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Abstract. In this paper an economic system is represented as a Causal Dynamical
Network, (CDN). Each link of CDN exists due to cause-n-effect. each node is either
a demand or supply node. The link between demand, and supply exists due to the
existence of causality, here is taken as consumer/producer surplus which is a
function of preference manifold. Growth is the existence of entropy in CDN.
Entropy is measured as a metric probability, which measures change in local
equilibrium. Local equilibrium is equilibrium on disordering locality links.
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1 Introduction

The objective of this paper is to build a systematic approach to the analysis of
economic growth. The idea is that economic growth is a function of cause-n-effect.
A cause is an stimuli such as demand, utility, and surplus. An effect is the
consequence of the existence of an stimuli; which in this case could be supply,
prices, and choice of products. Though other cause-n-effect factors can be
considered, in the present paper only the above mentioned elements are taken into
account. An economic system is considered to be similar to a network consisting of
nodes and links. Each node is either a cause or an effect. A link exists if there is a
causal relationship between an entry nodes and an exit node. The network that is the
most appropriate to represent this concept is the Causal Dynamical Network (CDN),
[1], [2], [3], [4], [5] in relation to dialectic complexity. CDN is a connected graph.
Connectivity is the result of dynamical interaction of cause-n-effect. Therefore CDN
is time independent. Connection is turned “on™ and “off" based on the existence of
causality. One particularity of this system is the occurrence of disordering locality
links, [7]. Disordering localities occur when there exists random cause-n-effect.
CDN is called a complex system if there exists dialectic causality, [6]. Dialectic
causality occurs when there are several causes for an effect and these causes seem to
be contradictory from each other. In addition, there exists a certain dynamics among
these causes. The same can be said about the effects. Each cause can have many
effects, and these effects may seem to be contradictory from each other. In addition,
there exists a certain dynamics among the effects.

In this paper cases are considered where there is one or several causes for an effect.
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Multiple causes are either compatible or dialectic causes. Each cause is considered to
be a tensor, and each effect is in a tensor field, [8]. The number and thus the stability
of the links of a CDN depend on the existence of dialectic causality. It is this
dialectic causality that defines the level of complexity of a CDN. In this context
dialectic causality is synonymous with dialectic complexity. The degree of the
complexity of a CDN varies depending on the existence of direct and dialectic
causality in regular and disordering locality links. The higher the dialectic
complexity, the higher the entropy of a CDN. Dialectic complexity can vary from
high to medium to low levels. Dialectic complexity can be measured by calculating
the entropy, [9] of a CDN. The entropy of a CDN is measured using metric
probability in the Universal Probability Space, (UPS) introduced in [10], and [11].

Entropy in the context of an economic system is an indicator of economic
growth, [12].[13], [14], [15], [16]. Entropy is at maximum if there exists a stable
general equilibrium,[17], [18] where consumer and producer utility functions are
fixed and are not differentiable any longer. Entropy decreases as a function of
dialectic causality and its representation, the disordering locality links. Dialectic
causality corresponds to evolutionary consumer and producer utility manifolds.
Utility is considered to be a manifold as it is a function of a multitude of factors such
as consumer/producer surplus, quantity of goods produced, and preferences.
Consumer/producer preferences are functions of interpretation and it's derivatives
which are the elements adjacent to it, [19]. Since interpretation is prone to
unexpected or random changes, it is therefore, considered to be the main factor in
producing dialectic causality, and in consequence disordering locality links. It is
stated that dialectic causality produces non-locality or disordering locality links. In
resume, it is stated that growth occurs when disordering locality links are present in
a CDN. The more the number of disordering locality links the higher the growth
level. This is proven in the next section. The schematics of the dynamics of dialectic
complexity and entropy are shown in Figure 1. In Figure 1, the existence of dialectic

causality leads to positive entropy (H > 0) which leads to an evolution in a CDN. If

dialectic complexity is low, then eventually, the network can reach a local
equilibrium, meaning that no new change is occurring locally in the network. This
could eventually break down, and lead to a new entropy and the cycle continues. Or
on the other hand, local equilibrium can spread to a general equilibrium, (H = 0).
General equilibrium leads to a static state, which is a static network that stays fixed.
On the other hand accidental or unexpected dialectic causality changes the state of
the network back to an entropic state and a new cycle begins. The overall objective
Is to explain economic growth as a function of dialectic complexity in the context of
a CDN, and to analyse its' characteristics, [20].
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Figure 1. Dialectic Complexity

