, p(I) =T and so p(1) is a hyperideal of R.

Remark 2.1 In Erxample 2.2, 12Z is not C,, hyperideal of R.
Because (1 1)U (6 %2) N 1272 = {2,3,24.36} N 127 = {24,36} # ¢. But
(1x1)U(6x2)=1{2,3,24,36} £ 12Z.

Theorem 2.6 [10] If Q is a primary C,, hyperideal of a multiplicative hy-
perring (R, +, %), then \/Q is a prime hyperideal of R.
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Corollary 2.1 Suppose that () is a primary C, hyperideal of R. Then @), \/Q are 2-
absorbing primal C, hyperideals of R.

Proof. Follows From Theorems are 2.0, 2.5, 2.5.

Theorem 2.7 Let R = (Z, ,+, %) be the ring of integers for all x, y € Z.
We define the hyperoperation

xxy = {pry, qry, where p, q are prime numbers with, gcd(p,q) =1},

then (Z,4+,%) is a multiplicative hyperring. If I = p"Z, with n > 1, then [
is a 2-absorbing primal hyperideal of R with

(1) () =pZ, forn=1 andn =2.
(ii) pu(l) = Z, if n > 3, with n is a positive integer.

Proof.

(i) Follows From Theorem 2.2 (i), I = p"Z is a 2-absorbing primal
hyperideal of R with p(l) = pZ, for n = 1.

Ifde p(l), n=2, then 3 a, b, ¢c € Z such that axb*cxd C p*Z, s0
{pPabed, p?qabed, pqlabed, ¢*abed} C p?Z. Now p*\abed. If d =1, which
implies that p*\abc. So p?\ab or p?\ac or p*\bc. Thus axb or axc or
bxc C p*Z. Hence 1 & pu(I), thus pu(I) # Z. Let a=0b=1, c = p, then
axb={p, q} Lp*Z, axc=bxc={p? pq} L p*Z. Therefore, pZ C u(I).
Now, let d € u(I). then 3 a, b, ¢ € Z such that axbxcxd C p*Z, with
axb, axc, and bxc € p*Z. Hence p* Xa, p* Xb and p* Xc. But p*\abed,
hence p\d, and d € pZ. Thus p(I) C pZ. So u(l) = pZ, which is a
hyperideal of R. Therefore, I = p"Z is a 2-absorbing primal hyperideal of
R, with p(I) = pZ, forn = 2.

(ii) If d € u(I), n =3, then 3 a, b, ¢ € Z such that axbxcxd C p*Z, so
{p*abed, p*qabed, ¢?pabed, ¢*abed} C p*Z. Now p*\abed.
Leta=b=c=p, thenaxb, axc, bxc={p> p2q} € p*Z. Therefore,
d=1¢ p(l). Hence u(I)=Z. Similarly, for n > 3, the hyperideal p"Z is
a 2-absorbing primal hyperideal of R with u(I) = Z.

In general, +f we take the hyperideal [ = p"Z, with n > 3, then [
15 a 2-absorbing primal hyperideal of R with p(l) = Z.
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Example 2.6 If we take a hyperideal I = 82 with R and the hyperoperation
as in Example 2.2, then [ is a 2-absorbing primal hyperideal of R with p(I) =
Z, by Theorem 2.7(i1). It is easy to see that 8Z is not a 2-absorbing hyperideal
of R. Since 2x2 %2 = {32,48,72} C8Z, while 2x2 = {8,12} Z 8Z.

Theorem 2.8 Let R = (Z,+,x) be the ring of integers for all x, y € Z. De-
fine the hyperation

x*y = {pry, qry, where p and q are prime numbers with gcd(p, q)=1}. Then

(i) [ = kZ, with k is a prime number which is a relatively prime with p and
q (i.e. ged(p, q) = ged(p, k) = ged(q, k) = 1), is a 2-absorbing primal
hyperideal with p(kZ) = kZ.

(ii) J = ktZ, where k and t are prime numbers with ged(k, p) = ged(k, t) =
ged(k, q) = ged(t, q) = ged(p, q) = 1, is not a 2-absorbing primal
hyperideal of R with u(ktZ) =kZ JtZ.

