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1. Introduction

In this work, we define Gaussian generalized Tribonacci numbers and give properties of Gaussian Tribonacci and
Gaussian Tribonacci-Lucas numbers as special cases. First, we present some background about generalized
Tribonacci numbers and Gaussian humbers before defining Gaussian generalized Tribonacci numbers.

Recently, there have been so many studies of the sequences of numbers in the literature which are defined
recursively. Two of these type of sequences are the sequences of Tribonacci and Tribonacci-Lucas which are
special case of generalized Tribonacci numbers. A generalized Tribonacci sequence{V,, },,o = {V, Vo, V1, V2)}so

is defined by the third-order recurrence relations
Vn = Vhn— + Vn_z + Vn_3#(11)

with the initial valuesVy = ¢y, V; = ¢4, V, = c,not all being zero.This sequence has been studied by many authors
and more detail can be found in the extensive literature dedicated to these sequences, see for example[4], [5],
[71.[8].[18], [20], [23], [25], [27], [32], [33].

The sequence {1}, },,> can be extended to negative subscripts by defining
Vo ==V_ o1y — Vo) + V_nozy
for n = 1,2,3, .... Therefore, recurrence (1.1) holds for all integer n.

The first few generalized Tribonacci numbers with positive subscript and negative subscript are given in the
following table:
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0 1 2 3 4 5
Vn Co C1 Cy Co + C1 + Cy Co + 2C1 + 2C2 ZCO + 3C1 + 4C2
V_n Co Cyr—C1—( 2C1 —Cy 2C0 —C 2C2 - 2C1 - 3C0 Co + 5C1 - 3C2

It is well known that generalized Tribonacci numbers V, (Vy, V4, V2) can be written, for all integers n, in the Binet
form
Pa" n Ry™
v = 4 QB + 14
(@a=p)la-y) B-a@B-7v) G-d@-B

#(1.2)

where
P=V, = (B+7y)Vi + By,
Q=V—(a+Vi +ayV,
R=V, —(a+ BV, +aBV,,

andwhere a, 8 and yare the distinct roots of the cubic equation x3 — x? — x — 1 = 0and they are given as

_1+v19+3V33+1/19-3V33

a

3

1+ w019 +3V33+ w?V19 - 3V33

B - 3 4

_1+0’Y19+3V33+ wy19-3vV33

Y= 3 )

where
-1+iV3
w =+= exp(2mi/3),

is a primitive cube root of unity.We consider two special cases ofV,:V,(0,1,1) = T,is the sequence of Tribonacci
numbers (sequence A000073 in [23]) and V},(3,1,3) = K, is the sequence of Tribonacci-Lucas numbers (A001644
in [26]).

Recently, there have been so many studies of the sequences of Gaussian numbers in the literature. A Gaussian
integer zis a complex number whose real and imaginary parts are both integers, i.e., 3 =a + ib, a,b € Z. These
numbers were investigated by Gauss in 1832 and the set of them is denoted by Z[i]. With the usual addition and
multiplication of complex numbers, Z[i] forms an integral domain. The norm of a Gaussian integer a + ib,a, b €
Zis its Euclidean norm, that is, N (a + ib) = Va? + b? = J(a + ib)(a — ib).For more information about this kind
of integers, we refer to the work of Fraleigh [10].

If we use together sequences of integers defined recursively and Gaussian type integers, we obtain a new
sequences of complex numbers such as Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas
and Gaussian Jacobsthal numbers; Gaussian Padovan and Gaussian Pell-Padovan numbers; Gaussian Tetranacci
numbers.

In 1963, Horadam [16] introduced the concept of complex Fibonacci number called as the Gaussian Fibonacci
number. Pethe [22] defined the complex Tribonacci numbers at Gaussian integers, see also [12]. There are other
several studies dedicated to these sequences of Gaussian numbers such as the works in [1], [3], [6], [12], [13], [14],
[15], [16], [17], [19], [21], [28], [29], [30], among others.
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2. Gaussian Generalized Tribonacci Numbers
Gaussian generalized Tribonacci numbers {GV, },~0 = {GV, (GV,, GVy, GV;)},spare defined by
GV, = GV,_1 + GV_y + GV, _3#(2.1)

with the initial conditions

GVy=co+ilc; —cg—cy),GVy =c¢1 +icy, GV, = ¢y +icy,
not all being zero. The sequences {GV, },,>oCan be extended to negative subscripts by defining

GV = =GV_tn_1) — GV_(n_2) + GV_(n_3)
forn = 1,2,3, .... Therefore, recurrence (2.1) hold for all integer n. Note that forn > 0
GV, =V, +iV,_; #(2.2)

and
GV, =V, +iV_,_;.

