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Abstract.

In this paper, a new procedure of the g-homotopy analysis technique (NTg-HAM) was submitted for
solving non-linear initial value problems. The NTg-HAM contains just a single convergence control

parameter a. To show the dependability and proficiency of the technique, this approach is applied to
solve two non-linear IVPs, and the outcomes uncover that the NTq-HAM is more general of the He's
homotopy perturbation technique (HPM) [27] and the He's HPM is only special case of the NTQ-
HAM when o = 1.

Keywords: g-Homotopy analysis technique, Initial value problem, Convergence control parameter.

1 Introduction

The homotopy analysis technique (HAM) is created in 1992 by Liao [19-26] . It is an analytical
approach to get the series solutions of linear and nonlinear problems. The distinction with the
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other perturbation technique is that this method is free of small/large physical parameters. It
likewise gives a simple way to guarantee the convergence of series solution [3]. This technique
has heen effectively connected to solve numerous linear and nonlinear partial differential equa-
tions in different fields of science and engineering by numerous authors [1-3, 6,7,14 ,19-26,28,30].
The homotopy analysis technique is valuable and proficient for obtaining both analytical and
numerical. approximations of linear or nonlinear differential equations. El-Tawil M.and Huseen
Sh. [4] developed a procedure namely ¢- Homotopy Analysis Method (-HAM) which is a more
general of Liaos Homotopy analysis method, the -HAM contains an assistant parameter a > 1
as well as h with the end goal that the instance of & = 1 the Liaos Homotopy analysis method
can be come to . The q-HAM has been effectively applied to various problems in science and
engineering [4,5,8-13,15-18]. In this paper, we introduced a new technique of the g-homotopy
analysis method (NTq-HAM) which is contains only one assistant parameter o # 0 for solving
non-linear IVPs and the outcome uncover that the NTq-HAM 1is more general of the homotopy

perturbation technique (HPM) and the HPM is just a special case of the NTq-HAM when o = 1.

2 The New Technique of The g-Homotopy Analysis Method
(NTqg-HAM)
Consider the following differential equation
Nlw(z, )] = g(x,t) = 0 (2.1)

where N is a nonlinear operator | (z, ) means independent variables, g(x,t) 1s a known function
and w(z, t) unknown function. Give us a chance to develop the supposed zero-order deformation

equation

(1 —aq)Llp(z.t: q) —wolx,t)] + ¢(N[p(x.t : ¢) — g(x.1)) =0 (2.2)

where o # 0 , q varies from 0 to é,signiﬁos the so - called inserted parameter . L is an auxiliary

R =

linear operator with the property L[g] = 0 when g = 0. It is evident that when ¢ = 0 and ¢ =
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equation (2.2) progresses toward becomes:
1
i, 1:0) = wola, 1), (e, =) = w(a.t) (2.3)
o

Respectively. In this way as ¢ increases from 0 to 1/a | the solution p(x,t : ¢) changes from
the iitial guess wg(x,t) to the solution w(x,t) . Having the freedom to choose wo(z.t) , L |
we can expect that every one of them can be legitimately picked with the goal that the solution

plx,t o q) of equation (2) exists for g = i Expanding p(x. 1 : q) in Taylor series, one has:

—+oo
plr, tq) = wolw, t) + Y wm(w. 1)q"™, (2.4)

m=1
where
1 om™u(z,t;0)

- !m .f’ =
W) m! dg™

lg=0 (2.5)

Assume that L . wo(z, t) are so legitimately picked with the end goal that the series (4) converges

at q = é and
1 R 1
w(z,t) = plz,t;—) = wiz,t) + Z:l (. 1) (=)™, (2.6)
Defining the vector wy(z, ) = {wo(x.t) , wi(x,t) |, walz,t) ., ..., wy(x,t) }. Differentiating

equation (2) m times for g and afterward setting ¢ = 0 and lastly dividing them by m! we have

the so-called m** order deformation equation

Llwy,(z,t) — Cruwp—y(x, )] = =0 (w1 (x, 1)) (2.7)
Where
1 "N Nu(x, t;
bn(m) = ot TR 5y 2.9
and
0, m <1
= (2.9)
n, m > 2.

