

Volume 3, Issue 3

May 6, 2015

Journal of Progressive Research in Mathematics www.scitecresearch.com

Pathological Properties of Weak *L^p* **Spaces**

Ali Rastegar¹ and Ali Farokhinia²

¹Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran. ²Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

Abstract

Weak L^p spaces, that are shown through this paper by L^p_w , are function spaces that are closed to L^p spaces, but somehow larger. The question that we are going to partially answer in this paper, is that how much it is larger. Actually we prove that $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R}) \cup \{0\}$ contains an infinitely generated algebra.

Keywords: Algebrability; Lineability; Pathological Properties; Weak L^p .

1. Introduction

Weak L^p spaces are function spaces that are closely related to L^p spaces. We do not know the exact origin of Weak L^p spaces. The Book by Colin Benett and Robert Sharpley [1] contains a good presentation of Weak L^p but from the point of view of rearrangement function. In the present paper we first study the Weak L^p space from the point of view of distribution function. This circumstance motivated us to undertake a preparation of the present paper containing a detailed exposition of these function spaces. Then we proceed to the main theorem that proves the existence of an infinitely generated vector space in $Weak L^p[0,1] \setminus L^p[0,1] \cup \{0\}$. A subset M of a vector space X is called lineable in X if $M \cup \{0\}$ contains an infinite dimensional vector space. In this setting, authors in [2]have proved that $Weak L^p[0,1] \setminus L^p[0,1]$ is lineable in $Weak L^p[0,1]$. What we are going to prove here is that $L_w^p(\mathbb{R}) \setminus L^p(\mathbb{R}) \cup \{0\}$ contains an infinitely generated algebra. This last property is called Algebrability.

The origin of lineability is due to Gurariy([5,6])that showed that there exists an infinite dimensional linear space such that everynon-zero element of which is a continuous nowhere differentiable function on C[0;1]. Many examples of vector spaces of functions on \mathbb{R} or \mathbb{C} enjoying certain special properties have been constructed in the recent years. More recently, many authors got interested in this subject and gave a wide range of examples. For more results on lineability we refer the reader to [3].

Throughout this paper (X, Ω, μ) is a measure space and \mathbb{F} is \mathbb{R} or \mathbb{C} .

1. 1 Definition. For $f: X \to \mathbb{F}$ a measurable function on X, the distribution function of f is the function D_f defined on $[0, \infty)$ as follows

(1)
$$D_f(\lambda) \coloneqq \mu(\{x \in X \colon |f(x)| > \lambda\})$$

The distribution function D_f provides information about the size of f butnot about the behavior of f itself near any given point. For instance, a function \mathbb{R}^n and each of its translates have the same distribution function. It follows from 1. 1 that D_f is a decreasing function of λ (not necessarily strictly).

Let (X, Ω, μ) be a measurable space and f and g be a measurable functions on X then D_f enjoys the following properties.

$$(1)|g| \leq |f|\mu$$
- a. e. implies that $D_g \leq D_f$;

$$(2)D_{cf}(\lambda) = D_f\left(\frac{\lambda}{|c|}\right) \text{ for all } c \in \mathbb{C} \setminus \{0\} \text{ and } \lambda \in [0,\infty);$$

$$(3)D_{f+g}(\lambda_1 + \lambda_2) \le D_f(\lambda_1) + D_g(\lambda_2) \text{ for all } \lambda_1, \lambda_2 \in [0, \infty);$$

$$(4)D_{fg}(\lambda_1\lambda_2) \le D_f(\lambda_1) + D_g(\lambda_2) \text{ for all } \lambda_1, \lambda_2 \in [0, \infty);$$

For more details on distribution function see [4]and[7].

Next, Let (X, Ω, μ) be a measurable space, for 0 , we consider

Weak
$$L^p := \left\{ f: X \to \mathbb{F} : \exists c > 0 \ \forall \lambda > 0, D_f(\lambda) \le \left(\frac{c}{\lambda}\right)^p \right\}$$

We will use the notation L^p_w to show $Weak L^p$. Observe that $L^{\infty}_w = L^{\infty}$.