2 Analysis of growth based CDN

In order to understand the growth based CDN, 1t is compared to a standard represen-
tatlon of growth by a network. A standard representation of growth based network
1s given in Figure 2. Each link of this network consists of two nodes. An entry node
is denoted by (D;), where (D) represents demand, and (i) is a node number. The
exit node is denoted by (S;), where (S) represents supply. The link between every
supply-demand node exists through utility as a function of price,(u;(p;)). For a core
CDN, utility i1s chosen as a causality. Given that utility is chosen to be the function
of price, there is a direct (simple) causality between cause and effect. This is chosen
intentionally in order to constitute a core CDN, with no disordering locality links.
The link between every supply-demand nodes is depicted as a solid curved arrow on
the graph. Some fraction of demand (D;) goes to supply (S;j;j # i), meaning that
some residual demand exists for other products supplied. Let this fraction be denoted
by (6;). The residual demand is denoted by(d; x D;). If the network is at equilib-
rium, then for each supply (S;), there exists, (S; = > 4; x D;), an equal demand.
This equilibrium is Pareto optimal if the equilibrium 1s stable. An stable equilibrium
implies that the utility function can not be differentiated any longer. In other words,
no change in the network through coalition can improve the status of the network.
At an stable equilibrium, this network constitutes a core network. Once the network
reaches a core status, entropy is at maximum, (H=1). For growth to occur, it is
necessary and sufficient to introduce disordering locality links. These links are not
time dependent, but rather occur as a result of cause-n-effect, and create connec-
tions that can be superimposed on the core network. The cause is the existence of a
new form of utility that is a function of consumer surplus. Consumer surplus itself
1s defined in terms of preference and the quantity consumed. Preference is ranking
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the desirability of a product. preference is the result of (knowledge accumulation,
interaction, expectation, prediction, and interpretation), all of which are external to
economic factors such as price, and capital which constitute an economic system. An
example of preference creating method is a marketing strategy aiming at introducing
a new product, or a novel communication method that is based on interaction with
CONSUINETS.

Figure 2. A standard representation of growth based network

Consumer surplus as a function of preference and quantity consumed is shown
in Figure 3. In Figure 3, consumer surplus is the area, (A) under the demand (D),
(A(Oagt,,.)). In Figure 3, demand is a function of quantity consumed, (¢f), and
preferences, (p*), (i) stands for product number. Consumer surplus, (A(Oagt,,.) =
% x pt . xqC. ) is equal to (1/2) times preference level times quantity consumed
at the corresponding level of preference. In general this area is equal to (A(Oagf) =
% x p* x qf), where (gf) is the level of consumption that corresponds to the level of
preference. Since preference is a multi-dimensional element, involving components
such as (knowledge accumulation, interaction, expectation, prediction, and interpre-
tation), then consumer surplus should be considered as a manifold. The (5) elements
mentioned are not exclusive, many others can be identified and included. Each of
the elements of preference are tensors. This makes consumer utility function also
a manifold. It is assumed that consumer surplus, is equal to consumer utility, (uf)
which is formulated as (uf = % x p' x gf). It is stated earlier that demand is a
function of consumer surplus, (D; = D(uf) = % x p' x qf). Let (T') be the space
of all preferences such that (p* € I'), and let (€2) be the space of all possible levels
of consumption such that (gf € Q),then (D(u¢) C (I" x 2)) is a sub-manifold in the
space of all possible preference-consumption manifolds (I' x €2). Producer surplus
is a mirror image of consumer surplus, and is equal to (A(Oapd,,.)), as is shown in
Figure 3. In general, this area is equal to (A(Oap’)), where (p*) represent a preference
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level for product (i). The same preference level (p') is assumed for producer as well.
Producer surplus (uf = % x p' x qf), where (g5 = q¢), the quantity produced is equal
to the quantity consumed. The subscript (s) is used for formulation use only. Supply
(S; = S(uf) = % x p' x ¢7) is a function of producer surplus. Therefore supply is a
sub-manifold in the preference-consumption space (I' x ), (S(uf) C (I' x Q). [21]
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]
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e o

Quatiyconsumed |

Figure 3. Consumer/producer surplus based on preferences

Formulating consumer/producer surplus as a function of preference allows for the
introduction of disordering locality links in the core network shown in Figure 2. An ex-
ample of disordering locality links is given in Figure 4. In Figure 4, all the bold dashed
links (D¢, S*), (Do, S*), (D3, 5%), (D4, S*) are disordering locality links. These links
appear due to the existence of cause-n-effect. The location of a new supply node, (5*)
18 not random. The location is a function of the nature of product supplied. If the
product is complementary, then the new supply (5*) is close to its’ complementary
counterpart, otherwise, if the product is competitive, then the new supply node is a
distance from its’ competition. Cause is an evolution or change in consumer /producer
surplus, and the effect is a new supply (5*). It is the correlation between the consumer
surplus and the producer surplus through preferences that creates a link between de-
mand for product (i), (D;), and a new supply (S*). As a result of the existence of
disordering locality links, the fraction of demand (4;) is modified and is different from
the ones’ of the core network. The existence of disordering locality links, means that
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the entropy is lower than the one of the core network,(0 < H < 1). The higher the
number of disordering locality links the lower the entropy level.

