Journal of Progressive Research in Mathematics
 www.scitecresearch.com/journals

Bigraph in GraphTheory

Azhar Aziz Sangoor
Department of Mathematics - University of Thi-Qar
College Science of Computer and Mathematics
Azhar Aziz 1984@ gmail.com

Abstract

In this paper we study bigraph in graph theory and discussed properties bigraph of some type graph, we study odd complete graph and even complete graph has bigraph such that when partition graph into two part G_{1}, G_{2}, if even complete graph such G_{1} is odd complete graph after partition and G_{2} is not complete graph, either if odd complete graph such G_{1} is even complete graph after partition and G_{2} is not complete graph, we study regular graph for me bigraph too we get after partition G_{1} either odd complete graph or even complete graph, will we discuss the status every bigraph is disconnected graph, also are looking at rest graphics achieve their properties Bbigraph for example we take Euler graph, square graph, Hamiltonian cycle graph , Hamiltonian path graph, This is the convention we use when trying to represent a bigroup by a graph. The vertices corresponds to the elements of the group, hence the order of the group G corresponds to the number of vertices in the graph.

Keyword: Bigraph; complete graph; Eulerian graph; square graph; regular graph; Hamiltonian graph.

1-introduction

in this paper, we introduce the concept bigraph in graph theory with result and counter examples, also we establish between graph and bigraph, then it has became rigorous area of researching of graph theory , the notion of bigroup on group was first introduced by P.L Maggu in 1994 .

Definition1.1 [Dr.R.Muthuraj and P.M.Sitharselvam, M.S.Muthuraman Department of Mathematics PSNA CET, (2010).]: A set $(G,+, *)$ with two binary operation + and $*$ is called an bigroup if there exist two proper subsets G_{1} and G_{2} of G such that i. $G=G_{1} \cup G_{2}$
ii. $\left(G_{1},+\right)$ is a group. iii. $\left(G_{2}, *\right)$ is an group. A non-empty subset H of an bigroup $(G,+, *)$ is called an sub bigroup, if H itself is a bigroup under + and *operations defined on G.

Definition 1.2 [Paul Van Dooren, 2009]: A graph $G=(V, E)$ is a pair of vertices (or nodes) V and a set of edges E, assumed finite i.e. $|V|=n$ and $|E|=m$.Here $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{6}\right\}$. An edge $e_{k}=\left(v_{i}, v_{j}\right) i \mathrm{~s}$ incident with the vertices v_{i} and v_{j}. A simple graph has no self-loops or multiple edges.

Definition 1.3 [Clark. J. and Holton D. A., (1961).]: A complete graph is a simple graph in which each pair of distinct vertices is joined by an edge. If the complete graph has vertices v_{1}, \ldots, v_{n} then the edges set can be given by $E=\left\{\left(v_{i}, v_{j}\right): i \neq j ; i, j=1, \ldots, n.\right\}$. It follows that the graph has $\frac{1}{2} n(n-1)$ edges.

Definition 1.4[Harary F., (1969)]: Let v be a vertex of the graph G. The degree $d(v)$ of v is the number of edges of G incident with v, counting the loop twice, i.e., it is the number of times v is an end vertex of an edge. If for some positive integer $r, d(v)=$ r for every vertex v of the graph G, then G is called r-regular. A regular graph is one that is r-regular for some r.

In this section we just recall some basic notions about some algebraic structures to make this paper a self contained .

Definition 1.5 [W.B.Vasantha Kandasamy Florentin Smarardache,(2009)].
A non empty set S on which is defined an associative binary operation * is called a semigroup; if for all $a, b \in S, a * b \in S$. A non empty set G is said to form a group if on G is defined an associative binary operation $*$ such that $a, b \in G$ then $a * b \in$ G. There exists an element $e \in G$ such that $a * e=e * a=$ for all $a \in G$. For every a $\in G$ there is an element a^{-1} in G such that $a * a^{-1}=a^{-1} * a=$ e (existence of inverse in G). A group G is called an abelian or commutative if $a * b=b * a$ for all $a, b, \in G$.

Example 1.6 [W.B.Vasantha Kandasamy Florentin Smarardache,(2009)].
Let $Z_{2}=\{0,1\}$ be the group under addition modulo 2 . The identity graph of Z_{2} as $1+1=0(\bmod 2)$, figure as follows:

Definition 1.7[1]: let G be simple connected graph denoted by G^{2} is defined to be the graph with same vertex set as G and in which two vertices u and v are joined by an edge if and only if in G we have $1 \leq d(u, v) \leq 2$.

2 -bigraph in graph theory.

In this section we introduce studying the type graph on properties bigraph and what the relation between graph and bigraph.

Definition 2.1: A set (G, v, e) with two element is vertices and edges is called a bigraph if there exist two proper subsets G_{1} and G_{2} of G such that i. $G=G_{1} \cup G_{2}$
ii. $\left(G_{1}, v, e\right)$ is a graph. iii. $\left(G_{2}, v, e\right)$ is an graph. A non- empty subset H of an bigraph (G, v, e) is called an sub bigraph, if H itself is a bigraph.