Proof.

(i) Let d € kZ, then a = b = c =1 satisfies ax b, axc and b*c € kZ with
axbxcxd={p*d, p*qd, pi*d, ¢*d}y CkZ. Hence kZ C pu(kZ).
Now, let d € p(kZ). Then 3 a, b, ¢ € Z such that axbxcxd C kZ with
axb axcandbxcZkZ. Hencek Xa, k Xb and k Xc. But E\abcd
implies k\d and therefore, d € kZ. So p(kZ) C kZ and hence (kZ) = kZ
is a hyperideal of R. Thus [ = kZ is a 2-absorbing primal hyperideal of R.

(ii) Let d € kZ, then a=0b=1 and ¢ =t satisfy that a x b, a x ¢ and
bxcZ ktZ withaxbxcxd CktZ. Thus kZ C pu(ktZ).

Now, let d € tZ, then a =b=1 and ¢ = k satisfy that a x b, a x ¢ and
bxcZ ktZ withaxbxcxd CktZ. Hence tZ C p(ktZ).

Therefore, kZ UtZ C u(ktZ). Letd e pu(ktZ). Then 3 a, b, c€ R

such that axbxcxd C ktZ with axb, axc and bxc Z ktZ. Thus

kt divides every elements in a x b c* d, which implies kt\abed, but kt Xab,
kt Xac and kt Xbc. Therefore, kt Xabc. Hence we have k\d or t\d. Thus
de kZJUtZ and hence p(ktZ) = kZ UtZ is not a hyperideal of R.

So J = ktZ is not a 2-absorbing primal hyperideal of R.

In the next result, we investigate the conditions that makes p(v/1) C pu(I).

Volume 16, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2814 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Theorem 2.9 Let I be a proper hyperideal of R and I be a 2-absorbing
primal hyperideal of R. If \/I is also a 2-absorbing primal hyperideal of R,
then p(v/I) C pu(I).

Proof. Let a € ,(L(\/j)? then there existr, s, t € R withr*sxtxa C 1
such that rxs, rt and st C R\\ﬁ , so there exists n ; 0 such that
"k skt xa™ C I oand since " xs" LI, r" " I and s" xt" L I, then

a C p(l). Thus a e Ju(l) = p(l), since pu(I) is a prime hyperideal in
R or i(I) = R, by Theorem 2.1. Therefore, (/1) C pu(1).

Theorem 2.10 Let I be a proper hyperideal of R with scalar identity 1. If
V1 is a prime hyperideal of R, then I be a 2-absorbing primal hyperideal of
R.

Proof. We shall prove that I is a primary hyperideal of R. Let

cxd C I, with c & VI. ThencxdC \ﬁ, and ¢ & I, since I C VI. So
d € VI, because \/I is a prime hyperideal. Hence there exists positive
integer n > 0, such that d* C I. Thus I is a primary hyperideal, with
scalar identity 1. Therefore, by Theorem 2.5, I be a 2-absorbing primal

hyperideal of R.

The converse of Theorem 2.10 need not be true.

Example 2.7 In Example 2.5, [ = 127 is a 2-absorbing primal hyperideal
of R. But /127 = 6Z 1is not a prime hyperideal of R. Because 2 x 3 =
{12,18} C V12Z with neither 2 nor 3 in /12Z. Thus \/12Z is not a prime
hyperideal of R.

We will shown in the next example that if 7 is a 2-absorbing primal hyperideal
of R, then /T need not to be 2-absorbing primal hyperideal of R.

Example 2.8 Continue Example 2.7, | = 127 is a 2-absorbing primal hy-
perideal of R. But \/12Z = 6Z 1is not a 2-absorbing primal hyperideal
of R, with p(v/12Z) = 2Z U 3Z is not a hyperideal of R, since by Theo-
rem 2.2 (ii).