Figure 4. Example of a CDN with disordering locality links

In a CDN representation of economic growth, it is entropy that signals the exis-
tence or absence of growth. It is said that general equilibrium is maximum entropy
in a network. If equilibrium is based on pricing, and welfare theorems, [22], [23] ,
then (2) possibilities exist: equilibrium is either unique, and thus stable, or there ex-
ists multiple equilibrium solutions, that are unstable, [24]. Since disordering locality
links are constructed based on consumer/producer manifolds, equilibrium becomes
equilibrium manifolds. Given the nature of consumer/producer surplus, equilibrium
manifolds are not smooth manifolds, and thus become unstable. The advantage of
this property is that it allows for change in supply and demand. It will be shown that
in this case local equilibriums occur, but they are not unique, and are unstable.

Theorem 2.1. Given that CDN contains disordering locality links, then the equi-
librium manzfolds of this network are open sub-manifolds of preference-consumption

(T x Q) space.

Proof. At equilibrium, (S = D;;j # i), where (S}) is a new supply, the occurrence
of which i1s due to dialectic causality. Equilibrium occurs when there is a strong
connection between cause-n-effect. Since cause in this case i1s a dialectic element, then
it 1s possible that many variations of cause would also be strongly related to effect.
Let (p) be a sub-manifold of preferences in space (I' x £2), (p C [' x ), if there exists
another sub-manifold of preferences (p’), then this sub-manifold is homeomorphic
to (p), which makes any equilibrium based on (p), (S;(p') = Di(p');j # i) also
homeomorphic to (S} (p) = D;(p);j # i). Both (Si(p) = Di(p) C I x Q), and
(S;(p') = Di(p’) C I x Q) are sub-manifolds of space (I" x {2). Thus the intersection
of ((S¥(p)) = Di(p) N S3(p') = D;(p'))) # 0) is a non-empty sub-manifold. Therefore
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the sub-manifolds of preference-consumption space (I' x €2) are open sub-manifolds.

O

Corollary 2.2. Let (m = p — p’) be a mapping from one preference manifold, (p)
to another manifold, (p') is a preference manifold result of a mapping (7). Then any
differential of (w) denoted by (d(m) : Tp(p) — Tp(p')) is a differentiable map that is
onto. (p) signifies projection.

Proof. Given theorem 2.1, since all sub-manifolds of preference-consumption space
(I' x Q) are open sub-manifolds, then the rank of any differentiable mapping is the
same as the rank of the mapping itself for any set of preferences. Therefore, any
differentiable mapping is an onto mapping. Il

Let (B(p)) denote a particular property of one of the elements of preference :
knowledge accumulation, (k),interaction, (i,).expectation, (e;),prediction,(p,) and
interpretation, (¢),that is satisfied at equilibrium. Each of the elements of preference
are tensor sets. If (B(p)) exists for any disordering locality link, then the link is at
equilibrium, and this equilibrium is a local equilibrium. Local equilibrium is an equi-
librium that exists for a specific disordering locality link, and satisfies a particular
property, (B(p)), and does not affect any other disordering locality links. The fol-
lowing Theorem demonstrates that local equilibrium for any disordering locality link
constitutes a closed covering of the differentiable mapping. This means that local
equilibriums are not stable, and they are infinite in nature. In general, the preference
here given as a cause evolves in two ways: horizontal projection, (T,(p)), where (p)
stands for projection, and vertical projection, (V,(p)). Let (p) be a preference mani-
fold, and (p’) be a mapping such that (B(p\¢)) is a particular form of interpretation
that is adopted. Horizontal projection, (T, (p)), is a diffeomorphism such that there
exists an open covering of (B(p\t) € p’) that corresponds to the same point in (p).
Horizontal transformation in this case is preference tensor (p) that is multiplied by a
vector of constants. Thus horizontal transformation is an increase in the magnitude
of preferences, ( %) = (B(p)\t) @ p), where (B(p\¢)) is a vector of constants. In gen-
eral, vertical mapping 1s the differential of the preference manifold given a particular
property of one of its’ elements, (k), (), (i;), (e;), and (p, ). In this example, it is the
particular property of interaction (1) that causes local equilibrium. Vertical mapping
is then defined as (% = ﬂ‘%ﬁiﬁ = 0), and thus is equal to zero. By Corollary 2.2,
this transformation is an onto transformation, and thus vertical mapping, (V,(p)) is
a closed covering.

