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Abstract.

In this paper, we consider the degenerate type 2 Changhee numbers and polynomials ¢, x(x) and derive some
new identities involving degenerate type 2 Changhee polynomials, the type 2 Changhee polynomials, the type 2
Euler polynomials, generalized Bell numbers, the Changhee-central numbers of the second kind and Euler
polynomials by using the generating function method and the Riordan matrix method.
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1. Introduction

In recent years, many researchers studied various kinds of Changhee numbers and poly-
nomials and degenerate Changhee polynomials. The type 2 Changhee numbers and poly-
nomials are introduced by T.Kim and D.S.Kim in 2019. And many interesting identities of
these polynomials have been found by them. In this paper, we define the degenerate type
2 Changhee polynomials and numbers by using type 2 Changhee polynomials and numbers
and derive some new identities and properties.

Let p be a fixed prime number with p = 1(mod2). Throughout this paper, Z,, Qp
and C) will denote the ring of p-adic integers, the field of p-adic rational numbers and the
completion of the algebraic closure of @y, respectively. Let f(z) be a continuous function on
Z,. Then the fermionic p-adic integral on Zj is defined by Kim as(see[1])

PN -1

[ f@dna@) = Jim Y @)1 (1)
bel =0
So. we get

/fx+1du1 [f Jdpi—1(z) = 2£(0). (2)

Fort € C, with [t|, < p_PTll , the Changhee polynomials Ch,,(z) are defined by the following

generating function

/Zp(l—l-t)x""yd.ul(y) 22 (141" ZCh —_, (see[l,2,4,7]). (3)

n=0
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the type 2 Changhee polynomials ¢,(z) are defined by the following generating function

x+142y _ 2 x_oo tn
ELJ1+ﬂ*+cM—ﬂw(1+ﬂ4%1+”_ﬂl+ﬂ = enta)p (seel)) (4)

In this paper, generating functions of special combinatorial sequence are applied as
follows:
Stirling numbers of the second kind S(n, k) have following generating function

oo n et _ k
> S(n, k)% = % (see[l, 5, 10]). (5)
n=k : :

Stirling numbers of the first kind s(n, k) have following generating function

o0 n n k
z;s(n,k)% - W (see[10]). 6)

Euler polynomials Er(z) have following generating function

ZEn(m)iz 2 et (see[1,3,7]). (7)

n! et +1

The type 2 Euler polynomials E, (z) have following generating function
S Ea) = 0 e (seell]). (®)

n!  et4et
n=0

The Changhee-central numbers of the second kind C'(n, k) have following generating function
LI S N S Cn,k) =, (seell]). (9)

Generalized Bell numbers of the first kind #(n, k) are defined by the generating funetion

(eet—l

ko .
Tl) =D _Aln, k)%; (seel6]). (10)

In this paper, we let [t"]f(t) denote the coefficient of [t"] in the formal power series of
f(t), where f(t) =377 fat™.

A Riordan array is a pair (d(t), f(t)) of formal power series. Where d(t) = > > d,t",
f(t) = ch’ozl fnt™. It defines an infinite lower triangular array (dn i )n,ren according to the
rule d,, . = [t"]d(t)(f(t))*. So we set (dn1) = (d(t), f(2)).

Lemma 1.1 Let D = (d(t), f(t)) be a Riordan array and let h(t) =37 hnt" be the

generating function of the sequence {hn }nen. we have (see[8])

> dugchi = [("Jd@)R(f (1)) = ["]d(O)[(R(y)]y = F(2)]- (11)
k=0

2. Some properties of degenerate type 2 Changhee polnomials
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In this section, we define the degenerate type 2 Changhee polynomials and arrived

at some interesting identities involving degenerate type 2 Changhee polynomials and some
special combination sequence. The connections of them are obtained by generating functions
method and Riordan matrix method.