It ought to be underscored that w,,(z, 1) for m > 1 is administered by the linear equation (7)
with linear boundary conditions that come from the original problem. It ought to be noticed

that the cases of (v =1) mn equation (2), the HPM can be come to.
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3  Applications

3.1 Example 1

Consider the Helmholtz equation [29]

Pw  Fw
with the mitial conditions
w(0,y) = y,w.(0,y) = y + coshy (3.2)

The exact solution of this problem is
w(z,y) = ye* + xcosh(y), (3.3)

The problem (3.1-3.2) solved by HPM [27].To solve the problem by NTq-HAM we select the
linear operator

Pulx.y:q)
Lip(z, g q)| = —————— 34
with the property L|d;| = 0, where d; is constant.
Utilizing initial approximation wy(x, y) = y(1+x) + zcoshy coshy we define a nonlinear operator
as

Pu(x.y;q)  Pulr,yiq)
dr? dy?

Nz y;q)] = — ez, q) (3.5)

Let We define the zeroth-order deformation equation as follows
(1 —aq)Lp(z,y:q) — wol(x,y)|] + ¢gN[p(x,y:q)] =0
then , the m** order deformation equation is

L[wm (I: y) - C'rmu!m—l(l" yn - _O‘m(u!m—l(xr yJ) (36)
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and the mitial conditions for m > 1
W (x,0) = (3.7)

Such that C,, accordingly (2.9) and

N 821‘U-Jr'n.—l(:rr Y agu"m—l €, y)
am(u’m_l(l'. y)) = ().I'Q ) + dyg( - 'U-*'m—l (‘I: y)

Presently the solution of problem (3.1-3.2) for m > 1 becomes

W (2, 1) = Crpy—1(2,Y) — L [ (wm—1)]

Then, the NTg-HAM components solution are

wy(z,y) = 223+ 2)y

wa(z,y) = goa?(3 + x)y + 3ga(—60 — 20z + 522 + 23)y

'wa(i‘?_-y) _ (12(2520-‘1-8403:—4203:2—8413-‘1-7;6?[;3?54-4211(—60—203:+512+13))y) i a_(éQIQ(B + I)y i %Ig(_m .

20 + 522 + 23)y)

Wn(z,y) .(m=4,5,) can be calculated similarly. As special case if @ = 1, then we get a similar
outcome got by HPM [27].Now the series solution expression by NTq-HAM can be composed in

the form

T

w(z,y) =2 Wh(z,y;a) = Z -w.i(a:.-y;a)(i)" (3.8)
=0

Equation (3.8) is the series solution to (3.1-3.2) in terms of the parameter « .To find the useful
region of a, the a-curve given by the 10 order NTq-HAM solution at specific values of «
., y 1s drawn in figure (1).(a): This figure demonstrates the region of a where the value of
Wi(x, y) is constant at specific values of = and y .(b):demonstrates the region of o where the
value of Wig(x,y) is constant at specific values of x and y. Figure (2).(a):demonstrates the 10
order solution of (NTq — HAM:;a = 1) for problem(3.1-3.2) at —1 <z <1, -1 <y <
1.(b):demonstrates the exact solution for problem(3.1-3.2) at —1 < z <1, -1 <y < 1.

5th

Table (1) demonstrates the Comparison between the order approximations of NTq-HAM at

various values of o with the exact solution of (3.1-3.2). Table (2)demonstrates the comparison
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between the 10t order approximations of errors of NTq-HAM at various values of a with the
exact solution of (3.1-3.2). Table (3)demonstrates the absolute errors of Wy of NTq-HAM at

various values of a for problem (3.1-3.2) .Table (4) demonstrates the absolute errors of U;0 of

NTq-HAM at various values of a For problem (3.1-3.2).

witx. v
Wyl )
1393 Lasin
1190

13875

138
= —_ W{0s.05) 13870
— Wl05.05)

Figure 1: a: a - curve of Wy approximate solution of (NTq-HAM) of problem (3.1-3.2) at different
values of z and y, b: « - curve of Wy approximate solution of (NTq-HAM) of problem (3.1-3.2)

at different values of x and y.

¢
i -
Biolawa) L g

Figure 2: a: The 10** order approximate solution of (NTq-HAM; a = 1) for problem(3.1-3.2)
at =1 <x <1, —-1<y<1andb: The exact solution of problem (3.1-3.2) at —1 <z <1
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th

order approximations of NTq-HAM at different values of o with

X v | Exact solution | Wy NTq-HAM oo =1 | W5 NTq-HAM o =09 | Wy NTq-HAM o« =1.1
-1 -1 -1.910960075 -1.910960074 -1.910054027 -1.910938072
-0.8 | -0.8 | -1.429411128 -1.429411128 -1.429408496 -1.429404430
-0.6 | -0.6 | -1.0405661136 -1.040566113 -1.040565747 -1.040564425
-0.4 | -0.4 | -0.700556967 -0.700556967 -0.700557145 -0.700556656
-0.2 | -0.2 | -0.367759502 -0.367759502 -0.36 7759555 -0.367759474
-0.0 | -0.0 0.0 0.0 0.0 0.0