Example 2.2: we take k_{4} complete graph, we apply properties bigraph.
Solution: Suppose that k_{4} complete graph has 4 vertices, 6 edges, to show that k_{4} is bigraph, we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$

In the following complete

Now dividing the graph k_{4}, we partition graph into two graph, so appear complete graph k_{3} is G_{1} and G_{2} is one vertices has 3 edges as following:

After dividing so union two graph such that definition union of graph [clark] Given two subgraphs G_{1} and G_{2} of G, the union $G_{1} \cup G_{2}$ is the subgraph of G with vertices set consisting of all those vertices which are in either G_{1} or G_{2} (or both) and with edges set consisting of all those edges which are in either G_{1} or G_{2} (or both);
symbolically $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.
Thus after union G_{1}, G_{2} so appear complete graph k_{4} from new , thus application properties B-bigraph.

Example 2.3: we take k_{5} complete graph, we apply properties bigraph.

Solution: Suppose that k_{5} complete graph has 5 vertices, 10 edges, to show that k_{5} is bigraph, we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$

In the following complete

Now dividing the graph k_{5}, we partition graph into two graph, so appear complete graph k_{4} is G_{1} and G_{2} is one vertices has 4 edges as following:

After dividing so union two graph such that definition union of graph [clark] Given two subgraphs G_{1} and G_{2} of G, the union $G_{1} \cup G_{2}$ is the subgraph of G with vertices set consisting of all those vertices which are in either G_{1} or G_{2} (or both) and with edges set consisting of all those edges which are in either G_{1} or G_{2} (or both); symbolically $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Thus after union G_{1}, G_{2} so appear complete graph k_{4} from new, thus application properties B-bigraph.

In this section introduce we conclude when divided odd complete graph and even complete graph we get too even complete graph and odd complete graph literary.

Theorem 2.4: let $k_{2 n}$ be complete graph then $k_{2 n}$ is bigraph, such that $G_{1} i s k_{n}$ is odd complete graph and G_{2} has one vertices - n edges, n expect zero.

Proof: suppose that k_{2} be complete graph then has 2 vertices, 1 edges, to show that k_{2} is bigraph, we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup$ G_{2}, In the following k_{2} complete graph,

$$
0-0
$$

Now dividing the graph k_{2}, we partition graph into two graph, so appear complete graph k_{1} is G_{1} and G_{2} is one vertices - one edge as following bigraph:

Thus after union G_{1}, G_{2} so appear complete graph k_{2} from new, thus application properties B-bigraph. Either Suppose that k_{4} complete graph from example 2.2 we show that k_{4} is B-bigraph. If k_{6} we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, Now dividing the graph k_{6}, we partition graph into two graph, so appear complete graph k_{5} is G_{1} and G_{2} is one vertices - 3 edge, Thus after union G_{1}, G_{2} so appear complete graph k_{6} from new and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either reminder states the same method proof, we show that even complete graph is B - bigraph.

Theorem 2.5: let k_{n} be complete graph then k_{n} is B-bigraph, such that $G_{1} i s k_{2 n}$ is even complete graph and G_{2} has one vertices - 2 n edges, n expect 1.

Proof: if suppose that k_{3} be complete graph then has 3 vertices, 3 edges, to show that k_{3} is bigraph, we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, Now dividing the graph k_{3}, we partition graph into two graph, so appear complete graph k_{2} is G_{1} and G_{2} is one vertices - 2 edge, Thus after union G_{1}, G_{2} so appear complete graph k_{3} and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either Suppose that k_{5} complete graph from example 2.3, we show that k_{5} is B-bigraph. If k_{7} we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, Now dividing the graph k_{7}, we partition graph into two graph, so appear complete graph k_{6} is G_{1} and G_{2} is one vertices -2 edge, Thus after union G_{1}, G_{2} so appear complete graph k_{7} from new and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either reminder states the same method proof ,we show that even complete graph is B - bigraph.

In this theorem we study bigraph of regular such that G_{1} appear either odd complete graph or even complete graph.

Theorem 2.6: let G be n-regular graph then G is bigraph.
Proof: suppose that G is 1-reguar graph, then degree of graph is 1, we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, In the following 1regular graph, as following:

Now dividing the graph 1 -regular graph, we partition graph into two graph, so appear one vertices is complete graph k_{1} is G_{1} and G_{2} is one vertices - one edge, Thus after union G_{1}, G_{2} so appear complete graph 1 - regular graph from new and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either Suppose that 2 regular graph from example 2.2 we show that 2 - rgular graph is B-bigraph since each complete graph is regular graph. If 3 - regulargraph, we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, Now dividing the graph 3 - regular graph, we partition graph into two graph, so appear complete graph 2 regular graph is G_{1} and G_{2} is one vertices - 3 edge, Thus after union G_{1}, G_{2} so appear complete graph 3 - regular graph, and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either reminder states the same method proof, we show that nregular graph is B- bigraph.

