Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Almost Oscillation Criteria for Second Order Neutral Difference Equations

M. Angayarkanni ${ }^{1}$ and S. Kavitha ${ }^{2}$
1,2
Department of Mathematics, Kandaswami Kandar's College, Velur - 638 182, Namakkal (Dt), Tamil Nadu, India.

Abstract

In this paper, we consider the second order neutral difference equation of the form

$$
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+q_{n} x_{n-\sigma}^{\beta}=e_{n}, \quad n \geq n_{0}
$$

where $z_{n}=x_{n}+p_{n} x_{n-\tau}$ and $\alpha>0, \beta>0$ are ratios of odd positive integers. Examples are provided to illustrate the results.

Keywords: Second order difference equation, Almost oscillatory, Riccati technique, Summation by parts.

1. Introduction

In this paper, we study the oscillatory behavior of second order neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+q_{n} x_{n-\sigma}^{\beta}=e_{n}, \quad n \geq n_{1}, \tag{1}
\end{equation*}
$$

where $z_{n}=x_{n}+p_{n} x_{n-\tau}$ and $\alpha>0, \beta>0$ are ratios of odd positive integers, σ and τ are positive integers.
Throughout this paper, we assume that:
$\left(\mathrm{H}_{1}\right)\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{e_{n}\right\}$ are positive real sequences with $0 \leq p_{n} \leq p \leq 1, q_{n}>0, e_{n} \geq 0$ and $\left\{a_{n}\right\}$ is a positive real sequence with $\sum_{s=n_{0}}^{n} \frac{1}{a_{s}^{1 / \alpha}} \rightarrow \infty$ as $n \rightarrow \infty$.
$\left(\mathrm{H}_{2}\right) \alpha$ and β are ratios of odd positive integers, σ and τ are positive integers.

By a solution of equation (1), we mean a real sequence $\left\{x_{n}\right\}$ defined for all $n \geq n_{0}$ and satisfying equation (1). A solution $\left\{x_{n}\right\}$ of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is said to be non-oscillatory.
Recently there has been an increasing interest in the study of the oscillation and non-oscillation of the second order neutral difference equations, see for example [6, 7, 10-14] and the references cited there in. In [6], we see that the oscillation criteria for second order difference equation of the form

$$
\begin{equation*}
\Delta\left(r_{n} \Delta\left(x_{n}+x_{n-k}\right) r\right)+q_{n} x_{n+1}^{\alpha}=e_{n}, \quad n \in N_{0} \tag{2}
\end{equation*}
$$

is discussed.

[^0]In [14], we see that the oscillation criteria for second order non-positive neutral term of the form

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+q_{n} f\left(x_{n-\sigma}\right)=0, \quad n \geq n_{0}>0 \tag{3}
\end{equation*}
$$

where $z_{n}=x_{n}-p_{n} x_{n-\tau}, \alpha$ is a ratio of odd positive integers.
Also Thandapani et.al [14] studied the oscillatory behavior of the equation

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+c x_{n-k}\right)^{\gamma}+q_{n} x_{n+1}^{\alpha}=e_{n} \tag{4}
\end{equation*}
$$

This observation motivated us to study oscillation criteria for second order neutral difference equation. In section 1 , we present some lemmas which will be useful to prove our main results. In section 2, we obtain new oscillation criteria of equation (1) and in section 3, we provide some examples to illustrate the main results.

Definition 1.1. A solution $\left\{x_{n}\right\}$ of equation (1) is said to be almost oscillatory if either $\left\{x_{n}\right\}$ is oscillatory or $\left\{\Delta x_{n}\right\}$ is oscillatory or $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.

We provide two lemmas which are useful in proving the main results.
Lemma 1.1. Set

$$
\begin{equation*}
F(x)=a x^{\alpha-\gamma}+\frac{b}{x \gamma} \quad \text { for } \quad x>0 \tag{5}
\end{equation*}
$$

If $a>0, b>0$ and $\alpha>\gamma \geq 1$, then $F(x)$ attains its minimum

$$
\begin{equation*}
F_{\min }=\frac{\alpha a^{\gamma / \alpha} b^{1-\gamma / \alpha}}{\gamma^{\gamma / \alpha}(\alpha-\gamma)^{1-\gamma / \alpha}} . \tag{6}
\end{equation*}
$$

Lemma 1.2. For all $x \geq y \geq 0$ and $\gamma \geq 1$, we have the following inequality

$$
\begin{equation*}
x^{\gamma}-y^{\gamma} \geq(x-y)^{\gamma} \tag{7}
\end{equation*}
$$