0.2 | 0.2 | 0.448293903 0.448293903 0.448293964 0.448203872
04 | 0.4 | 1.029158828 1.0291588278 1.029159097 1.029158441
0.6 | 0.6 1.804550411 1.804550411 1.804550234 1.804548163
0.8 | 0.8 2.850380700 2.850380700 2.850377738 2.850371295

1 1 4261362463 4.261362461 4.261353809 4.261330125

Table 2: Comparison between the 10 order approximations of NTq-HAM at different values of o with

the exact solution of (3.1-3.2).

x v | Exact solution | Wig NTg-HAM oo =1 | Wig NTq-HAM o =0.9 | Wiy NTq-HAM o =1.1
-1 -1 | -1.9109600760 -1.9109600759 -1.9109600759 -1.9109600755
-0.8 | -0.8 | -1.4294111280 -1.4294111283 -1.4294111283 -1.4294111282
-0.6 | -0.6 | -1.0405661130 -1.0405661126 -1.0405661126 -1.0405661125
-0.4 | -0.4 | -0.700556970 -0.7005569671 -0.7005569671 -0.7005569671
-0.2 ] -0.2 | -0.367755010 -0.3677505017 -0.3677595017 -0.3677595017
-0.0 | -0.0 0.0 0.0 0.0 0.0

0.2 | 0.2 | 0.4482939020 0.4482939027 0.4482939027 0.4482939027
04 | 0.4 | 1.0291588280 1.0291588277 1.0201588277 1.0291588277
0.6 | 0.6 1.8045504110 1.8045504111 1.8045504112 1.8045504111
0.8 | 0.8 2.850380700 2.8503806998 2.8503806998 2.8503806996
1 1 4.2613624630 42613624632 _ 4.2613624632 4.2613624626
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Table 3: The absolute errors the 5 order approximations of NTq-HAM at different values of o with

the exact solution of (3.1-3.2).

X v |AE(a=1) ]| AE(e=09) | AE (e =11)
1) -1 1.9378E-9 6.0493E-6 2.2004E-5
-0.8 | -0.8 | 1.0809E-10 2.6325E-6 6.6976E-6
-0.6 | -0.6 | 2.6059E-12 3.6539E-7 1.6877E-6
-04 | -04 | 1.3666E-14 3.TTH5E-7 3.1094E-7
-0.2 | -0.2 0.0 5.2879E-8 2.7348E-8
-0.0 | -0.0 0.0 0.0 0.0
0.2 | 0.2 | 5.5511E-17 6.1042E-8 3.100E-8
04 | 0.4 | 1.4655E-14 2.6951E-7 3.8728E-7
0.6 | 0.6 | 2.85T9E-12 1.7674E-7 2.2480E-6
0.8 | 0.8 | 1.2226E-10 2.9620E-6 9.4053E-6
1 1 2.2606E-9 8.6538E-6 3.2339E-5

Table 4: The absolute errors of the 10" order approximations of NTq-HAM at different values of o

with the exact solution of (3.1-3.2).

X v |[AE(a=1) | AE(a=09) | AE(a=11)
-1 -1 0.0 5.1191E-11 4.8336E-10
-0.8 | -0.8 | 8.8818E-16 3.4923E-11 1.1423E-10
-0.6 | -0.6 0.0 1.8520E-11 2.1944E-11
-04 | -04 0.0 6.8301E-13 3.0093E-12
-0.2 | -0.2 | 5.5511E-17 7.2870E-13 1.9690E-13
-0.0 | -0.0 0.0 0.0 0.0

0.2 | 0.2 | 5.5511E-17 8.5265E-13 2.2188E-13
04 | 04 0.0 1.356TE-13 3.6533E-12
0.6 | 0.6 | 4.4400E-16 2.0841E-11 2.7980E-11
0.8 | 0.8 | 4.4400E-16 5.3536E-11 1.5147E-10

1 1 0.0 1.8180E-11 6.6263E-10
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3.2 Example 2

Consider the Fisher's equation

ow  Pw
with the initial conditions
(2.0) = — (3.10)
w(r,0) = ——, .
' (14 e7)?
The exact solution of this problem is
1
w(z,0) = (3.11)