Example 2.9 The hyperideal V87 = Z in Example 2.1. Note that 12 =
{2,4},13 = {4,8,16},14 = {8,16,32,64} C8Z. So1 € V/8Z. Hence /8Z =
Z. But in Frample 2.2, \/8Z = 27 1is a prime hyperideal of R.
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Corollary 2.2 [}] If I, Iy, Is,..., I, are hyperideals of a hyperring R,

then NIy I; is a hyperideal of R.

Theorem 2.11 Let P be a prime hyperideal of R with scalar identity 1 and
let Iy, Iy, I3, .... I, be 2-absorbing primal hyperideals of R, such that \/T; =

P, foranyi=1,2,3, ..., n, then N I; is a 2-absorbing primal hyperideal
of R.

Proof. Clearly /(1 L; = Ny VI, = P. Suppose I, I, Is, ..., I, are
2-absorbing primal hyperideals of R, then p(ly), p(ls), ..., p(l,) forms
hyperideals of R, so by Corollary 2.2, Ny p(1;) is a hyperideal of R. Since
VI; = P is a prime hyperideal of R, then \/I; is a 2-absorbing primal
hyperideal of R, which implies thal by Theorem 2.9, n(\/I;) C u(L;). Thus,
s p(VT) = u(P) € 0y (L) Therefore, (Vg 1) = My (L) Jorms
a hyperideal of Ni—y Li. Thus i—; I; is a 2-absorbing primal hyperideal of R.

Remark 2.2 Let P be a proper hyperideal of R and let Iy, Is, I3, ..., I, be
2-absorbing primal hyperideals of R, such that \/I; = P, foranyi =1, 2, 3, ..., n.
then M=, I; need not to be 2-absorbing primal hyperideal.

Example 2.10 Let [ = 12Z.J = 24Z. Then VI =+VJ =67 with respect
the hyperoperation defined in Fxample 2.2. 1..J are 2-absorbing primal hy-
perideals of R, see Fxamples 2.3 and 2.5 in which IN.J =6Z. But I(N.J is
not a 2-absorbing primal hyperideal of R, see Example 2.8.

Note that, if 7 and .J are 2-absorbing primal hyperideals of R with v/T # /],
then ' .J may not be 2-absorbing primal hyperideal of R.

Example 2.11 In Ezample 2.2, if we take I =52, J="TZ, then I. J are
2-absorbing primal hyperideals of R, with u(I) =1, u(J) = .J, by Theorem
2.8 (i). Now VI +# VI, since T =57 and v/J = 7Z. Note that IN.J =
357 is not a 2-absorbing primal hyperideal of R, with w(352) =5ZU77 is
not a hyperideal of R, by Theorem 2.8 (ii).

FExample 2.12 If 1 =127, ] = 204 are two 2-absorbing primal hyperideals
of R with u(I) = pu(J) = Z, see Examples 2.3 and 2.5, and /I # \/J, where
VI=6Z +J=10Z. It easy to see that [ J = 30Z is a 2-absorbing primal
hyperideal of R. To explain this, 5, 3, 2 € Z, 5x3x2x1 ={30,45}x2x1 =
{120,180, 270} » 1 = {240, 360, 540, 810} C 30Z, while 5x3, 3x2 and 5x2 &
30Z. Sole u307). Thus p(302) = Z, which is a hyperideal of R.
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Remark 2.3

(1) A 2-absorbing primal hyperideal of R need not to be 2-absorbing hy-
perideal.  From FErxample 2.12, 30Z is a 2-absorbing primal hyper-
tdeal of R. But 304 is not a 2-absorbing hyperideal of R. Note that,
2% 3 x5 = {120,180,270} C 30Z, while 2 3 = {12,18}, 25 =
{20,30}, 345 ={30,45} £ 30Z. Also, I =8Z, see Example 2.6.

(ii) A 2-absorbing hyperideal of R need not to be 2-absorbing primal hyper-
ideal. From Ezample 2.2, 6Z is a 2-absorbing hyperideal of R. Let
P, =27, P, =3Z, then PLN P, =67 is a 2-absorbing hyperideal of
Z, since, Py, P are prime hyperideals, by Theorem 1.1. But 6Z is not
a 2-absorbing primal hyperideal of R, see Example 2.8.