The first few Gaussian generalized Tribonacci numbers with positive subscript and negative subscript are given
in the following table:

n 0 1 2 3
GV, ¢co+ilc,—c1—cp) ¢ +icg cy +ic cot+cp+cytic
GV_n Co + i(Cz —C — Co) C; —CL— (g + i(2C1 - Cz) ZC]_ —C + i(ZCO - Cl) ZCO —C + i(ZCZ - 2C1 - 3C0)

We consider two special cases of GV,: GV, (0,1,1 + i) = GT, is the sequence of Gaussian Tribonacci numbers and
GV,(3—1i,1+ 3i,3 + i) = GK,is the sequence of Gaussian Tribonacci-Lucas numbers. We formally define them
as follows:

Gaussian Tribonacci numbers are defined by
GT, = GT,_1 + GT,,_, + GT,_3#(2.3)
with the initial conditions
GTy=0,GT; =1,GT, =1+
and Gaussian Tribonacci-Lucas numbers are defined by
GK, = GK,_, + GK,_, + GK,_3#(2.4)
with the initial conditions
GKy=3—1i,GK, =1+ 3i,GK, =3 +1.
Note that forn > 0
GT_, =T, +iT_,_,
and
GK_, = K_, +iK_,_4.

The first few values of Gaussian Tribonacci numbers with positive and negative subscript are given in the following
table.
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n 0 1 2 3 4 5 6 7 8 9
GT, O 1 1+i 2+i 4421 7+4 13+7i 24+13i 44+24i 81+ 44i
GT_, O i 1-i -1 2i 2—3i -3+ 1+4i 4—8i —8 + 5i

The first few values of Gaussian Tribonacci-Lucas numbers with positive and negative subscript are given in the
following table.

n 0 1 2 3 4 5 6 7 8
GK, 3—i 1+3i 3+ 7+ 3i 11+ 7i 21+11i 39+21i 714390 131+71i
GK_, 3—i -—-1-i -—-1+5i 5-5i -5-1 -1+11i 11-15i -15+3i 3+ 23i

The following Theorem presents the generating function of Gaussian generalized Tribonacci numbers.

Theorem 2.1The generating function of Gaussian generalized Tribonacci numbers is given as

c GVy + (GVy = GVp)x + (GVy — GVy — GV,)x?
for, () = Zocvnx” = et . #(25)
n=

Proof. Let
fGVn (x) = Z GV x"
n=0

be generating function of Gaussian generalized Tribonacci numbers. Then using the definition of Gaussian
Tribonacci numbers, and substractingxf (x), x2f(x) and x3 f (x)from f(x)we obtain (note the shift in the index n
in the third line)

1 —x—x?=x*)fe, x) = Z GV, x" — xz GV, x" — x? Z GV,x" — x3 Z GV, x"

— Z Gann — Z Gann+1 — Z Gann+2 Z Gann+3
n(:O noo=0 n;O n;O
= Z GV, x™ — z GVy_1x™ — Z GV _ox™ — Z GV,_3x

n=2 n=0

n=0 n=1
= (GVO + Gle + Gszz) - (GV X+ GleZ) - GVon

+ Z(Gvn — GVy_y — GVyy — GV, ) 2™

n=3
= GVy + GVyx + GVox?—GVox — GVyx% — GVyx?
= GV, + (GV,—GVy)x + (GV, — GV; — GVp)x2.
Rearranging above equation, we get

GVO + (GV1 - GVO)X + (GVZ - GVl - GVO)XZ
1—x—x%2—x3 '

fGVn x) =

The previous Theorem gives the following results as particular examples:

x + ix?

fo, () = T e #26)

and

—1+)x?—(2—-4)x+3-1i

T L #(2.7)

fGKn (x) =
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The result (2.6) is already known, see [12].
We now present the Binet formula for the Gaussian generalized Tribonacci numbers.

Theorem 2.2TheBinet formula for the Gaussian generalized Tribonacci numbers is

/ Pa o Ry"
Gl = ((a BPa-n T F-0G-nTor-00 —ﬁ)>
. Pan—l Q,Bn_l Ryn—l

* <(a Ba-p BG-GB -p» G- a)(y—ﬁ))

whereP, Q and R are as in (1.2).
Proof. The proof follows from (1.2)and (2.2).