Theorem 2.3. Any vertial mapping of preference manifold is a closed covering.

Proof. Let the elements that make up preference manifold be denoted by a tensor
set, (p(z?) = («',22,--- ,2";j = 1,--- ,n), where each (2);j = 1,--- ,n) contains a
number of elements of the preference manifold. It is shown that for a preference man-
ifold with a particular property (B(p(z!));1 € j), vertical mapping is the differential
of (p(:rf)) with respect to (B(p(z!))), and is equal to zero. This can be generalized.

Each preference (p(x])) is a tensor set such that the intersection of this tensor set

’

with another tensor set, (p(z! )), (p(xf) N p(mf’) = B(p(z!))) is a non-empty set since
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by Corollary 2.2, both sets, (p(z!)), and (p(z] )) are isomorphic tensor sets. For

any specific (p(mﬁ))) there exists a specific (p(mf)] Therefore, vertical mapping,

(2ol _ op(z?)  O(B(p(})))
a(zl) ~ ) 8

= 0), is a closed covering. O

Theorem 2.4. Both horizontal mapping (open covering), (T,(p)). and vertical map-
ping, (closed covering), (Vp(p)), of disordering locality links at local equilibrium are
infinite sets.

Proof. By Theorem 2.1, horizontal mapping (7},(p)) is in the preference-consumption
space, (I' x ), (T,(p) € (I' x €2)), since it is a projection of an equilibrium man-
ifold. Thus horizontal mapping, (T,(p)) is an open covering. An open covering is
not compact and discrete. By Corollary 2.2, both horizontal and vertical mappings,
(Tp(p)),(Vyp(p)) are isomorphic. By Theorem 2.3, vertical mapping (V,(p)) is a closed
isomorphic covering such that the intersection at equilibrium of horizontal and verti-
cal mappings is (T,,(p) N V,(p) = Z), where (Z) contains sets of zeros and constants
corresponding to particular characteristics of one or several elements of preference
manifold (p). Given the structure of preference manifolds, the preferences are either
discrete rankings, or can be extended to continuous rankings based on the nature
of tensor sets. Therefore there exists an infinite number of sets (Z), and thus both
horizontal and vertical mappings, (T,(p)). and (V,(p)), are infinite tensor sets. O

At this point it must be shown that given disordering locality links, the number
of local equilibria, is not constant, it depends on horizontal and vertical coverings.
There exists variable local equilibrium points. The advantage of variable number of
local equilibria for any disordering locality link, over standard number of local equi-
libria based on pricing and individual endowment (budget), is that local equilibrium
evolves. This signifies that an economy can grow in a continuous manner without
any interruptions, or discontinuities. Constant number of local equilibria based on
pricing and budget constraint implies that there must be interruptions in an economy
and this is structural. In the classical approach, the constant number is proven based
on pairwise disjoint union of connected components of a set of prices, and a set of
endowments. For each pairwise connected component, there exists a fixed number of
equilibria. By contrast, the number of local equilibria for each disordering locality link
depends on the causality which is taken to be preference manifolds. Preference man-
ifold must for one or more of its’ elements possess a particular characteristic, (B(p))
at local equilibrium. There exists an infinite number of these particular characteris-
tics, (B(p)), and by Theorem 2.4, there exists infinite set of horizontal and vertical
mappings which are differentials, then there exists an infinite number of changes in
causality (preference). Therefore, there exists a infinite number of local equilibria for
each disordering locality link.

Theorem 2.5. The number of local equilibria for each disordering locality link is
variable.

Proof. Let (N(p*)) be the number of local equilibria of a disordering locality link.
(N(p*)) is a set of integers, (N(p*) C W), where (XN) represents all integers. (p*)
represents all preference manifolds that induce equilibrium. By Theorem 2.4, there
exists an infinite number of horizontal, and vertical coverings, (T,(p*)), and (V,(p*)).
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These coverings represent sets that contain one or several equilibrium points. Con-
stant number of local equilibria (N(p*)) is in contradiction with Theorem 2.4, thus
the number of local equilibria, (N (p*)) is variable. O

The implication of Theorem 2.5 is significant since i1t implies that economic cy-
cles can be avolded through the introduction of disordering locality links and thus
dialectic causality. An economic cycle is defined to be an economic situation that
jumps between two economic conditions of growth and stagnation. Dialectic causal-
ity allows for variable local equilibria, which in turn induces the emergence of new
supply and partial shift in demand towards the new supply. This movement allows
an economic system to reach a new local equilibrium. Based on Theorem 2.5, this
process could continue indefinitely without interruptions, and therefore, would avoid
jumps or discontinuities. Another pertinent topic is the Pareto optimality of local
equilibria. Local equilibrium of a disordering locality link is Pareto optimal. This
statement 1s proven in the next Theorem.