New we define the degenerate type 2 Changhee polynomials by the generating function:

2
(1+In(1+ AB)X) + (1+ In(1 + At)x)—1

(1+1In(1+At)* Zcm tn. (12)

When z = 0, ¢n,n = ¢,,2(0) called by the degenerate type 2 Changhee numbers. We can also

the generating function of high order degenerate type 2 Changhee numbers

2 a: S (a)t
((1+ln(1+/\tﬁ)+(1+1n(1+>¢)%)—1) HZ::O ARl (13)

Obviously, we know

2 1 2 .
lim I+ In(1+At)*)* = 1+¢)°. (14
A= (1+In(1+A)%) + (1+1n(1+,\t)%)—1( ( )*) (1+t)+(1+t)—1( ;o)
So that, we get
lim o, () = en (). (15)
Theorem 2.1 For nonnegative integer n, we have
Con(z) = Zc; "ls(n,l). (16)
Proof Let t be insteated of In(1 + }\t)% in (4), we obtion
2 1
(I +In(1+ At)>)"

(1+In(1+AD)%) + (1+1In(1 + Af)%)—1
_1(In(1 4+ At))!

tnqg

ci(z)A I
1=0
00 oo i a7
=S an ' S st
1=0 n=l
—i Y ci(x) A" s(n .r)i
= 1 (z D
n=0 =0
From equation (12) and (17), we can get this theorem.
Corollary 2.1 When = = 0 in (16), we can get the equation of type 2 Changhee
numbers
Cnx = ZCIA 's(n, 1). (18)
In [9], the following inversion relation
fo="Y_ S(n.k)ge <= gn =Y s(n.k)fx, (see[9]) (19)

k=0 k=0
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where f,, and g, are two sequences, denoted as
= , " = "
f:mzzzofnaa Q’:nz:;gna- (20)
Therefore, we can get the inverse relationship between Stirling number of the first kind and

Stirling number of the second kind

Ty = Zn: S(n, k)(z)r = (), = s(n, k)x", (see[5,10]). (21)

k=0
Equation (16) use the inversion relation formula, we have the following theorem.

Theorem 2.2 For nonnegative integer n, we have
z) = ax(@)A"S(n,1). (22)
1=0

When z =0, ¢, = 31, en pA" 'S (n,1).
Proof By (19), we know

n

228 37 s () = 2 ZS (n, DA 1 ).
=0

Theorem 2.3 For nonnegative integer n, we have

e Z Z_: ( )Ck,)\)\n_k_l(:v)zs[n —k.1D). (23)

Proof From (12), we note that

S can(@) = (3 enamy) 1+ In(1 4+ 20 ¥)7, (24)

n=>0 n=0

while

|

I=° (25)

oo . t‘n
:Z( *Zs(nf ZZ NA *'fs(n,z)a

1=0 = n=01=0
Therefore, by (24) and (25), we get

tﬂ. n

ZCﬂ?A(:r)E = (Z CnA (ZZ A" ls (n E):l_,)

n=0 ’ n=>0 T nz0l=0
oo n n—k
—ZZ( )cﬂz AR *s(n—kz) (26)
n=0 k=0

T

occ mn n—k
n n—k—I t
— Z Z (k) CiAA (x)18(n — k,!)a

By the same way, we get the following property
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Theorem 2.4 For nonnegative integer n, we have

n n—k
Can(z+y) = ZZ( )Ck)\ JA"T k- 1(’9)15(?1*'7?:3)- (27)
k=0 I=0
Proof

ch,A(Ter ZCnA 1+111(1+}\t)71\')

n=>0 n=0
00 t oo o
(ch)\ _l ZZ }\ E ?‘1 f) )
n=>0 n=0 [=0
o0 T n n—k t'”'

n—k—I
:Z (k>0k,A( )Z( JiA s(n —k, f)

n=>0 k=0 =0

Theorem 2.5 For nonnegative integer n, we have

can(z) = ZE AT s(n, m)s(m, ). (28)

m=0 =0

Proof By (12), we have

tn 2 1n([+l In(14+At))
) — = 1
;Cn,)\(ﬂf) n! E!1n{1+§ In(1+At)) + e_lnf1+% In(1+A1)) (e )

(In(1 + +In(1 + At)))"
1

M

Ej (x)

Il
o

o0 T

o0 nt
Z s(m, A Z s(n,m)A ] (29)

m=l n=m

Z_: n, m)A" " mZE; :'
" o
nl

ZH:EE (z)A" " s(n,m)s(m, E)

HMB ||P%8 WME%

By comparing the coefficients of % on both sides of equation (29), we can easily get this
identities.