1. 2 Proposition.Let $f \in L^p_w$ with 0 . Then

$$\|f\|_{L^p_w} \coloneqq \inf\left\{c > 0: D_f(\lambda) \le \left(\frac{c}{\lambda}\right)^p \text{ for all } \lambda \in (0,\infty)\right\} = \left(\sup_{\lambda > 0} \lambda^p D_f(\lambda)\right)^{\frac{1}{p}} = \sup_{\lambda > 0} \lambda \left\{D_f(\lambda)\right\}^{\frac{1}{p}}.$$

Proof.Let us define

$$\alpha = \left\{ c > 0 : D_f(\lambda) \le \left(\frac{c}{\lambda}\right)^p \text{ for all } \lambda \in (0,\infty) \right\},\$$

and

$$\beta = \left(\sup_{\lambda>0} \lambda^p D_f(\lambda)\right)^{\frac{1}{p}}.$$

Since $f \in L^p_w$, so there exists c > 0 such that

$$D_f(\lambda) \leq \left(\frac{c}{\lambda}\right)^p, \lambda \in (0,\infty).$$

Therefore

$$\left\{c > 0: D_f(\lambda) \le \left(\frac{c}{\lambda}\right)^p \text{ for all } \lambda \in (0,\infty)\right\} \neq \emptyset.$$

On the other hand

$$\lambda^p D_f(\lambda) \leq \beta^p$$
,

thus $\{\lambda^p D_f(\lambda): \lambda > 0\}$ is bounded above by β^p and $\beta \in \mathbb{R}$. Therefore

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

(2)
$$\alpha = \left\{ c > 0 : D_f(\lambda) \le \left(\frac{c}{\lambda}\right)^p \text{ for all } \lambda \in (0,\infty) \right\} \le \beta.$$

Now, let $\varepsilon > 0$, then there exists c > 0 such that $\alpha \le c \le \alpha + \varepsilon$ and

$$D_f(\lambda) \leq \left(\frac{c}{\lambda}\right)^p$$
 for all $\lambda \in (0, \infty)$,

and thus

$$\lambda^p D_f(\lambda) \leq c^p \leq (\alpha + \varepsilon)^p, \lambda \in (0, \infty).$$

Then

$$\sup_{\lambda>0}\lambda^p D_f(\lambda) \leq (\alpha+\varepsilon)^p.$$

Therefore

$$\left(\sup_{\lambda>0}\lambda^p D_f(\lambda)\right)^{\frac{1}{p}} \leq \alpha + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary so $\beta \le \alpha$. This completes the proof.

By this norm, we can redefine L^p_w spaces in the form of L^p spaces.

1. 3 Definition.Let (X, Ω, μ) be a measure space. For $0 the space <math>L^p_w$ is defined as the set of all μ -measurable \mathbb{F} -valued functions f such that

$$\inf\left\{c>0: D_f(\lambda) \leq \left(\frac{c}{\lambda}\right)^p \text{ for all } \lambda \in (0,\infty)\right\} < \infty.$$

Two functions in L^p_w will be considered equal if they are equal μ -a. e.

For $0 , <math>L_w^p$ is larger than L^p . We obtain this result in the next proposition and remark.

1. 4 Proposition. For any $0 , <math>L^p \subset L^p_w$ and for any $f \in L^p$ we have

 $\|f\|_{L^{p}_{uv}} \leq \|f\|_{L^{p}}.$

Proof. If $f \in L^p$, then for any $\lambda > 0$, D_f we have

$$\lambda^{p} \mu(\{x \in X : |f(x)| > \lambda\}) \leq \int_{|f(x)| > \lambda} |f|^{p} d\mu \leq \int_{X} |f|^{p} d\mu = ||f||_{L^{p}}.$$

Therefore

(3)

$$\mu(\{x \in X : |f(x)| > \lambda\}) \le \left(\frac{\|f\|_{L^p}}{\lambda}\right)^p$$

Next from 3 we have

$$\left(\sup_{\lambda>0}\lambda^p D_f(\lambda)\right)^{\frac{1}{p}} \le \|f\|_{L^p}$$