(1 + €,:r—5t)2 !
The problem(3.9-3.10) solved by HPM [27]. To solve the problem by NTq- HAM we select the

linear operator

dp(z, t;q ;
L. t:q)] = LD (3.12)
ot
with the property L[d;] = 0, where d; is constant.
Utilizing initial approximation wy(x,y) = m we define a nonlinear operator as
Ou(x,tiq)  Pulx,t;q) 9
Np(zx,t,q) = - — — — Gu(x, t; Lt
1z, t;9)] py R p(x,tq) + p(z.t:q)
Let We define the zeroth-order deformation equation as follows
(1 —aq)Ljp(x, t;q) — wo(x, t)] + gN|p(z, t:q)] =0
then .the m™ order deformation equation is
L[u!-m.(l‘: t) - mem—l (I: t)] - _dm('wm—l(xs t)) (313)
with the initial conditions for m > 1
W (2,0) =0 (3.14)

Volume 14, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2300 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Such that €, accordingly (2.9) and

Qw1 (1)) Pwp_y(x.t !
Jm(u?m—l('r: t)) = - dlf(‘T )) - . a;gI )) - GU'?m—l(-Te t) + Z 'UJ,;(CE, T)I,Um_l_i(ﬂ’:_._ t)
) i=1

Presently the solution of problem (3.9-3.10)for m > 1 becomes

u"m(I: t) = Gmu"m—l(I: tJ - L_l[ém(wm—l)]

Then, the NTqg- HAM components solution are

x

o2 2e
U,j_ T, t {{ 1+e-73)4 - (lﬁ_;l_ez)él + (1(+e"~”)3 - (1+GE-E)2)t}}

(6e2%) (2e%) (10e® (—t—e™t— “"* ) 1 5emi2))
w(z,t) = {{{~ (e — Tigery + Grerp — o) + oot '}
Gelz 2e” (10e™(—t— extf—+5e’“t2}) -
ws(. 1) = {t{a(= (1+e"‘ ((1+em))4+(1(+e“~"))3 (1+e plot+ (T+em)* JJ“(3(1iem)5)5€ HG-

30t +25¢2 —3a(2+5t) + (12— 30t = 175¢2 +- 30 (—4+5t) ) + 227 (3 =30t + 5062 + 3a(—=1+5¢))) } } } }

uw,(x,y) ,(m =4,5,) can be calculated similarly. As special case if @ = 1, then we get a similar
outcome got by HPM [27]. Now the series solution expression by NTq- HAM can be composed

n the form
w(x,t) =2 W (2.t ) Zu (. t;a)( ) (3.15)

Equation (3.15) is the series solution to (3.9-3.10) in terms of the parameter o .To find the useful
region of a , the a -curves given by the (10)% order NTq-HAM solution at specific values of
x , tis drawn in Figure(3).(a): This figure demonstrates the region of o at where the value of
Wig(z, t) is constant at specific values of = and ¢ .(b): demonstrates the (10)* order solution of
(NTq-HAM:a = 1) for problem(3.9-3.10) at0 < = <1 ,0.2 <t < 0.4.Figure(4).(a): demonstrates
the exact solution for problem(3.9-3.10) at 0 <z <1 ,0.2 <t <04 .(b):demonstrates the exact
solution for problem(3.9-3.10)at 0 <z <1, 0.2 < ¢ < 0.4.Table (5)demonstrates the Comparison

between the 5t

order approximations of NTq-HAM at various values of o with the exact solution
of (3.9-3.10). Table (6)demonstrates the Comparison between the 10 order approximations of

NTq-HAM at various values of o with the exact solution of (3.9-3.10).Table (7) demonstrates
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the absolute errors of Wy of NTq-HAM at various values of a For problem (3.9-3.10). Table
(8)demonstrates the absolute errors of Wiy of NTq-HAM at different values of o For problem

(3.9-3.10).

—_ Wyp(01.02)

Figure 3: a - curve of Wy approximate solution of (NTq-HAM) of problem (3.9-3.10) at different

values of = and ¢ .

Figure 4: a: The (10)* order approximate solution of (NTq-HAM; o = 1) for problem(3.9-3.10)
at 0 <z <1,02<t<04 and b: The exact solution of problem (3.9-3.10) at 0 < z < 1,
02 £1<04.
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5th

Table 5: Comparison between the order approximations of NTq-HAM at different values of o with

the exact solution of (3.9-3.10).