2. Oscillation Results

In this section, by using the Riccati substitution we will establish new almost oscillation criteria for equation (1).
Theorem 2.1. Assume that there exists a sequence $\left\{\rho_{n}\right\}$ such that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } \sum_{s=n_{0}}^{n-1}\left[\rho_{s} Q_{s}^{*}-\frac{\left(\Delta \rho_{s}\right)^{2}}{4 \rho_{s}} a_{s-\sigma}\right]=\infty, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=n_{0}}^{n-1} \sum_{u=n_{0}}^{s-1}\left(M q_{u} \pm e_{u}\right)^{\frac{1}{\alpha}}=\infty \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n}=\frac{\beta q_{n}^{\alpha / \beta} \varepsilon_{n}^{1-\alpha / \beta}\left(1-p_{n}\right)^{\alpha}}{\alpha^{\alpha / \beta}(\beta-\alpha)^{1-\alpha / \beta}} \tag{10}
\end{equation*}
$$

and

$$
Q_{n}^{*}=\min \left\{Q_{n}, d^{\beta-\alpha}\left(1-P_{n}\right) q_{n}-d^{-\alpha} e_{n}\right\}
$$

$M>0$ and $d>0$. Then every solution of equation (1) is almost oscillatory.
Proof. Suppose that sequence $\left\{x_{n}\right\}$ is not almost oscillatory solution of equation (1). There exists a positive solution $\left\{x_{n}\right\}$ of equation (1) such that $x_{n-\tau}>0$ and $x_{n}>0$ for all $n \geq n_{1} \geq n_{0}$. Then by definition of almost oscillatory there are two possible cases arise. $\Delta x_{n}>0$ eventually positive (or) $\Delta x_{n}<0$ eventually negative
Case Ia: Assume that $\Delta x_{n}>0$ for all $n \geq n_{1}$. Thus $\Delta z_{n}>0$ for all $n \geq n_{1}$, we have $x_{n} \geq\left(1-p_{n}\right) z_{n}$. Then from equation (1) and $\left(\mathrm{H}_{2}\right)$, we have

$$
\begin{align*}
& \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+q_{n}\left(1-p_{n}\right)^{\beta} z_{n-\sigma}^{\beta} \leq e_{n} \\
& \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right) \leq-q_{n}\left(1-p_{n}\right)^{\beta} z_{n-\sigma}^{\beta}+e_{n} . \tag{11}
\end{align*}
$$

From the above inequality, we have

$$
\begin{equation*}
a_{n-\sigma}\left(\Delta z_{n-\sigma}\right)^{\alpha} \geq a_{n+1}\left(\Delta z_{n+1}\right)^{\alpha}, \quad n \geq n_{1} . \tag{12}
\end{equation*}
$$

Define

$$
\begin{equation*}
w_{n}=\frac{\rho_{n} a_{n}\left(\Delta z_{n}\right)^{\alpha}}{z_{n}^{\alpha}-\sigma}, \quad n \geq n_{1} . \tag{13}
\end{equation*}
$$

Then $w_{n}>0$,

$$
\begin{align*}
\Delta w_{n} & =\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)}{z_{n}^{\alpha}-\sigma}+a_{n+1}\left(\Delta z_{n+1}\right)^{\alpha} \Delta\left(\frac{\rho_{n}}{z_{n}^{\alpha}-\sigma}\right), \\
& =\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)}{z_{n}^{\alpha}-\sigma}+a_{n+1}\left(\Delta z_{n+1}\right)^{\alpha}\left[\Delta\left(\frac{1}{z_{n}^{\alpha}-\sigma}\right) \rho_{n}+\frac{\Delta \rho_{n}}{z_{n+1-\sigma}^{\alpha}}\right], \\
& =\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)}{z_{n}^{\alpha}-\sigma}+\frac{a_{n+1} \Delta \rho_{n}\left(\Delta z_{n+1}\right)^{\alpha}}{z_{n+1-\sigma}^{\alpha}}-\frac{\rho_{n} a_{n+1}\left(\Delta z_{n+1} \alpha_{\Delta\left(z_{n-\sigma}\right)}^{\alpha}\right)}{z_{n}^{\alpha}-\sigma z_{n+1-\sigma}^{\alpha}} \\
& =\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)}{z_{n-\sigma}^{\alpha}}+\frac{\Delta \rho_{n} w_{n+1}}{\rho_{n+1}}-\frac{\rho_{n} w_{n+1}}{\rho_{n+1}} \frac{\Delta z_{n-\sigma}^{\alpha}}{z_{n-\sigma}^{\alpha} \sigma} . \tag{14}
\end{align*}
$$