This shows that

$$\|f\|_{L^p_w} \le \|f\|_{L^p}.$$

1. 5 Remark. The inclusion in the previous proposition is strict. Indeed let $f(x) = x^{-\frac{1}{p}}$ on $(0, \infty)$ with the Lebesgue measure. For any $\lambda > 0$ we have

$$m\left(\left\{x\in(0,\infty):\frac{1}{|x|^{\frac{1}{p}}}>\lambda\right\}\right)=m\left(\left\{x\in(0,\infty):|x|<\frac{1}{\lambda^{p}}\right\}\right)=2\lambda^{-p}$$

Thus $f \in L^p_w(0,\infty)$ but

$$\int_{0}^{\infty} \left(\frac{1}{x^{p}}\right)^{p} dx = \int_{0}^{\infty} \frac{1}{x} dx \to \infty.$$

So $f \notin L^p$.

2. Main Result

In this section we prove that $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R}) \cup \{0\}$ contains an infinitely generated algebra. First we present the definition of algebrability and two facts about norm of L^p_w .

2. 1 Definition. Let Abe a subset of an algebra L. A is called algebrable in L if $A \cup \{0\}$ contains an infinitely generated subalgebra W of L.

2. 2 Proposition. Let $f, g \in L^p_w$. Then

 $(1) \|cf\|_{L^p_w} = \|c\| \|f\|_{L^p_w}, \text{ for any constant} c,$

$$(2)||f + g||_{L^p_w} \le 2\left(||f||_{L^p_w}^p + ||g||_{L^p_w}^p\right)^{\frac{1}{p}}.$$

Proof.(1) For c > 0 we have

$$\mu(\{x \in X : |cf(x)| > \lambda\}) = \mu(\{x \in X : |f(x)| > \frac{\lambda}{c}\}),\$$

thus

$$D_{cf}(\lambda) = D_f\left(\frac{\lambda}{c}\right).$$

Therefore

$$\begin{aligned} \|cf\|_{L^p_w} &= \left(\sup_{\lambda>0} \lambda^p D_{cf}(\lambda)\right)^{\frac{1}{p}} = \left(\sup_{\lambda>0} \lambda^p D_f\left(\frac{\lambda}{c}\right)\right)^{\frac{1}{p}} = \left(\sup_{cw>0} c^p w^p D_f(w)\right)^{\frac{1}{p}} \\ &= c \left(\sup_{cw>0} w^p D_f(w)\right)^{\frac{1}{p}}. \end{aligned}$$

So

$$\|cf\|_{L^p_w} = c\|f\|_{L^p_w}.$$

(2) Note that

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

$$\{x \in X : |f(x) + g(x)| > \lambda\} \subseteq \left\{x \in X : |f(x)| > \frac{\lambda}{2}\right\} \cup \left\{x \in X : |g(x)| > \frac{\lambda}{2}\right\}$$

Hence

$$\mu\{x \in X \colon |f(x) + g(x)| > \lambda\} \le \mu\left(\left\{x \in X \colon |f(x)| > \frac{\lambda}{2}\right\}\right) + \mu\left(\left\{x \in X \colon |f(x)| > \frac{\lambda}{2}\right\}\right)$$

Thus

$$\lambda^{p} D_{f+g}(\lambda) \leq \lambda^{p} D_{f}\left(\frac{\lambda}{2}\right) + \lambda^{p} D_{g}\left(\frac{\lambda}{2}\right) \leq 2^{p} \left[\sup_{\lambda>0} \lambda^{p} D_{f}(\lambda) + \sup_{\lambda>0} \lambda^{p} D_{g}(\lambda)\right]$$
$$= 2^{p} \left[\|f\|_{L^{p}_{w}}^{p} + \|g\|_{L^{p}_{w}}^{p}\right].$$

Therefore

$$\|f+g\|_{L^p_w} = \left(\sup_{\lambda>0} \lambda^p D_{f+g}(\lambda)\right)^{\frac{1}{p}} \le 2^p \left[\|f\|_{L^p_w}^p + \|g\|_{L^p_w}^p\right]^{\frac{1}{p}}.$$

The previous proposition shows that L_w^p is a vector space and that $\|.\|_{L_w^p}$ is a quasi-norm on it (which is a functional that is like a norm except that it does only satisfy the triangle inequality with a constant $c \ge 1$, that is $\|f + g\| \le c(\|f\| + \|g\|)$.)