The previous Theorem gives the following results as particular examples: the Binet formula for the Gaussian

Tribonaccinumbers is
3 an+1 ‘Bn+1 yn+1
= ((a -7 G-dG-1 G- ﬁ))

an ﬁn .yTl
+i ( + + )
(a=P)a-y) B-a)B-v) G-a-pB)
and the Binet formula for the Gaussian Tribonacci-Lucas numbers is
GK, = (@™ + B" +y™) +i(a™t + g1 +y" ).
The following Theorem present some formulas of Gaussian generalized Tribonacci numbers.
Theorem 2.3 Forn = 1 we have the following formulas:

(a) (Sum of the Gaussian Generalized Tribonacci numbers)
c 1
> 6V =5 (Vs = GVt = GV, = GVy)
k=1

1
(b): Xi=1 GVopyq = E(GV2n+2 + GVoniq + GV, — GV,)
1
(€): Xk=1 GVar = 5 (GVansa = 2GVonsp — GVany1 — GVo — 3GV).

Proof.

(a) Using the recurrence relation
GVn = GVn—l + GVH—Z + GVn—3

GVp3 =GV, =GV — GV
we obtain
GVO = GV3 - GVZ - GVl

GV, = GV, — GV5 — GV,
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GV, = GVs — GV, — GV;
GVs = GVs — GVs — GV,

GV, = GV, — GVs — GVs

Vo3 =GV — GVypoq — GV
GV =GV =GV — GV
GV = GVyyp — GVyy — G
GV = GVoyz = GV — GV g

If we add the equations by side by, we get

n
1
GV = E(GVn+3 = GVoy1 — GVy = GVp).
=1

(b) When we use (2.1), we obtain the following equalities:
GV = GVie_y + GVj_y + GVj_3
GV, = GV3 + GV, + GV,
GVg = GVs + GV, + GV;
GVg = GV, + GV + GVs

GVip = GVy + GVg + GV,

GVonyz = GVangr + GVop + GVop g
If we rearrange the above equalities, we obtain
GV3 =GV, — GV, — GV,
GVs = GVy — GV, — GV3
GV, = GVy — GV — GVs

GVg = GVlO - GVg - GV7

GVont1 = GVany2 — GVop — GV g

Now, if we add the above equations by side by, we get

n n
z GVag1 = GVanio — GV — Z GVap—1
=1 =1

n
= GVyni2 — GV — ( GVaor+1 = GVany1 — GV1>
k=1
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n
= GVyz + GVonss + Gy = GVy = ) GV
k=1

and so

n

GVopyo + GVony + GV — GV,
GVopy1 = > -

k=1
(c) Since

2n+1

n n
Z GV2k+1 + Z GVzk = Z GVk - GV1
k=1 k=1 k=1

we have

2n+1

n n
D 6Va= D V= ) Vs — GV,
k=1 k=1 =1

: GVZ 2 +GV2 1 +GV1 _GVZ
= E(GV(2n+1)+3 - GV(2n+1)+1 -GV, — GVO) _ n+ n+

2 - GVl
1 GV, + GV + GV, — GV-
= E(GV2n+4 — GVopya — GVy — GVp) — —222 Zn; ! 2 _6v,
1
= E(GV2n+4 = 2GVyp42 — GVopy1 — GV — 3GVy)

This completes the proof.

As special cases of above Theorem, we have the following two Corollary. First one present some formulas

of Gaussian Tribonacci numbers.
COROLLARY 2.4For n > 1we have the following formulas:

(a):(Sum of the Gaussian Tribonacci numbers)
. 1
D T =5 (GTyus = Gy + (1+1)
k=1

1
(b):Xk=1 GTois1 = 5 (GTonsz + GTongg — 1)
1
(€):Xk=1 GTox = 5 (GTonss — 2GTon1p — GTopyq — 3).
Second Corollary gives some formulas of Gaussian Tribonacci-Lucas numbers.

COROLLARY 2.5 Forn = 1we have the following formulas:

(a): (Sum of the Gaussian Tribonacci-Lucas numbers)

n
1
GKy = E(GKn+3 = GKyyq +20)
k=1

1 .
(b): Xk=1 GKops1 = 5 (GKopip + GKppyq — 2 4 21)
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1 .
(€): Xk=1 GKop = 5 (GKopia — 2GKpn 42 — GKppyq — 100).