It follows from $\Delta z_{n}>0$, we have $z_{n+1-\sigma}>z_{n-\sigma}$, and $z_{n+1-\sigma}^{\alpha} \geq z_{n-\sigma}^{\alpha}$, we obtain

$$
\begin{equation*}
\frac{1}{z_{n+1-\sigma}^{\alpha}}<\frac{1}{z_{n-\sigma}^{\alpha}} . \tag{15}
\end{equation*}
$$

From inequalities (12), (14) and (15), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\rho_{n} \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\sigma}\right)}{z_{n}^{\alpha}-\sigma}+\Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{n+1}^{2}}{a_{n-\sigma}} . \tag{16}
\end{equation*}
$$

In the view of (11), (13) and (16), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n}\left[q_{n}\left(1-P_{n}\right)^{\beta} z_{n-\sigma}^{\beta-\alpha}-\frac{e_{n}}{z_{n-\sigma}^{\alpha}}\right]+\Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{n+1}^{2}}{a_{n-\sigma}} . \tag{17}
\end{equation*}
$$

Set

$$
G(x)=q_{n}\left(1-\rho_{n}\right)^{\beta} x^{\beta-x}-\frac{e_{n}}{x^{\alpha}} .
$$

It is easy to verify that function G is increasing for positive constant. Since x is increasing, there is a constant $d>0$ such that $x \geq d>0$ and

$$
\begin{equation*}
G(x) \geq q_{n}\left(1-\rho_{n}\right)^{\beta} d^{\beta-\alpha}-d^{-\alpha} e_{n}=Q_{n}^{*} \tag{18}
\end{equation*}
$$

From inequality (17) and (18), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} Q_{n}^{*}+\Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{n+1}^{2}}{a_{n-\sigma}} \tag{19}
\end{equation*}
$$

Using completing the square, we have

$$
\begin{aligned}
\Delta w_{n} & \leq-\rho_{n} Q_{n}^{*}+\frac{\left(\Delta \rho_{n}\right)^{2} a_{n-\sigma}}{4 \rho_{n}} \\
& \leq-\left[\rho_{n} Q_{n}^{*}-\frac{\left(\Delta \rho_{n}\right)^{2} a_{n-\sigma}}{4 \rho_{n}}\right]
\end{aligned}
$$

Summing both side the above inequality from n_{1} to $n-1$, we obtain

$$
\begin{equation*}
w_{n}-w_{n_{1}}<\sum_{s=n_{1}}^{n-1}\left[\rho_{s} Q_{s}^{*}-\frac{\left(\Delta \rho_{s}\right)^{2} a_{s-\sigma}}{4 \rho_{s}}\right] . \tag{20}
\end{equation*}
$$

Noting that $w_{n} \geq 0$ for $n \in N$, we have $w_{n_{1}}>w_{n_{1}}-w_{n}$. Hence

$$
\sum_{s=n_{1}}^{n-1}\left[\rho_{s} Q_{s}^{*}-\frac{\left(\Delta \rho_{s}\right)^{2} a_{s-g}}{4 \rho_{s}}\right] \leq w_{n_{1}}-w_{n} \leq w_{n_{1}}
$$

Letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } \sum_{s=n_{1}}^{n-1}\left[\rho_{s} Q_{s}^{*}-\frac{\left(\Delta \rho_{s}\right)^{2} a_{s-\sigma}}{4 \rho_{s}}\right] \leq w_{n_{1}} . \tag{21}
\end{equation*}
$$

which is contradiction to (8).
Case Ib: Assume that $\Delta x_{n}<0$ for all $n \geq n_{1}$, then $\Delta z_{n}<0$ for all $n \geq n_{1}$. From $x_{n}>0$ and $\Delta x_{n}<0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=l>0 \tag{22}
\end{equation*}
$$

Then there exists $n_{2} \in N$ such that $x_{n-\sigma}^{\beta} \geq l^{\beta}$ for $n \geq n_{2}$. Therefore, we have

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right) \leq-q_{n} l^{\beta}+e_{n} \tag{23}
\end{equation*}
$$