Theorem 2.6. Local equilibrium of a disordering locality link 1s Pareto optimal.

Proof. Both consumer surplus,(uf > u(c)), and producer surplus (u; > u(s)), where
(u¢) represents utility function, are quantities that are greater than their correspond-
ing utility functions. This is given by the definition of surplus. Surplus is the satisfac-
tion obtained beyond the utility of either consumption or production. Utility function
1s used as the basis of allocation of resources in either demand or supply. There exists
no other allocation that is greater than surplus based allocation. Therefore, local
equilibrium as a function of consumer/producer surplus is Pareto optimal. ]

One of the advantages of modelling growth based on consumer/producer surplus
as a function of preferences here chosen to be cause (demand) for effect (supply) is
that growth becomes predictable in the presence of disordering locality links. The
predictability of growth on disordering locality links can be proven if local equilibria
are homeomorphic, and diffeomorphic to each other. For example, let one local equi-
librium be denoted by (D; (u?(plj), S; (u?(plj)), and another equilibrium be denoted
by (D, (u?(pg)),sj (u?(pg))), where (p'), and (p?) are two seperate preference mani-
folds. By Corollary 2.2, it is shown that the second local equilibrium is homeomorphic
to the first local equilibrium. This due to mapping from (Dj(u?(pl)),sj(u? (ph))) to
(Dj(us (p), S; (uj(pg))). By Corollary 2.2, this mapping is onto, and therefore home-
omorphic. Both preference manifolds, (p'), and (p?) possess horizontal and vertical
mappings, then by Corollary 2.2, the homeomorphism is a diffeomorphism. The
mapping, (D;(u( p?)), S;(ui(p?))) is a diffeomorphism of the first local equilibrium,

(D; (s (o), 5, (ui(p))).

Theorem 2.7. All elements of preference manifolds are either simply connected,
(simple metric connection), or pathconnected, (connected by a union of several simple
metric connections).

Proof. simple metric connection: Let each local equilibrium have its’ corresponding
preference tensor denoted by (p';i = 1,--- ,n), where (i) represents the number of the
components of a preference tensor. let (A?) be the Eigenvalues of the preference tensor
(p*). Given that each equilibrium is reached for certain values of the preference tensor,
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and Figenvalues represent these certain quantities, then all Eigenvalues are positive
definite, (A* > 0). For a simple connection, a metric is defined as the magnitude of the
difference between two consecutive Eigenvalues, (ds =| A\' — A7 |= /(AT — Xi=1)2),
Path connectedness occurs when there exists (j = 1,---,N) local equilibria. Let
the corresponding preference tensor be denoted by (p;) In this case, there exists

(j) number of metrics each denoted by (ds; =| Aj — )«;_1 |= 1}(/\;- — A;_I)Q;Vi).
Preferences are path connected if there exists a sum of simple metric connections,
(ds = Z;V:] ds;). Simple metric connection applies when preferences are manifolds,
and path connected metric applies when there exists a multitude of preference man-
ifolds. Based on Theorem 2.1, all preference manifolds are open sub-manifolds of
the preference-consumption space (I' x ) at equilibrium. The intersection of these
sub-manifolds are non-empty. Therefore, it i1s possible to find a connection made by
the union of several simple metric connections. ]

Theorem 2.8. Local equilibria are homeomorphic.

Proof. Let (D; (,01),5;'-‘(,01)), and (D}-(pz),Sj’,?‘(pz)) be two equilibrium points. Each
local equilibrium point (D;(p'), S5 (p') C (I x Q)),(D;(p?). S5 (p?) < (I x Q)), is in
the preference-consumption space, (I' x ). By Theorem 2.7, all elements of pref-
erences (p'), and (p?) are simply connected. Both equilibrium points depend on

preference manifolds, (p'), and (p?). Therefore, they are simply connected. Thus
(Dj(pz],Sj’f(pz)) is homeomorphic to (D; (pl),S;‘(pl)]. O

Theorem 2.9. Local equilibria are diffeormorphic.

Proof. From Corollary 2.2, for any local equilibrium point (D;(p!), St (p1)), if there
exists a differential mapping (d(p') = T,1(D;(p'), Sx (p1)) = D;i(p?), St (p?)), then
this mapping is onto. Given, Theorems 2.7, and 2.8, this differential mapping is simply
connected, and therefore homeomorphic. Thus any local equilibrium is diffeomorphic.