To proceed to the main theorem, we need the following lemma.

2. 3 Lemma. If $I \subseteq \mathbb{R}$ has finite Lebesgue measure, then χ_I , the characteristic function of I, belongs to L^p_w for all 0 .

Proof. For all $\lambda > 0$ we have

$$m(\{x \in \mathbb{R}: |\chi_I(x)| > \lambda\}) = \begin{cases} 0, & \lambda > 1\\ m(I), & 0 < \lambda \le 1 \end{cases}$$

Thus

$$\|\chi_I\|_{L^p_w} = \left(\sup_{\lambda>0} \lambda^p D_{\chi_I}(\lambda)\right)^{\frac{1}{p}} \le \left(m(I)\right)^{\frac{1}{p}}.$$

So $\chi_I \in L^p_w$.

2. 4 Theorem. $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R})$ is algebrable in $L^p_w(\mathbb{R})$, for all 0 .

Proof. Let $0 be fixed. Define <math>f: \mathbb{R} \to \mathbb{R}$ as

$$f(x) = \begin{cases} |x|^{-\frac{1}{p}}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0 \end{cases}$$

For each $n \in \mathbb{N}$ let $g_n = \chi_{[0,\frac{1}{n}]}$. Let $n \in \mathbb{N}$ be fixed. By the argument after Proposition 2. 2, $(f.g_n)^m \in L^p_w(\mathbb{R})$ for all $n, m \in \mathbb{N}$.

On the other hand by remark 1. 5, $(f \cdot g_n)^m \notin L^p(\mathbb{R})$. Since for each $i, j \in \mathbb{N}$ with i < j, $m\left(\left[0, \frac{1}{i}\right] \setminus \left[0, \frac{1}{j}\right]\right) \neq 0$, so for each $i, j \in \mathbb{N}$ with $i < j, f \cdot g_j \neq f \cdot g_i$.

Therefore $\{(f.g_n)^m: m, n \in \mathbb{N}\}$ is an infinite set. Again by the argument after Proposition 2.2 and above reasoning, the algebra generated by $\{(f.g_n)^m: m, n \in \mathbb{N}\}$ is a subset of $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R}) \cup \{0\}$. So $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R})$ is algebrable. \Box

2. 5 Remark. This trend of research seems to be very broad. One can ask about the cardinality of the generators of the algebra contained in $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R}) \cup \{0\}$. Another question that can be considered is that whether there exists an infinitely generated free algebra of functions contained in $L^p_w(\mathbb{R}) \setminus L^p(\mathbb{R}) \cup \{0\}$ or not. Also changing the space \mathbb{R} by a general measure space would contribute to new results.

References

- [1] C. Bennett and R. Sharpley, Interpolation of operators, Pure and appliedmath., Vol. 129, Academic Press Inc., NewYork, 1988.
- [2] M. J. Mohammad Ali Nassab and A. Farokhinia, $Weak L^p[0,1] \setminus L^p[0,1]$ is Lineable, J. GlobalResearch in Math. Arch., V. 2, No. 2(2014), 37-42.
- [3] A. Farokhinia, Lineability of space of quasi-everywhere surjective functions, J. Math. Extension, V. 6, No.3(2012), 45-52.
- [4] L. Grafakos, Classical Fourier Analysis, Second edition, V. 249, Springer, New York, 2008.
- [5] V. I. Gurariy, Subspaces and bases in spaces of continuous functions (Russian), Dokl. Akad. Nauk SSSR, 167(1966), 971-973.
- [6] V. I. Gurariy, Linear spaces composed of non-differentiable functions, C.R. Acad. Bulgare Sci., 44 (1991), 13-6.
- [7] O. A. Nielsen, An introduction to integration and measure theory, Canadian Mathematical society series of Monographs and Advanced Texts, A Wiley -interscience Publication, Jhon Wiley and sons, inc, NewYork, 1997.