Definition 2.7 Let [ be a proper hyperideal of a hyperring R. The hyperideal
[ is called an irreducible hyperideal of R if I = J N K, where J, K are
hyperideals of R, implies [ =.J or I =K, [15].

Theorem 2.12 Let [ be an irreducible hyperideal of R, then I is a 2-absorbing
primal hyperideal of R.

Proof. To prove that I is a 2-absorbing primal hyperideal of R. We must
show that p(I) is a hyperideal of R. If (I) = R, then I is a 2-absorbing
primal hyperideal of R.

Therefore, we may assume that (1) # R. Leta, b€ u(l), then 3 z, vy,
ze R, withxxy, vx2z, yxzZ I, such thatx xyxzxa C 1.

If I =(1I:a), then x *yxz C I which implies that 1 € pu(I). So u(l) = R,
a contradiction. Therefore, I C (I : a), similarly I C (I :b).

Thus, I C (I :a)\(I:b) C(I:a+b), since if [ =(I:a)N\(I:b), then
I=({:a)orl=(1:b), hencea+bel, thena+be u(l), by Lemma 2.1.
Moreover, if r € R, a € pu(I), then I C (I :a) C (I :rxa) which implies
that rxa C p(Il). Hence p(1) is a hyperideal of R and the proof is complete.

Theorem 2.13 [}] Let (H,*) be group and let G = H U {0,u,v} where
w, v are orthogonal idempotent elements and uw # v i.e. uv = vu = 0 and
u?> =u, v* =v. Define the hyperaddition on G by

g+0=0+g=A{g} forall g e G.
g+ g={g,0} forall g €G.
if g1 # g2-91 + g2 = G\{91. g2. 0} for all g1. g0 € G\{0}.

Volume 16, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2817




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

The multiplication can be defined as,
g*x0=0x%g={0} forall g €G.

hxu=urxh=uhxv=vxh=vforallhe H andu v =vxu=0_0.
Then (H,+,*) is a hyperring.

Example 2.13 Consider the set Zgs, let H = Z§ = {1,5} and the orthogonal
idempotent elements of Zg are 3, 4 because 3.4 =0, 3> =3, 4> = 4.

Let G = HU{0, 3, 4}, implies (G, +, %) is a hyperring. The hyperaddition
and multiplication as in the following table:

+ 0 3 4 5 1

R ECEEC I NG IR
TR 03 LA L R
I o e [ ({50
5 [ {3 ({05} [{5.4)
N Y AR E AR E XA R O}
* 0 3 4 5 1
G UV UINE!
T o [ [0 [F [
e o [ [
5 {0y {3 {4 {1 {5}
! {0y {3 {4 {3 {5

The hyperideals: 1y = {0,3}, Iy = {0,4}, where Iy, Iy are mazimal, irre-
ducible, prime hyperideals, which implies that I, Is are 2-absorbing primal
hyperideals with p(Iy) = {0,4}, p(ly) = {0,3}. But I; NI, = {0} is not
a 2-absorbing primal hyperideal. Note that, Let 3 € G, 3 x3x3 xd C
Iy N Iy, while 3 x3 = {3} € Iy N Iy, then d= 0, 4. Let 4, 1, 5 € G,
A% 1x5xd C I1N 1y, while 4x1 = {4}, 1x5={5}, 45 = {4} € [1N 15, then
d =0, 3. Therefore, u(Iy N Iy) = {0,3,4} is not a hyperideal. Because
3—|—4:{l,5} g_ 1N Is.

Definition 2.8 [§] Let Ry and Rs be two hyperrings. A mapping ¢ from Ry
into Ra is called a homomorphism if (i) ¢(a+b) C d(a) + o(b) (ii) ¢p(ab) C
o(a)o(b) and (iii) ¢(0) =0 hold for all a,b € R;.

The mapping ¢ is called a good homomorphism or a strong homomorphism
if (i) d(a+b) = d(a)+o(b) (ii) ¢(ab) = d(a)d(b) and (iii) ¢(0) = 0 hold for
all a,b € Ry.
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Definition 2.9 /8] A homomorphism (resp., strong homomorphism). A
mapping ¢ from hyperring Ry into hyperring Ry is said to be an isomorphism
(res., strong isomorphism) if ¢ is one to one and onto. If Ry is strongly
isomorphic to Ry, then it is denoted by Ry = R,.