Set $l^{\beta}=M$. Summing the last inequality from n_{2} to $n-1$, we get

$$
a_{n}\left(\Delta z_{n}\right)^{\alpha}<a_{n}\left(\Delta z_{n}\right)^{\alpha}-a_{n_{2}}\left(\Delta z_{n_{2}}\right)^{\alpha} \leq-\sum_{s=n_{2}}^{n-1}\left[M q_{s}-e_{s}\right]
$$

and

$$
\begin{equation*}
\Delta z_{n} \leq-\left[\sum_{s=n_{2}}^{n-1} M q_{s}-e_{s}\right] a_{n}^{-1 / \alpha} \tag{24}
\end{equation*}
$$

Again summing the above inequality from n_{2} to $n-1$, we obtain

$$
\begin{equation*}
z_{n} \leq z_{n_{2}}-\left[\sum_{s=n_{2}}^{n-1}\left[\sum_{u=n_{2}}^{s-1}\left[M q_{u}-e_{u}\right] a_{s}^{-1 / \alpha}\right]\right] \tag{25}
\end{equation*}
$$

Letting $n \rightarrow \infty$, from condition (9) implies that z_{n} is negative for all $n \geq n_{2}$. This contradiction ended the proof of this case.
Finally, we assume that $\left\{x_{n}\right\}$ is an eventually negative solution of equation (1). There exists $n_{a} \in N$ such that $x_{n}<0$ for all $n \geq n_{3}$. We use the transformation $y_{n}=-x_{n}$ in equation (1). Then we have $\left\{y_{n}\right\}$ is an eventually positive solution of the equation

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+q_{n} y_{n-\sigma}^{\beta}=-e_{n} \tag{26}
\end{equation*}
$$

where $z_{n}=y_{n}+p_{n} y_{n-\tau}>0$.
We have two possible cases arise. $\Delta y_{n}>0$ eventually positive (or) $\Delta y_{n}<0$ eventually negative
Case IIa: Assume that $\Delta y_{n}>0$ for all $n \geq n_{3}$. Thus $\Delta z_{n}>0$ for all $n \geq n_{3}$.
Define

$$
\begin{equation*}
w_{n}=\frac{\rho_{n} a_{n}\left(\Delta z_{n}\right)^{\alpha}}{z_{n-\sigma}^{\alpha}} . \quad n \geq n_{3} . \tag{27}
\end{equation*}
$$

Thus $w_{n}>0$ and from (14) and (26), we have

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n}\left[q_{n}\left(1-P_{n}\right)^{\beta} z_{n-\sigma}^{\beta-\alpha}+\frac{e_{n}}{z_{n-\sigma}^{\alpha}}\right]+\Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}-\frac{\rho_{n} w_{n+1}}{\rho_{n+1}} \frac{\Delta\left(z_{n}^{\alpha}-\sigma\right)}{z_{n-\sigma}^{\alpha}} . \tag{28}
\end{equation*}
$$

Putting $a=q_{n}\left(1-P_{n}\right)^{\beta}, b=-e_{n}$ and $x=z_{n-\sigma}$, we have

$$
F(u)=q_{n}\left(1-P_{n}\right)^{\beta} u^{\beta-\alpha}-\frac{e_{n}}{u^{\alpha}} .
$$

Using Lemma 1.1, we have

$$
\begin{equation*}
F(u) \geq \frac{\beta q_{n}^{\alpha / \beta}\left(1-p_{n}\right)^{\alpha \varepsilon_{n}^{1-\alpha / \beta}}}{\alpha^{\alpha / \beta}(\beta-\alpha)^{1-\alpha / \beta}}, \tag{29}
\end{equation*}
$$

and also (18) are hold. Then the rest of the proof similar to that of the above and hence is omitted.
Case IIb: Assume that $\Delta y_{n}<0$ for all $n \geq n_{3}$. Hence $\left\{y_{n}\right\}$ is a positive solution and the proof is similar to that of Case Ib and hence omitted. The proof is now complete.

Corollary 2.1 Assume that all the conditions of Theorem 2.1 hold except the condition (8) is replaced by

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{s=n_{0}}^{n} \rho_{s} Q_{s}^{*}=\infty, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } \sum_{s=n_{0}}^{n} \frac{\left(\Delta \rho_{s}\right)^{2} a_{s-\sigma}}{4 \rho_{s}}<\infty \tag{31}
\end{equation*}
$$