Corollary 2.2 Let z =0 in (28),we can get

Cny = Z ZEfAn_ms(n, m)s(m,l). (30)

m=0 =0
Fron (28) we used the inversion formula repeatedly to obtain the following theorem.

Theorem 2.6 For nonnegative integer n, we have

Z ZCM YA LS (n,m) S (m, 1), (31)

m=0 [=0

. Whenz =0, B}, =" _ S(n,m) /% ciaA™ 'S (m,1).
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Proof From theorem 2.5, we know
n

CT"’}‘A*TEI):Z (n,m) ZE; )s(m,1).

m=0

by (19), we get

n

> s(n.)E; (z) = A" mZSn m)emx(2),

=0 m=0

L

En(@) = S(n,1) Z NSl m)ema(x) =
=0 m=0

I=

Theorem 2.7 For nonnegative integer n, k > 1, we have

ISSN: 2395-0218

n 1
Y ema@AX T S(n,1)S(1L,m).
0 m=0

k! k)ym—
o C(n.k) = Z ZCH IA™=1S(n,m)S(m,1). (32)
m=0 =0
i F
Proof By replacing t with e"p(}‘(ei—_l)_l) in (13) and a = —k
1
00 . (expg)\!e.i—lg—l )1
Right = Z CE,A ) I
1=0
oo L1 m
=> 3P Zsmumﬁ
=0 m=l e (33)
— 3 3OS S(m, A Y S(n,m)Q‘”%
I=0 m=l n=m ’
oo 1 mn m k m_l n
=3 o ST eiPA S(m. 1)S(n,m) .
n=>0 m=0 [=0
2 kK (elr +e 7) k' = t“
Left = (—/—— —_— C k 34
fis(g——) =& 7 2 0 (34)
By comparing the coefficients of % of (34) and (35), Theorem2.7 is proved.
Theorem 2.8 For nonnegative integer n, we have
S ATFBm ke () = al@A T S(n.1). (35)
k=0 =0
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Proof From (10) and the Riordon matrix method, we have

_ kI "3 k)
RZ)\ ;“Bnkc;u)‘ —nTZ (n Ck;;!( z)
0

2 1
- 1+ ~In(1+Ay)'|ly =
@+ T+ 2w) + L+ Thn(t g T+ 2wl

2 1
Tr e rari@onarxe "

= [t

= nl[t"]

(= =]

:n![tn]Zq(:r))f'!(eI; =nl[t ic; EZS (n, f
=0 =0 n>l
— nl[t"] ZZCI 2)A™'S(n, I)— Zn:)r*q (n,1).

n=0 =0

Corollary 2.3 Let z = 0in (35), we can get

STATFB(n, k)era =Y e T'S(n ).
k=0 =0

Corollary 2.4 By (19) and (35), we can get

n 1
SN NTEB(L k) s(n. ek () = cn ().
=0 k=0
When z = 0, we have > " Zig=0 A EB(1, k)s(n, ek = cn.

Theorem 2.9 For nonnegative integer n, we have

Cn () =

}\n Ms(m,l)s(n,m).
m=0 [=0

Proof By equation (12), we can also get

exp(e’ — 1) —1

(39)

= t" 2 1 .
D enn(@)5 = : (14 < In(1 +At)**H!

o n! (1+ 5In(1+At))2+1
_ 2 o 5 (144 (14282
1n(1+lln(l+)\t)j2 +1

A

g;+1 (ln(1+ Lin(1 4 At)?)!
_ZE‘ Il

oo

S (D2 s, s (n,m)

oo

=0 m=l n=m
[="3)
n=

m=0 [=0

Corollary 2.5 Let z =0 in (39), we can get

—

Cny = Z ZE{ 22PN s(m, D) s(n, m).

m=l =0

t\.ﬁ

E; (-’E +1 )QE Z (,m!l)}‘—m Z s(n, ,m_))\”t_

L

n!