3. Some ldentities Connecting Gaussian Tribonacci and Gaussian Tribonacci-Lucas
Numbers

In this section, we obtain some identities of Gaussian Tribonacci numbers and Gaussian Tribonacci-Lucas numbers.
First, we can give a few basic relations between{GT,} and{GK,, }as

GK, = —GT,,, + 4GT, 1 — GT, #(3.1)

GK, = 3GT,4q — 2GT, — GT,,_; #(3.2)

and also

GK, = GT, + 2GT,_, + 3GT,_,. #(3.3)
Note that the last three identities hold for all integersn. For example, to show (3.1), writing

GK, = —GT, 5 + 4GT,,, — GT,
and solving the system of equations
GK, = aGT, + bGT; + ¢GT,
GK; = aGT; + bGT, + cGT;
GK, = aGT, + bGT; + cGT,

we find thata = —1,b = 4,c¢ = —1. Or using the relationsGT,, = T,, + iT,,_1, GK,, = K,, + iK,,_;and identityK,, =
4T, .1 — T, — T, o we obtain the identity (3.1). The others can be found similarly.

We will present some other identities between Gaussian Tribonacci and Gaussian Tribonacci-Lucas numbers with
the help of generating functions. Firstly, we give the ordinary generating function of the sequenceV,.

LEMMA 3.1 Suppose thatf,, (x) = X7’— a,x"is the ordinary generating function of the sequenceV,,. Thenf;, (x)is
given by

Vo + (11 = Vo)x + (V, = V; — Vp)x?
1-—x—x%2—x3

fr, (1) = . #(3.4)
Proof. Using (1.1) and some calculation, we obtain

fu, @) = xfy, (x) = x%fy, (x) = x3f;, (x) = Vo + (V; = Vodx + (V, = V; — V)
which gives (3.4).

The previous Lemma gives the following results as particular examples:

x
fT"(x)zl—x—xz—x3
and
3 —2x —x?
i, () = 1—x—x2—x%

Both results are very well known.

The following lemma will help us to derive the generating functions of even and odd-indexed Gaussian Tribonacci
and Gaussian Tribonacci-Lucas sequences.
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LEMMA 3.2 ([11])Suppose thatf (x) = Y, a,x™is the generating function of the sequence{a,},sy. Then the
generating functions of the sequences {a,,, }, spand{a,,+1}.0are given as

fpn () = Z(:) " = f(Wx) +2f(_\/;)
and
Faznan () = ZO ay s =10 - \/1;(—\/;)

respectively.
The next Theorem presents the generating functions of even and odd-indexed generalized Tribonacci sequences.
THEOREM 3.3 ([11]) The generating functions of the sequences V,,,andV,,, ,,are given by

VO + (VZ - 3V0)x + (2V1 - Vz).xz
1—-3x—x2—-x3

szn x) =
and

V1 + (VZ - 2V1 + VO)X + (Vz - V1 - Vo)xz
fV2n+1(x) = 1 —3x — x2 — 3

respectively.

From the previous Theorem we get the following results as particular examples:

x + x? 1—x
fran () = 1—3x—x2—x3andfT2"+1(x) T1-—3x—x2—x3
and
3—6x—x? 1+ 4x — x?
fion () = 1—3x—x2—x3ande2"+1(x) T1-3x—x?—x%

The next Theorem presents the generating functions of even and odd-indexed Gaussian generalized Tribonacci
sequences.

THEOREM 3.4 The generating functions of the sequences GV,, and GV,,,are given by

f GVO + (GVZ - 3GVO)X + (2GV1 - GVZ)XZ
GVzn =

1—3x—x2—x3
and

GV, + (GVy — 2GVy + GVy)x + (GV, — GV, — GVy)x?
1—3x—x2%2—x3

fGV2n+1 -

respectively.
Proof. Both statements are consequences of Lemma 3.2 applied to (2.5) and some lengthy algebraic calculations.

The previous theorem gives the following two corollaries as particular examples. Firstly, the next one presents the
generating functions of even and odd-indexed Gaussian Tribonacci sequences.
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COROLLARY 3.5 The generating functions of the sequences GT,,and GT,, (;are given by

A+ Dx+(1- i)x?

fGTZn - 1—3x — xz _ x3 #(35)
and
14+ —1)x +ix?
fGT2n+1 = 1—3x — x2 — x3 #(3.6)

respectively.

The following Corollary gives the generating functions of even and odd-indexed Gaussian Tribonacci-Lucas
sequences.