Theorem 2.14 [7] Let f : R — S be a good homorphism and I,.J be
hyperideals of R and S, respectively. Then the followings are satisfied:

(1) If I is a Cy hyperideal of R containing Ker(f) and f is an epimorphism,
then f(I) is a Cy hyperideal of S.

(ii) If J is a C, hyperideal of S, then f=(J) is a C, hyperideal of R.

Theorem 2.15 Let [ : R — S be a good homorphism and I,.J be proper
hyperideals of R and S, respectively. Then the followings are satisfied:

(1) If I is a 2-absorbing primal hyperideal of R containing Ker(f) and f is
an epimorphism, then f(I) is a 2-absorbing primal hyperideal of S.

(ii) IfJ is a 2-absorbing primal hyperideal of S, then f~(J) is a 2-absorbing
primal hyperideal of R.

Proof. (i) It is clear that by Theorem 2.1, f(I) is a hyperideal of S. It is
enough to show that f(p(1)) = p(f(1)) is a hyperideal of S.

Let yy, y2 € f(u(I)) and s € S. Since f is onto, then there exist x1, r9 €
pu(l), r € R such that f(x1) = y1, f(z2) =y2 and f(r)=s. Since I is a
2-absorbing primal hyperideal of R. Then (1) is a hyperideal of R, then

xy —x9 Cp(l), rxzy € p(l). So that

y1 —ya = f(x1) — fxa) = f(x1 —x2) C f(u([)), and
sy = f(r)* flz1) = f(rxa1) C f(ul)).

So f(p(1)) is a hyperideal of S.

Finally, let a € pu(f(I)), then a € S, and 3 ry, s1, t; € S such that
ryksyxtyxa C f(I), with ryxsy, syxt; and ryxty € f(I). Since [ is onto,
then 3 r, s, t, b € R such that f(r) =1y, f(s)=s1, f(t)=1; and
f(b)y=a. Now, f(rxsxt*b)=f(r)* f(s)x f(t)*f(b) =ri xsy xt; xa

C f(I). Thusr*sxtxb C I, with f(rxs)=f(r)xf(s)Z f(I), f(rxt)=
fr)yxf(t) L f(I) and f(s*t) = f(s)» f(t) Z f(I). Hencer*s, r+t and
sxtZ 1. Thusbe p(l). Therefore, a = f(b) € f(pu(l)).
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Conversly, let y € f(u(l)), implies y = f(d) € S for some d &€ u(l). Then
there exist b, ¢, | € R such that bxcxlxd C I, with bxc, exl and bx[ € 1.
Hence f(bxcxlxd) = f(b)x f(c) = f(l)xy C f(I), with f(b)* f(c),

F(e) + F(1) and f(b) % f(1) € f(I). Hence y = f(d) € p(f(I)). So,

w(f(I)) = f(u(l)). Therefore, f(I) is a 2-absorbing primal hyperideal of S.

(ii) It easy to see that f~1(.J) is a hyperideal of R. It is enough to show that
(D)) = u(f~Y(T)) is a hyperideal of R. Let ay, as € f~*(u(J)). r € R,
then f(a1), f(a2) € p(J), f(r)e S. Since J is a 2-absorbing primal
hyperideal of S. Then 1u(.J) is a hyperideal of S.

So that f(ay) — f(az) = flag —az) € p(J), and also f(r) = f(a1) = f(rxa;)
C u(J). Therefore ay —as C f~Y(u(J)). and also r xa; € f~1(u(J)).
Hence, f~Y(u(J)) is a hyperideal of R. Finally, let b€ p(f~1(.J)) and

be R, then3r, s, t € R such that rxsxtxb C f~1(.J), withr*s, st and
rxt € f7YT). Then 31y, sy, ty, a € S such that f~Y(ry) =7, f~(s1) = s,
[~Yt1) =t and f~(a) =b. Now,

fUrixsyxtyxa) = fHr) » fHs1) x fHt) * fH(a) =rxsxt*b C
FYT). Thusrixsyxtyxa CJ, with f~Yrixsy) = f1(r) « f(s1) €
F), F retn) = ) f N0 € FAT) and (st k) =
FYs)~ f () € f~YJ). Henceryxsi, rixty and sy xt1 € J.