O

It is shown that disordering locality links can reach equilibrium. This is a local
equilibrium. Some properties of local equilibria in the context of CDN are discussed
such as: 1) predictability through connectedness, and homeomorphism, 2) change-
ability due to diffeomorphism, and dialectic causality, and 3) Pareto Optimality. In
general, local equilibria are not stable due to their causal nature. They are pareto
optimal when they occur. They are predictable if they occur due to simple causality,
(a cause for an effect), or (multiple compatible causes for an effect). If the causality is
more complex, meaning there exists dialectic causality, then local equilibria are pre-
dictable due to connectedness, homeomorphic, and diffeomorphic properties proven in
earlier Theorems. Given that due to causality local equilibria are liable to change, it is
important to measure this change. Change in equilibria represents economic growth,
since 1t implies changes in demand and supply. It is assumed that economic growth
can be compared to entropy, and entropy can be measured. In the next section the
measurement of economic growth through entropy is discussed.
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3 Entropy as a measure of economic growth

So far, an economic system is modelled as a network of nodes connected by links. The
entry node of each link represents demand and the exit node of each link represents
supply. demand and supply are connected by a causal relationship. Cause is con-
sidered to be preference, and it is demand/supply surplus as a function of preference
that makes a connection between the entry and exit points. These links are called
disordering locality links. Local equilibrium occurs when demand is equal to supply.
Equilibrium on the network is an indication of maximum entropy, (H=1). Growth
occurs when there is change in entropy. Growth occurs in multiple forms. If there
exists a cause for an effect or there exists several compatible causes for an effect,
then growth can occur as a horizontal mapping. In this case, growth is comparable to
topological entropy. Here, growth can be considered, as a numerical invariant or topo-
logical entropy similar to an orbital growth in a dynamical system. (Tp(p) = p x ¢),
where (Tp(p)) is a horizontal mapping of any local equilibrium point as a function of
preference, (p), and (c) represents a constant, (¢ € R). (R) is the space of all real num-
bers. Horizontal growth, is a generalized linear projection. Growth can be a change
in entropy due to vertical mapping. In this case, growth is the differential of the ex-
isting local equilibrium. This type of growth is isomorphic to local equilibrium point.
In case of the existence of dialectic causality, where there exists many competitive
causes for an effect, growth or entropy is a fibre bundle. In the following section all
different types of growth are analysed in details, and their entropy measures are given.

Orbital growth or topological entropy is the simplest form of growth. Any change
in any of the components of preference manifold leads to a change in consumer /producer
surplus. This in turn causes change in demand and supply. Thus if a disordering lo-
cality link is at local equilibrium, it holds no longer. This change is considered to
be growth since by definition growth is any change in local equilibrium which affects
the entropy of a CDN. Let orbital growth or topological entropy be denoted by (7,).
Since (7,) is the result of a horizontal mapping, then (1, = T,_(p)), it is dependent on
preference manifold. Based on Theorem 2.7 there exists a simple metric connection,
then metric is denoted as (d,,). Let the metric (d,., = d-,(p*, p'T1)), be the distance
between an existing local equilibrium, and a new disequilibrium created by change
in preference manifold. (p'), is the preference manifold at local equilibrium. (pT!),
is the preference manifold after causal disturbance. Given that orbital growth (7,)
1s a horizontal mapping, then by Theorem 2.8, due to homeomorphism of horizontal
mapping, there exists a sequence of metrics, (dio;é =1,---,N). Let each preference
manifold be a tensor of general linear group type (GL(n,R)). Let (A; (1=1---,n)),
be the Eigenvalues of the preference tensor for each (i). By Theorem 2.7, the metric
is denoted by, (di (p%,piT") = di (7o(p}). 7o(pi™")), where (r,(p})), and (7,(piT"))

J J J
are horizontal mappings. Simple metric i1s calculated as a function of the Eigen-
i i i+1 i i 1+1 i+1 i i+1 i
values, (dTD(Pj=Pj+ ) = dTO(TO(Pj)! To(Pj+ ) = }‘j+ - }‘j = (’\j—I— _}‘j)z)- To

measure entropy, let ( p;o) be the metric probability that measures change with re-
spect to prior local equilibria points. metric probability, (go;a) can be formulated as
d, (Ta(p})s7a (i)