COROLLARY 3.6 The generating functions of the sequences GK,,and GK,, ,are given by

B-)+(—6+4)x+ (—1+5i)x?

fGKZn = 1—3x — xz _ X3 #(37)

and

1+3D)+@—-6D)x+(—1- i)xz
fGK2n+1 =

1-3x—x2—x3 #38)

respectively.
The next Corollary present identities between GausssianTribonacci and Gaussian Tribonacci-Lucas sequences.
Corollary 3.7 We have the following identities:
B —1)GTyp + (=6 + 40)GTyp—y + (—1 4 51)GTyy_s = (1 + )GKypy + (1 — 0)GKyp g,
(14 3i)GTy, + (4 — 60)GTyy_p + (=1 — )GTyy_4 = (1 +1)GKypy + (1 — )GKyp_3,

(B = 0)GTypsy + (—6 + 40)GTyy_1 + (=1 4 51)GTyp_3 = GKyp + (i — 1)GKpp_p + iGKppy_as,

(14 30)GTyp 41 + (4 = 60)GTyy_1 + (=1 = 1)GTyp_3 = GKoppsq1 + (i = 1)GKpp_g + iGKppy_s.
Proof. From (3.5) and (3.7) we obtain

(B=D+(=6+4Dx+ (=1 +5)x)fer,, = (A + Dx+ (1 —D)x?)fex,,.

The LHS (left hand side) is equal to

LHS = ((3 =) + (=6 + 4)x + (=1 + 50x%) ) 6T, x"

n=0
= B-D1+Dx+ Z((g — )GTyy + (=6 + 40)GTyy_p + (=1 + 51)GTy,_)x™
n=2

whereas the RHS is

RHS = (1 + Dx + (1 — )x?) Z GKypx™

n=0
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—(1+D@-Dx+ Z(u + D)GKyy_y + (1 = D)GKypy_g)x™

n=2

Compare the coefficients and the proof of the first identity is done. The other identities can be proved similarly by
using (3.5)- (3.8).

We present an identity related with Gaussian general Tribonacci numbers and Tribonacci numbers.
Theorem 3.8 Forn = 0 and m > 0 the following identity holds:
GVipsn = Tne1GVsn + (Truy + Trp—3) GV iy + Tpy_p GV, #(3.9)
Proof. We prove the identity by strong induction on m. If m = 0 then
GV =T_1GVyip + (T + T_3)GVy g + TGV,

which is true becauseT_; = 0,T_, = 1,T_; = —1. Assume that the equality holds for m < k. Form =k + 1, we
have

GV(k+1)+n =GVosk + GVogg—1 + GVngi—2

=(Ty-1GVyz + (Ty—z + Ty3) GV g1 + T2 GV,)
+(Ti—2GViy2 + (Ti—3 + Ti—a) GViyq + Ti3GV,)
+(Tk—3GVni2 + (Tms + Ti—5)GVpyy1 + Ti—sGV,)

=(Ty—1 + iz + Ti3) GV + ((Th—z + Tz + Tie—s)
(T3 + Tima + Ti5)) Vi1 + (Thz + T3 + Ti—a) GV,

=T GVnya + (Thoq + Tie2)GVyg + Ti 1 GV,

= Taes1)-1GVis2 + (Taern—2 + Tar1)=3)GVs1 + Tkr1)—2GV-

By strong induction on m, this proves (3.9).

The previous Theorem gives the following results as particular examples: For n = 0and m >0, we have
(taking GV, = GT,)

GTon = Tn-1GTypiz + (Tn—g + T1n—3)GTy 1 + Ty 2GT,
and (taking GV, = GK,,)
GKpin = Tn-1GKpiz + Ty + Tpy—3)GKpyq + Tpy_2GK,,.
4. Matrix Formulation of V,,
Consider the sequence{U, } which is defined by the third-order recurrence relation
U, =U, 1 +U, ,+U, 35, Uy=U =0U,=1.

Note that some authors call {U,} as a Tribonacci sequence instead of {T;,}. The numbers U, can be expressed using
Binet’s formula

= an + ﬁn + yn
(a=P)a—-y) B-a)PB-y) G-a)-pB)

Un
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and the negative numbers U_,, (n = 1,2,3, ...) satisfies the recurrence relation