X t | WsNTg-HAM o« =1 | WsNTg-HAM oo = 1.1 | WsNTg-HAM o = 0.9 | Exact solution
0.2 0.533333333 0.533372969 0.535991295 0.534446646
0.2 0.474601536 0.475364531 0.476282907 0.476064785
04 0.415457157 0.416756783 0.416005274 0.416872066
0.6 0.357402715 0.358935506 0.356974830 0.358426914
0.8 0.301852414 0.303306749 0.300800990 0.302317425
1 0.250065549 0.251212791 0.248781371 0.25
0 |04 0.733333333 0.720503133 0.802224988 0.775803493
0.2 0.664456614 0.674979181 0.696045199 0.736419595
0.4 0.609573982 0.639450515 0.603103936 0.692254593
0.6 0.570614520 0.611486926 0.534960086 0.643498991
0.8 0.542439779 0.584828027 0.491458616 0.590630343
1 0.516276064 0.552553864 0.463510566 0.534446645

Table 6: Comparison between the 10 order approximations of NTq-HAM at different values of o with

the exact solution of (3.9-3.10)

X t | WgNTq-HAM o =1 | WigNTq-HAM a = 1.1 | WiyNTg-HAM a = 0.9 | Exact solution
0 |02 0.534451 0.534443 0.534438 0.534447
0.2 0.476063 0.476064 0.476078 0.476065
0.4 0.416866 0.416876 0.416892 0.416872
0.6 0.358421 0.358434 0.358441 0.358427
0.8 0.302315 0.302323 0.302321 0.302317

1 0.250001 0.250002 0.249998 0.25

0 |04 0.786896 0.772285 0.809223 0.775803
0.2 0.737311 0.729524 0.776915 0.73642
0.4 0.683109 0.68612 0.715244 0.692255
0.6 0.631297 0.641865 0.641808 0.643499
0.8 0.582835 0.59399142 0.574287 0.590630

1 0.533733 0.540167 0.517799 0.534447
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Table 7: the absolute errors 5" order approximations of NTq-HAM at different values of a with the
exact solution of (3.9-3.10).
X t |AE(a=1) | AE(a=12)| AE («=0.9)
0 |02]| 1.1133E-3 1.0737E-3 1.5447E-3
0.2 1.4633E-3 7.0025E-4 2.1812E-4
0.4 1.4149E-3 1.1528E-4 8.6679E-4
0.6 1.0242E-3 5.0859E-4 1.4521E-3
0.8 4.6501E-4 9.8032E-4 1.5164E-3
1 6.5549E-5 1.2128E-3 1.2186E-3
0 | 04| 4.2470E-2 5.5300E-2 2.6422E-2
0.2 7.1963E-2 6.1440E-2 4.0374E-2
04 8.2681E-2 5.2804E-2 8.0151E-2
0.6 7.2885E-2 32012E-2 1.0854E-1
0.8 4.8191E-2 5.8023E-3 9.0172E-2
1 1.8171E-2 1.8107E-2 7.0036E-2

Table 8: the absolute errors 10" order approximations of NTq-HAM at different values of o with the

exact solution of (3.9-3.10).

t | 8 |AE(a=1) | AE (0 =1.2) | AE (a =0.9)
0 [02] 45162E6 | 4.1020E-6 8.6170E-6
0.2 1.8010E-6 0.8378E-7 1.3349E-5
0.4 6.3840E-6 | 3.6275E-6 2.0425E-5
0.6 6.3030E-6 6.5988E-6 1.4162E-5
0.8 2.7080E-6 5.8939E-6 4.0700E-6
1 1.1090E-6 2.2320E-6 2.4900E-6
0 [04]| 1.1093E-2 | 3.5181E-3 3.3420E-2
0.2 8.9111E-4 6.8958E-3 4.0495E-2
0.4 9.1450E-3 6.1349E-3 2.2989E-2
0.6 1.2202E-2 1.6339E-3 1.6913E-3
0.8 7.7951E-3 |  3.3638E-3 1.6343E-2
1 7.1402E-4 5.7204E-3 1.6648E-2
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4 Conclusion

In this paper, new strategy of the g-homotopy analysis method (NTq-HAM) proposed for solving
linear and nonlinear 1\VVPs. To show the dependability and productivity of the technique, this
approach is applied to solve two IVPs. The accomplishment of this approach lies in the fact that the
NTg-HAM provides a non zero convergence-control parameter o which can be utilized to adjust and
control the convergence region and rate of the series solutions obtained. The illustrative examples
recommend that NTg-HAM is a great technique for non-linear problems in science and engineering.
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