"
n!’
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Now we given the degenerate type 2 Euler polynomials defined by

2
(1+A)X + (14 At)~%

EBULE S B s (42)

n=0
The generalized falling factorial (z|A), with increment A is defined by

n—1

(@A)n = J] (&~ M), (see[11]), (43)

k=0
for positive integer n, with the convention (z|A)g = 1. So we can get the following formula
by expanding the binomial theorem: for a variable =,

>0 -ﬂ

%=
(1+At) Zg(xm g (44)
Therefore, we get
(1+A)F —1 Z 1) (45)
In order to prove the following theorem we have to introduce some definitions of Bell poly-
nomials
tn
(Z ZBnk T1, T2, - ,:.'.'n_k+1)m, (see9, 12]). (46)
n>k
Therefor, we get the following identities:
1 k . 1 = t"
((1 + MY —1)F = E(mg 1A) m ;Bnm A1 @A)z (U nemtr) = (47)
Theorem 2.10 For nonnegative integer n, we have
Z Zci @A S (10, B (L)1, (12,4 (1A ) nmmsn). (48)
m=0 =0
Al 1+>.:)% 1]
Proof By replacing t with ‘3()\—_1 in (12),we get
1
o A(1+A) X =1] _ )l
ILAEEES MRNCEE :
Al
n=>0
R 1 (L A)F — ™
= Z AMa)A~ Z S(m -
k m
= . e (1)) 10
= ax(@)Ar Z S(m, DA — (49)
=0 m=l
oo _ oo m oo tn’
=Y aa(@A IZ S(m, DA™ Y 7 B (N1, (12, (WA nemsr) —
=0 n=m
o0 n m . tﬂ.
=X A @A S, 1) B (UN1, (W2 5 (N )~
n=0m=0 |= H

Volume 15, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 2775 |




Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218
Theorem 2.11 For nonnegative integer n, we have

nq

cna(z) = Z ZZE”‘ ()A" T (g )s(ng, m) S (m, 1). (50)

n1=0m=0 I=0

) . An[i+L n(1+at)]_
Proof By replacing ¢t with £ R 3 L in (42), we get

8

Aln[1+31rln(1+xt)]_1 !

ZCnA(fb’ ZEU(«"? ?I )

n=>0
> > In(1+ + ln(l + At)|™
_ * )\ I S A'm
Iz_; 1A () Zz m)!
o e . o (51)
sl: — m —n kel tn
=D Ei@AT ) S(m.)A s(ni,m)A™" 3" s(n,ni)A =
=0 m=I ny=m n=nq
[s"s] nq m t‘ﬂ
:Z Z Z ZEEA( AT G (Y s(ng,m) s s(n,n1)—.
n=0mn1=0m=0 [=0 e
The conclusion of the theorem can be obtained by comparing the coefficient of ‘ ; between
the first term and the last term.
The Degenerate-stirling numbers of the first kind defined by
S N ((1+A)x — 1)k ” -
> s(nk|A) = i . (see[13]). (52)
It can also be expressed as follows
o0 1
kA" s(n, k|\) t" (1+ M) —1 & -
z:: ?I-! _( )\ ) . (03)
Therefore, we have the following identity involving the Degenerate-stirling numbers of the
first kind and the degenerate type 2 Changhee polynomials
Theorem 2.12 For nonnegative integer n, we have
S N Es(n kN (z) = co 2 (). (54)
k=0
Proof
_ "L kIAT k|A
ZA k s(n, k[N )cra (@ R‘Z 5(’” | )Ck;[m)
k=0 k=0
2 _ (d+A)3 X -1
=nl[t" ln 1+ Ay
| ][(1+ﬁln(l+}\y))+(l+§ln(1+}\y)— (1+ X ( Jly A ] (55)
= nl[t"] 2 (1414 A2y
1—|—]n(1—|—}\gx)77 (l—|—ln(1+)\2£)77)*1 A

t

= nl[t"] Z ez (z () = n![t"] Z coaz(x }\_n— =A""¢, y2(x).
2! n! '
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Logarithmic polynomials are defined as L,