Un+1 Un+2

— 72  _
Un Un+1 _Un+1 Un+2Un-

U_, =

The matrix method is very useful method in order to obtain some identities for special sequences. We define the

square matrix M of order 3 as:
1 1 1
M=(1 0 0
010

Un+2 Un+1 + Un Un+1
Mr=(U,y U, +U,; U, |.#&1
Un Un—l + Un—Z Un—l

such that detM = 1. Note that

For a proof of(4.1), see [2]. Matrix formulation of T,, and K,, can be given as

Ty 1 1 I\"/T»
Toeil=(1 0 0] |Ty ] #(4.2)
T, 0 1 0/ \T,

Ky 12 1 1 1\"/K;
K.vi]=(1 0 0 Ki |.#(4.3)
K, 0 1 0 K,

The matrix M was defined and used in [24]. For matrix formulations (4.2)and (4.3), see [31] and [34]. Note that

and

GT, = iU, + U, 41
and
GK, =B —-DUp — 2 —-4DU,y1 — (1 + DU,.
Consider the matrices N, Er defined by as follows:
1+i 1 1
Nrp=| 1 0 i |
0 i 1-i
GTn+2 GTn+1 GTn
E; =|GT,1 GT, GT,_q |
GT, GT,_1 GT,,
Next Theorem presents the relations between M", Nyand Efy.
Theorem 4.1 ([12]) For n = 2, we have
MnNT = ET'
Proof.Using the relation

GT, = iU, + Upys

we get
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Un+2 Un+1 + Un Un+1 1+i 1 1
M"Ny = | Up41 Up + U, Uy 1 0 i
Uy Uy1+U,p U;/\ 0 i 1—i
Un + Un+1 + (1 + i)Un+2 iUn+1 + Un+2 iUn + Un+1

= Un + Un—l + (1 + i)Un+1 lUn + Un+1 Un + iUn—l
A+ DU, +Uyy + U,y Uy +ilU,y Uy +iU,,

GTn+1 GTn GTn—l
GT, GT,; GT,,

<GTn+2 GTn+1 GTn )
Above Theorem can be proved by mathematical induction as well.
Consider the matrices N, Ex defined by as follows:
3+i 1+3i 3—-1i
Ne=(14+3i 3-i -1-1i |
3—i —-1—-i —-1+5i
GKn+2 GKn+1 GKn
Ex =|GKy1 GK, GK,_ |.
GK, GK,.; GK,_,
The following Theorem presents the relations between M™, Ngand Ey.
Theorem 4.2 For n = 2, we have
MnNK = EK'
Proof. Using the relation
GKn = (3 - i)Un+2 - (2 - 4‘i)Un+1 - (1 + l)Un
we get
Un+2 Un+1 + Un Un+1 34+ 1+3i 3—i
M"Ng ={Upy1 Uy +Upy Uy J|1430 3—-i -1-i
U, U, 1+U,, Uyy/\3—-i —-1—i —1+45i

GKn+1 GKn GKn—l

(GKn+2 GKn+1 GKn )
GK, GK,, GK,_,

The previous Theorem, also, can be proved by mathematical induction.

Similarly, matrix formulation of 1, can be given as

Vat2 1 1 1\"/V2
Vasr |=(1 0 0 Vi)
4 01 0/ \I

Consider the matrices Ny, E, defined by as follows:

Cy + iCl C1 + iCO Co + i(—CO —C + Cz)
NV = C1 + iCO Co + i(—CO —C + Cz) —Cp— (1 + Cy + i(2C1 - Cz) s
coti(—co—ci1+cy) —cg—cy+cy+i(2c; —cy) 2cy — ¢ +i(2¢y — ¢1)
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GVn+2 GVn+1 GVn
Ey=(GV41 GV, GV,_q .
GV, GV,_1 GV,_,
We show that for n > 2, M™ N, = E,,. Note that
GVn = (C1 + iCO)Un—Z + (CO + iCZ + (1 - i)CI)Un—l + (CZ + iCl)Un

=coU,_q +icgUp_y + (1 = D)cyUyp_1 + iUy + iUy q + ic U, + U,
=(1Un—z + cUn_1 + c1Up_1 + 2Up) + i(coUp 2 — €1Up 1 + cUn_1 + 1 Uy).

We now present our final Theorem.

Theorem 4.3 For n > 2, we have

MnNV = EV'
Proof.
Un+2 Un+1 + Un Un+1
MnNV = Un+1 Un + Un—l Un
Un Un—l + Un—Z Un—l
Cy + iCl C1 + iC() Co + i(—CO —C + Cz)
c1 ticg co+i(—cog—c1+c3) —Cop— €1+ ¢ +i(2¢c; — ¢3)
co+i(—cop—ci1+c) —cg—ci+c+i(2c; — ) 2c1 — ¢ +i(2¢y — 1)
Vs GVoyy GV,
= (Vs GV, GV )
GV, Voo GV
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