Volume 14, Issue 1

Published online: September 22, 2018

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

A PROOF OF BEAL'S CONJECTURE

JAMES E. JOSEPH AND BHAMINI M. P. NAYAR

ABSTRACT. Beal's Conjecture: The equation $z^{\xi} = x^{\mu} + y^{\nu}$ has no solution in relatively prime positive integers x, y, z with μ, ξ and ν odd primes at least 3. A proof of this longstanding conjecture is given.

Beal's Conjecture: The equation $z^{\xi} = x^{\mu} + y^{\nu}$ has no solution in relatively prime positive integers x, y, z with ξ, μ and ν odd primes at least 3. A history of this problem can be found in [1].

Suppose $z^{\xi} = x^{\mu} + y^{\nu}$ is true for any relatively prime positive integers x, y, z and odd primes ξ, μ and ν with ξ, μ, ν at least 3. When x, y and z are relatively prime, $(z^{\xi}), (x^{\xi})$ and (y^{ξ}) are also relatively prime. Then $(z^{\xi})^{\xi} = (x^{\xi})^{\mu} + (y^{\xi})^{\nu}$. That is, suppose $(z^{\xi})^{\xi} = (x^{\mu})^{\xi} + (y^{\nu})^{\xi}$.

The Proof.

We claim the following:

$$x^{\mu} + y^{\nu} - z^{\xi} \equiv 0 \pmod{\xi},$$

and

$$(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi} \equiv 0 \pmod{\xi^2}$$

To prove the above claims:

Note that by expanding $(x^{\mu} + y^{\nu} - z^{\xi})^{\xi}$ using binomial expansion,

$$(x^{\mu} + y^{\nu} - z^{\xi})^{\xi} - ((x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi}) = \sum_{k=1}^{\xi-1} C(\xi, k) (x^{\mu} + y^{\nu})^{\xi-k} (-z^{\xi})^{k}, \tag{1}$$

Again, using binomial expansions for $(x^{\mu} + y^{\nu})^{\xi}$ and $((x^{\mu} + y^{\nu} - z^{\xi}) + z^{\xi})^{\xi}$, we have,

2010 Mathematics Subject Classification. Primary 11Yxx. Key words and phrases. Beal's Conjecture.

$$(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi} - (x^{\mu} + y^{\nu} - z^{\xi})^{\xi} \equiv 0 \pmod{\xi}.$$
 (2)

The right hand side of equation (2) is divisible by ξ and hence the left hand side is divisible by ξ . The expansion of $(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi}$ shows that $(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi}$ is divisible by ξ and hence $(x^{\mu} + y^{\nu} - z^{\xi})^{\xi}$ is divisible by ξ . Thus

$$x^{\mu} + y^{\nu} - z^{\xi} \equiv 0 \pmod{\xi}.$$
 (3)

So,

$$(x^{\mu} + y^{\nu} - z^{\xi})^{\xi} \equiv 0 \pmod{\xi^{\xi}}.$$

Also from equations (2) and (3), and since

$$(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi} - (x^{\mu} + y^{\nu} - z^{\xi})^{\xi} = \xi S,$$

where ξS represents a sum of terms with $(x^{\mu} + y^{\nu} - z^{\xi})$ as a factor and a multiple of ξ as coeficient, we have

$$(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi} \equiv 0 \pmod{\xi^2}.$$
 (4)

In view of equations (3) and (4), equation (1) gives that

$$z^{\xi} \equiv 0 \pmod{\xi} \tag{5}$$

and

$$x^{\mu} + y^{\nu} \equiv 0 \pmod{\xi}. \tag{6}$$

Hence, in view of equation (3),

$$(z^{\xi})^{\xi} - (x^{\mu})^{\xi} - (y^{\nu})^{\xi} = (x^{\mu} + y^{\nu})^{\xi} - (x^{\mu})^{\xi} - (y^{\nu})^{\xi}$$

$$= \sum_{k=1}^{\xi-1} C(\xi, k) (x^{\mu})^{\xi-k} (y^{\nu})^k \equiv 0 \pmod{\xi^{\xi}}.$$
 (7)

So,

$$y^{\nu} \equiv 0 \pmod{\xi} \tag{8}$$

and

$$x^{\mu} \equiv 0 \pmod{\xi} \tag{9}.$$

Thus we get $x \equiv 0 \pmod{\xi}$, $y \equiv 0 \pmod{\xi}$ and $z \equiv 0 \pmod{\xi}$. Hence x, y, z are not relatively prime and thus proves Beal's Conjecture.

REFERENCES

[1] https://www.bealconjecture.com/

Department of Mathematics, Howard University, Washington, DC 20059, USA

E-mail address: jjoseph@Howard.edu

Current address: 35 E Street NW #709, Washington, DC 20001, USA

E-mail address: j122437@yahoo.com

Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

E-mail address: Bhamini.Nayar@morgan.edu