Hence a € pu(J). Thus b= f~Ya) € f~(u(J))).

Conversly, let x € f=Y(u(J)), then 3 y € u(J) such that f~1(y) = x, which
implies that there exists vy, Yo, ys € S such that yy x ya x ys xy C J, with
Y1 * Y2, Yo xys and yy xys  J.

Hence f~H(y1xypxysxy) = [~ (o)« [~ (o) * f~ (ya)x () € f71(T), with
F )+ f N ya)y £ w2) * f ys) and £ (ya) £ (ys) € fH(T).

Hence x = f~'(y) € p(f~1(])). Thus, f~H(u(])) = p(f~1(])).

Therefore, f~1(.J) is a 2-absorbing primal hyperideal of R.

Suppose that [ is a hyprideal of R. Then qoutient abelian group R/I =
{¢ + I: ¢ € R}, becomes a hyperring with the multiplication

(c+D)x(d+1)={r+1:recxd}.

In this case R/I is called quotient hyperring. One can show that all hyper-
ideal of R/I is of the form .J/I where J is a hyperideal of R containing I,
since the natural homomorphism ¢ : R — R/I, o(r) = r 4+ [ is a good
epimorphism, [7].

The next theorem investigate the relation between the 2-absorbing primal
hyperideals of R and R/I, for some hyperideals I of R containing .J.
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Theorem 2.16 Let I,.J be proper hyperideals of R, with J C I. Then I is a
2-absorbing primal hyperideal of R iff I/.J is a 2-absorbing primal hyperideal
of R/J.

Proof. To prove this result, we must show that p(I/J) = p(l)/.J.

Let a + J € p(l/J), then there exist r + J, s+ J, t +.J € R/J with
rxsxtxa+.J CI/Jsuchthat rxs+.J rxt+.J sxt+JZI/J So
rxsktxa C I withrxs, rxt, sxt € I. Hence a € u(l), therefore,
a+Je )/

Conversely, let a +.J € pu(I)/.J, which implies that @ € p(1), so there exist
r, s, t € Rwithrxsxtxa C [ such that rxs, rxt, s+t € I. Therefore,
r+J,t+Js+JeR/Jwithrxskxtxa+J=(rxsxt+J)(a+.J)CI/]
such that rxs+J rxt+.J sxt+JZ1/Jand soa+ J € pu(l/J). Hence
(1)) = pu(I)/J. The proof is complete.

From Theorem 2.16, we have the following main result.

Lemma 2.3 Let J be a proper hyperideal of R, then there is one to one
correspondence between 2-absorbing primal hyperideal I of R containing J

and 2-absorbing primal hyperideal 1/J of R/.J.

Corollary 2.3 Let f: R — S be a good homorphism and I,.J be hyperide-
als of R and S, respectively. Then the followings are satisfied:

(1) If I is a C, primary hyperideal containing Ker(f) and f is an epimor-
phism, then f(I) is a 2-absorbing primal hyperideal of S.

(ii) If J is a C, primary hyperideal of S, then f=1(.J) is a 2-absorbing primal
hyperideal of R.

Proof. (i) and (ii) Follows from Theorem 2.15 and Corollary 2.1.

Corollary 2.4 [7] Suppose that I C .J are hyerideals of R. Then
VI I =TI
Corollary 2.5 Let I C () be hyperideals of R with scalar identity 1 then

(1) If Q is primary hyperideal of R. Then QQ/I is a 2-absorbing primal
hyperideal of R/I.
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(ii) If Q is a C, primary hyperideal of R containing 1. Then /Q/I is a
2-absorbing C,, primal hyperideal of R/I.

Proof.
(7) Follows from Theorem 2.5, 2.16.

(7i) Follows from Corollary 2.1, Theorem 2.16.
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