Theorem 2.7: let G is eulerian graph then G is bigraph.
Proof: suppose that G is eulerian graph, then degree of graph is 2,4 , let the number vertices is 6 , we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup$ G_{2}, In the following eulerian graph , bigraph, as following:

Now dividing eulerian graph, we partition graph into two graph, so appear G_{1} is eulerian graph and G_{2} is two vertices - 3 edge but disconnected and is not eulerian graph , Thus after union G_{1}, G_{2} so appear eulerian graph and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either Suppose that euleian graph has degree is 4,2 but the number vertices 7, in the following G and G_{1}, G_{2} :

we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, Now euler trail graph is G_{1} and G_{2} is one vertices - 2 edge, Thus after union G_{1}, G_{2} so appear eulerian graph from new, and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either reminder states the same method proof, we show that eulerian graph is B- bigraph.

Theorem 2.8: let G be Hamiltian cycle (Hamiltian) - Hamiltian path is bigraph.

Proof: suppose that G is Hamiltian cycle - Hamiltian path graph, [clark] defined A Hamiltonian path in a graph G_{G} is a path which contains every vertices of G. Since, no vertex of a path is repeated, this means that a Hamilton path in G contains every vertex of G once and only once. A Hamiltonian cycle (or Hamiltonian circuit) in a graph G is a cycle which contains every vertex of G. Since, no vertex of a cycle is repeated apart from the final vertex being the same as the first vertex, this means that a Hamiltonian cycle in G with initial vertex v contains every other vertex of G precisely once and then ends back at v. we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, In the following Hamiltian path cycle graph , bigraph, as following:

Hamiltian path- cycle

Now dividing Hamilitian path graph, we partition graph into two graph, so appear G_{1} is eulerian graph and G_{2} is one vertices, one edge but disconnected and is not eulerian graph , Thus after union G_{1}, G_{2} so appear Hamiltian path graph from new, and each G_{1}, G_{2} is graph, thus application properties B-bigraph. Either Suppose that Hamiltian cycle graph, in the following figure G_{1}, G_{2} :

we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=G_{1} \cup G_{2}$, Now eulerian graph is G_{1} and G_{2} is one vertices - 2 edge, Thus after union G_{1}, G_{2} so appear eulerian graph from new, and each G_{1}, G_{2} is graph ,thus application properties Bbigraph. Either reminder states the same method proof, we show that eulerian graph is B- bigraph.

Theorem 2.9: let G^{2} be square graph is bigraph.
Proof: suppose that G is simple connected graph and G^{2} is connected graph, definition 1.7 we woke dividing the graph into two graphs G_{1}, G_{2} such that $G=$ $G_{1} \cup G_{2}$, In the following G, G^{2}, the figure as following:

Now dividing G^{2} graph, we partition graph into two graph, so appear G_{1} has degree of vertices is 2,3 and G_{2} is one vertices - 2 edge but is not G^{2} and is not graph G, Thus after union G_{1}, G_{2} so appear G^{2} graph from new, and each G_{1}, G_{2} is graph, thus application properties B-bigraph. in the following figure G_{1}^{2}, G_{2}^{2} :

Either reminder states the same method proof, we show that graph is $G^{2} B$-bigraph.
In this theorem we discussed relation between B-bigraph and graph.
Theorem 2.10: every B-bigraph is disconnected graph.
Proof: suppose that G is bigraph such that $G=G_{1} \cup G_{2}$ from definition bigraph, we defined G into two graph is G_{1}, G_{2}, thus is not found path connected link between the one graph G_{1} and the second graph G_{2}, A graph G is called connected if every two of its vertices are connected. A graph that is not connected is called disconnected, thus G is disconnected.

Conclusion

1- let k_{n} be complete graph then k_{n} is B-bigraph, such that $G_{1} i s k_{2 n}$ is even complete graph and G_{2} has one vertices -2 n edges, n expect 1 .

2- let $k_{2 n}$ be complete graph then $k_{2 n}$ is bigraph, such that $G_{1} i s k_{n}$ is odd complete graph and G_{2} has one vertices - n edges, n expect zero.

3- let G be n-regular graph then G is bigraph such that $G_{1} i s$ is odd - even complete graph.

4- let G is eulerian graph then G is bigraph.

5- let G be Hamiltian cycle (Hamiltian) - Hamiltian path is bigraph.
6- let G^{2} be square graph is bigraph.
7- every B-bigraph is disconnected graph.

References

[1] Clark. J. and Holton D. A., A First look at Graph Theory, World Scientific, London (1961).
[2] Harary F., Graph Theory, Addison-Wesley, Reading MA (1969).
[3] Paul Van Dooren, Graph Theory and Applications, Université catholique de Louvain, Louvain-la-Neuve, Belgium Dublin, August 2009
[4] R.Muthuraj Department of Mathematics PSNA CET, Dindigul. - 624622. P.M.Sitharselvam Department of Mathematics PSNA CET, Dindigul. - 624 622. M.S.Muthuraman Department of Mathematics PSNA CET, Dindigul. 624 622. Anti Q-Fuzzy Group and Its Lower Level Subgroups nternational Journal of Computer Applications (0975-8887) Volume 3 - No.3, June (2010).
[5] W.B.Vasantha Kandasamy Florentin Smarardache, Group As Graphs,(2009).