(pt = il df’,p(n(ﬂﬁ)ﬁﬁ(ﬁﬁ“));vj)' The first occurrence of growth or entropy on a
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init yinit
dimit (A

disordering locality link, can be measured by (g:)i’:ﬁ = ”)\@nu””\j) Viii=2,--- ,N),
)

where (|| )\;“ﬂ |) is the magnitude of the initial growth Eigenvalues. Metric probabil-
ity (-, ) by definition is different from a standard probability. Standard probability is
defined based on a process of observations or experiments. The outcome of an exper-
iment 1s random meaning that it is not predictable. The probability of an outcome
18 defined as the number of times this outcome is observed when an experiment is
repeated a number of times. The notion of randomness or uncertainty is fundamental
in probability measure. Entropy in this context is a quantity that measures the mag-
nitude of uncertainty. The quantity (H = —>_._; p; x log(p;)), where (p) would be a
standard probability based on the occurrence of random events, is a suitable measure
of this uncertainty. Metric probability, on the other hand as the name suggests deals
with metrics or distances that are measurements, and in no case are random occur-
rences. The best measure of entropy when using metric probabilities is the probability
itself. The higher the metric probability, the higher the entropy. This is true since in
the context of a CDN, this indicates a longer distance from a point of reference which
by itself is a local equilibrium. The more distant the equilibriums points are from
each other the more stable they are. Stability in this context is equivalent to high
entropy. Smaller distances imply lower entropy, since these distances orbit around
a local equilibrium point, and constitute perturbations or oscillations that lower the
stability of the equilibrium point, since any of these orbits is as acceptable as the local
equilibrium point itself.

If there exists several compatible causes for an effect, then some properties of topo-
logical entropy can apply as well. In a special case where there i1s a direct relationship
between cause and effect, it 1s possible to find a generator or a minimum horizontal
covering. In economics, the minimum horizontal covering translates into a change In
local equilibrium that i1s predictable. A generator exists as long as the cause. Given
that there exists a horizontal covering of preference manifold, ((¢ x p) = T,(p)),
for any constant (c), and any preference manifold (p), then it is possible to find
a sub-covering ((co x p?) = Tp(p?)) , (Tp(p°) C Tp(p)), that generates other sub-
coverings (T,(p*)) such that (T,(p*) = f(T,(p°))) all sub-coverings are functions of
the generator. The whole space of horizontal covering, (T,(p)) can be defined as
(limy—oe U, fi(Tp(p°) = Ty(p)), the limit as (i) goes to infinity of the union of
all sub-coverings (T,(p")) is equal to the horizontal covering space of the preference

manifold, (T(p)).

Theorem 3.1. If cause-n-effect are simply connected, then there exists a horizontal
covering that is a generator such that (limy_ .. UN, fi(T,(p°) = T,(p)), the limit
exists and is equal to the horizontal covering space of the preference manifold, (Ty(p) ).

Proof. (T,(p°)) is a linear operator such that (T,(p*) = f*(T,(p°)) , any horizontal
covering is generated by it. Let (A7) be the Eigenvalues of the operator (Tj(p°). Let
(/\;; i=1,---,N) be the Eigenvalues of any other horizontal covering (i) generated by
the operator (T},(p°). For the operator (T,(p°) to be a generator, then the condition
(/\} e R, V(7,5) : \jI = A9 C Tp(p)) must be true. Here (I) is the identity operator. If
this condition exists, then the horizontal covering (T),(p°) is a closed covering. Given
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that (T}, (p°) is a closed horizontal covering, then the inequality (|| A}I — A7 =<
A? |[) must hold. This implies that (|| /\;I —A? [|# 0) is strictly positive. Therefore, the
operator, (T,,(p°) is a generator, and if the left hand side of the inequality is summed
over (i), then the sum must be less than or equal to the horizontal covering space
(T,(p)), (Zi\;l I )\;I — A2 =< T,(p)). This shows that the inverse of the left hand
side of the inequality summed over (i) at the limit, must be equal to the horizontal
covering space, (T,(p)). Therefore, the limit (limy_ooUN,; || AT — A2 ||= Ty(p)
exists, is finite, and is equal to (limy—ee Uy f1(Ty(p°) = Tp(p)), since (f(T,(p°) =||
AL —A2)). O

In the case of multiple causality, where there exists many compatible causes for an
effect, it is not possible to find a general minimum covering span. Let (p;) represent
multiple compatible causality manifolds, where (i = 1,--- ,N), and (7 = 1,--- ,n).
Let each causality manifold have both horizontal and vertical mappings denoted by
(T3(p%)), and (Vi( p;)) respectively. A minimum spanning generator exists, if for
any two horizontal mappings, the intersection is a shared region of the two coverings,
(T (p;) N sz‘ (p;)) # 0) that is non-empty. It is possible to have a minimum spanning
generator for these regions only. The implication for the economy and in particular in
terms of economic growth is that, growth is predictable in the presence of the condi-
tion that causality manifolds have some common attributes. One particular attribute
is that in the shared region, the Eigenvalues are linearly dependent.