2

- t“ t ="
log(z gn— n" =log(1+ g1t + g2 — o1 +---)= Z Ln—,(go =1), (see[9])

n=>0 n=1
While
L, = Ln(g1,g2, T ,Q'n) = Z(_l)h_l(k - 1)!Bn,k(gl,Q‘2: e )‘ (LO = O)

Theorem 2.13 For n > 1, we have

n—1n-—I
ar(@ 1) = cma( .:zz( ) (11— 1B 1
k=1

l

cna(@+1) —cnalx) _ nz_:l (@) (—A)ni-!
nl — n—1
While
Bnte = Bro k(1)1 (1N)2, -+ (1) nme)-
Proof
ch)‘ r+1 __ZC?I)\
=0
2

A+l @ In( - A)F)-L
-3 c_.;,)\(x)% In(1+ At)¥.
n=0 "
From the above definition of logarithmic polynomials

o ?’1

In(1+ A)* Z 1|A)n

2
=In(1+ (1At + (m)z% 4o

tﬂ.
_ZLn ()1, (A2, -+)—

—ZE{Z( DF (k= 1) B (1N)1, (1N)z, )}
n=1

Thus, we know

= A— "
ch?)‘(i"i‘l)Q —Z n)u(x)ﬂl

n=0

ear () SO~ DB (1)1 ()} o

0 n=1 k=1

p”qs

3
Il

M

n=1 = k=1

(14 In(1 + A)%)®[(1 + In(1 + A)¥)

n—1 n—I u m
Z( )le\ )y (1" 1(’“—1)!Bn—l,k((1|f\)13(1I)\)2,'“)a-

ISSN: 2395-0218

-1 (61)
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On the other hand

1

In(1 + At)>

= i %t“. (64)

n=1

-SRe

>—|'—'

ZCnA($+1__ZCnA ?1'

n

n?)‘(:r)%ln(l P

e 1L

A)n—l—l

= Z{Z CI,)j}!(w) (_n —1 -
1=0

In (63) and (65), compare the ooefficients of the first term with the last term % By
comparing the coefficients of % on both sides the (63) and (65), Theorem2.13 is proved.
Theorem 2.14 For nonnegative integer n, suppose r; € N, i € [m], m € N, there are

properties about Degenerat type 2 Changhe polynomials ¢, x(z) as follows

Elr;+r‘2+ +rm)($1—|—1‘2+"'+mm)

" . (66)
— Z (n o ) 51”‘11))\(:1'1) (7‘2))\(:1'2) ci:m))\(;rm)‘
Tl +n2+--+nm="n L, 1z, s Thm
Proof
> t?l
Z Ci’:i+r2+..l+rm)(I1 +Ta+ - +xm)a
n=0 !
= ( 2 )r1+r‘2+...+f‘m(1 + l 1[1(1 + At))11+x2+-..+xm
(1+ % In(1+X8)) + (14 5 In(1+ At))

3 N — 67)
= Z 05:11!),\(&':1)5 CT(:;)A(;L'Q)H . 51:“,))\ )_'

n=0 n=>0 n=0

— n &) el 2) olrm) ﬂ
B Z Z (”unz, e .-ﬂm) niA (T 2 (T2) A(T‘m)n!'