When causality is dialectic, then each causality manifold is the result of both hor-
izontal and vertical mappings, (7*(p}) = T;(p}) (h V;(p;)) where (7’ (p%)) is dialectic
causality manifold (i), which is the sum of the horizontal and vertical mappings. In
this case, no minimum spanning generator exists, but it is possible to predict growth,
by calculating all possible occurrences in terms of their locations in a CDN. The
growth that is most likely to occur in the future, i1s the one that has the highest
entropy given different metric probabilities. This idea is explained in more details.
For demonstration purposes, let’s consider a (2) dimensional case. Let growth on a
disordering locality link be represented by a vector with horizontal and vertical pro-
jections, as is shown in Figure 5. In Figure 5, local growth is a function of preferences.
preference is a plain consisting of (2) elements, (1, z2).

Xy &

7, ol x, )

L) 1

Figure 5. Representation in (2D) of the growth vector
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Growth vector (m(p(z1,x2)) is the sum of the horizontal and vertical projections,
(Tp(p(z1,22)), and (V,(p(z1,22)). The location of the future local growth given that
a disordering locality link exits is determined by calculating the differentials of the
horizontal and vertical projections, with respect to change in the elements of prefer-

ence, (x1,x2). These differentials are denoted by ( M) and ( %ﬁ‘m) Let

(W+m c1), and (%‘?m = r:g]_? where (c1), and (c2), are two constants
given that preference contains only two variables. In general when dialectic cause is a
manifold, the solution to the differential mappings based on the change of one element

is a matrix of Eigenvalues of size (n x n), here denoted by (/\;"T; j=1---,n), and

(/\;"V;j =1---,n). Once the location of the horizontal and vertical mapping is iden-
tified, then the growth vector is the sum of the two horizontal and vertical mappings.
Given the dialectic nature of the elements of cause (here taken to be preference), many
horizontal and vertical mappings are possible. A metric probability can be estimated
for each version of the likely local growth. The most likely future local growth 1s the
one that presents a high entropy value. The metric probability in the two variables

case is formulated as: (p = (<] —cﬁlgﬂéﬁé_”)” ), in the two variable case, where (c}),

and (c), are the solutions to the previous horizontal, and vertical projections. In
the case of the cause being a manifold, the metric probability for each possible future

II)\}T—%ﬁ-_l:'rll-%llf\ﬁ‘v—/\;'-_LV||) where (}‘i—l,T) and
o A TeA | ’ 3 ’
(A;_l’v ) are previous solutions of differential horizontal and vertical mappings. Given
that all elements of a cause manifold can change, then the most likely local economic
growth i1s the one with the highest entropy.

local growth is formulated as (p' =

4 Conclusion

The objective of this paper is to provide a sustainable systematic method of analysing
economic growth. Economic growth is defined not in terms of general equilibrium but
rather in terms of the level of entropy in a network consisting of nodes and links, where
each node represents either a demand or a supply for a category of product, and each
link represents the relationship between supply and demand. The relationship be-
tween supply and demand nodes is called cause-n-effect. The cause is identified to be
due to consumer/producer surplus. The effect is the occurrence of a link. The net-
work constructed this way is called Causal Dynamical Network. The causal links are
referred to as disordering locality links, since their location in a CDN i1s due to causal-
ity. The randomness is due to cause-n-effect characteristic. Cause i1s defined to be
equivalent of consumer/producer surplus which is formulated as a function of prefer-
ences and quantity consumed /produced. This is different from the standard definition
of consumer /producer surplus which is a function of price. Preference occur because
it depends on factors such as (knowledge accumulation, interaction, expectation, pre-
diction, and interpretation). Since every factor evolves due to consumer/producer
experiences, level of adaptability, and differential fitness of interpretation to interac-
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tion, then preference is a dialectic element that allows for the existence of disordering
locality links. The characteristic that defines these links is that they occur at random
at any location in a CDN. Entropy depends on the existence of disordering locality
links. The higher the number of disordering locality links the lower the entropy level,
and thus the higher the economic growth. Disordering locality links can reach equilib-
rium, but given the dialectic nature of these links, equilibrium is local and usually not
stable. These two properties are proven in the paper. Entropy for a CDN network is
calculated. A new method of calculating entropy in the context of a CDN is proposed.

The advantage of the method proposed in this paper is that it provides an alterna-
tive to the standard method of economic growth estimation and is adapted to recent
economic structures and new technologies and data accessibilities.
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