n=0mni14+no++nm=n

Corollary 2.6 Let 1 = 22 = -+ = &, = 0 in (66), we get the degenerate type 2
Changhee number property

clritrate e rm) n 1) (r2) (rm)
“Tsl i r Z (?11 TNg, -+ ?I-'m) nrll,)‘ ?:22)\ C?‘:rm)\' (68)

nit+ng+--+nm=n

Letry =a,ro=8,r3=-=r, =0,y =2, 20 =y, 3 = --- = x,,, = 0 in (66), we get
ot - n o £
ex @ +y) = (k) cia@)er A (). (69)
k=0
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Let y = 0in (69), we get

n
a3 o
e3P (@) = (k)c££m0£ﬁkk
k=0

Theorem 2.15 For nonnegative integer n, we have

B n—1 n—l1 ok
%CNA(T) = Z ( .)CE A — 1A s(n, k).
1=0 .k=1
Proof We assume
2
flt,z A) = l—l—lnl—l—)\t cn
( ) (1+In(1+ At)%) + (1 +In(1 + At)%X)~1 ;¢ ( Z
So, we get
2f(t ;N = f(t,z;A) In(1+ l111(1 + At))
85_’? t i | - 1 1 }‘ -
While
= (2 In(1 + At)*
In(1 + < In(L + At)) =Y (-1 1)1T
k=1
ZZ( ) ‘A_RZ (n, k)A" —
k=1
=3 S 1) = AT s(n, k)t—f.
n=1k=1 n
&, >~ J t"
—flt,z;\) = —cn -
a UCEY) ;8566 ’A(E)n!
n o kil tn

1)1)“”‘*5(”;1&)a

n=>0 n=1k=1

oo n—1 n n—1 m
_ : _1yk-1 o | n—Il—k

; > (E)cu(:r);( Dk —1)IA s(n, k)n!

ISSN: 2395-0218

(70)

(73)

Acknowledgements The research is supported by the Natural Science Foundation

of China under Grant 11461050 and Natural Science Foundation of Inner Mongolia under

Grant 2016MS0104.

Volume 15, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm

2779 |



Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

References

[1] Kim, T., Kim, D.S.: A note on type 2 changhee and daehee polynomials. Revista de la Real
Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (2019)

[2] Lee-Chae Jang, C.S.Ryoo, J.J.Seo, Hyuck In Kwon. Some properties of the twisted Changhee
polynomials and their zeros[J]. Applied Mathematics and Computation, 2016, 274:169-177.

[3] Sun P. Moment representation of Bernoulli polynomial, Euler polynomial and Gegenbauer poly-
nomials[J]. Statistics and Probability Letters, 2007, 77(7):748-751.

[4] D.S. Kim, T. Kim, J. Seo, A note on Changhee polynomials and numbers, Adv. Stud. Theor.
Phys. 7 (20) (2013) 933 - 1003.

[5] El-Desouky B , Mustafa A . New results on higher-order Daehee and Bernoulli numbers and
polynomials[J]. Advances in Difference Equations, 2016, 2016(1):32.

[6] Gaowa Ma, Wuyungaowa. Application of combinatorial enumeration methods in combinatorial
sequence[D], 2012.

[7] Kim BM , Jang L C , Kim W | et al. Degenerate Changhee-Genocchi numbers and polynomi-
als[J]. Journal of Inequalities and Applications, 2017, 2017(1):294.

[8] Sprugnoli R . Riordan arrays and combinatorial sums[M]. Elsevier Science Publishers B. V.
1994.

[9] Srivastava, H.M., Junesang, C.: Zeta and g-zeta functions and associated series and integrals
2015

[10] E{im E) S, Kim T . On degenerate Bell numbers and polynomials[J]. 2016.

[11] Cheon Seoung Roo, On degenerate numbers and polynomials related to the stirling numbers
and the bell polynomials[J]. Global Journal of Pure and Applied Mathematics,(2016),pp.3407-
3413. Young P T . Congruences for degenerate number sequences[J]. Discrete Mathematics,
2003, 270(1-3):279-289.

[12] Mihoubi M . Bell polynomials and binomial type sequences[J]. Discrete Mathematics, 2008,
308(12):2450-2459.

[13] Kim T , San Kim D . A note on degenerate Stirling numbers of the first kind[J]. 2018.

Volume 15, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 2780 |