Then every solution of equation (1) is almost oscillatory.
Before starting the next theorem, we define functions $h, H: N_{0} \times N_{0} \rightarrow \mathbb{R}$ such that
(i). $H_{m, n}=0$ for $m \geq n \geq 0, H_{m, n}>0$ for $m>n>0$.
(ii). $\Delta_{2} H_{m, n}=H_{m, n+1}-H_{m, n} \leq 0$ for $m \geq n \geq 0$ and there exists a positive real sequence $\left\{\rho_{n}\right\}$ such that

$$
\Delta_{2} H_{m, n}+\frac{\Delta \rho_{s}}{\rho_{s+1}} H_{m, s}=-h(m, s) \sqrt{H(m, s)} \quad \text { for } \quad m>s>0
$$

Theorem 2.2 Assume that condition (9) holds. If there exists a positive real sequence $\left\{\rho_{n}\right\}$ such that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } \frac{1}{H_{m, n}} \sum_{s=n_{0}}^{n-1}\left[H_{m, s} \rho_{s} Q_{s}^{*}-\frac{1}{4} \frac{\rho_{s+1}}{\rho_{s}} a_{s-\sigma} h^{2}(m, s)\right]=\infty, \tag{32}
\end{equation*}
$$

then every solution of equation (1) is almost oscillatory.
Proof. Proceeding as in Theorem 2.1, we have two cases to consider.
Case I: Assume that $\Delta x_{n}>0$ for all $n \geq n_{1}$. Define w_{n} by (13), then $w_{n}>0$ and satisfies

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} Q_{n}^{*}+\frac{\Delta \rho_{n} w_{n+1}}{\rho_{n+1}}-\frac{\rho_{n} w_{n+1}^{2}}{\rho_{n+1}^{2} a_{n-\sigma}} . \tag{33}
\end{equation*}
$$

Multiply both side by $H_{m, n}$ and summing from n_{1} to $n-1$, we obtain

$$
\begin{align*}
& \sum_{s=n_{1}}^{n-1} H_{m, s} \Delta w_{s} \leq-\sum_{s=n_{1}}^{n-1} H_{m, s} \rho_{s} Q_{s}^{*}+\sum_{s=n_{1}}^{n-1} H_{m, s} \Delta \rho_{s} \frac{w_{s+1}}{\rho_{s+1}}-\sum_{s=n_{1}}^{n-1} H_{m, s} \frac{\rho_{s} w_{s+1}^{2}}{\rho_{s+1}^{2} a_{s-\sigma}} \\
& \sum_{s=n_{1}}^{n-1} H_{m, s} \rho_{s} Q_{s}^{*} \leq-\sum_{s=n_{1}}^{n-1} H_{m, s} \Delta w_{s}+\sum_{s=n_{1}}^{n-1} H_{m, s} \Delta \rho_{s} \frac{w_{s+1}}{\rho_{s+1}}-\sum_{s=n_{1}}^{n-1} H_{m, s} \frac{\rho_{s} w_{s+1}^{2}}{\rho_{s+1}^{2} a_{s-\sigma}} . \tag{34}
\end{align*}
$$

By using summation by parts, we obtain

$$
\begin{equation*}
\sum_{s=n_{1}}^{n-1} H_{m, s} \rho_{s} Q_{s}^{*} \leq H_{m, n_{1}} w_{n_{1}}+\sum_{s=n_{1}}^{n-1}\left[\left[\Delta_{2} H_{m, s}+H_{m, s} \frac{\Delta \rho_{s}}{\rho_{s+1}}\right] w_{s+1}-H_{m, s} \frac{\rho_{s} w_{s+1}^{2}}{\rho_{s+1}^{2} a_{s-\sigma}}\right] . \tag{35}
\end{equation*}
$$

Using completing the square in the last inequality, we obtain

$$
\begin{aligned}
& \sum_{s=n_{1}}^{n-1}\left[H_{m, s} \rho_{s} Q_{s}^{*}-\frac{\rho_{s+1}}{4 \rho_{s}} a_{n-\sigma} h^{2}(m, s)\right] \leq H_{m, n} w_{n_{1}} \\
& \frac{1}{H_{m, n}} \sum_{s=n_{1}}^{n-1}\left[H_{m, s} \rho_{s} Q_{s}^{*}-\frac{\rho_{s+1}}{4 \rho_{s}} a_{s-\sigma} h^{2}(m, s)\right] \leq w_{n_{1}}
\end{aligned}
$$

which contradicts the assumption (32).
Next we consider the case when $x_{n}<0$ for all $n \geq n_{1}$. We use the transformation $y_{n}=-x_{n}$ then y_{n} is a positive solution of equation

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+q_{n}^{\beta} y_{n-\sigma}=-e_{n} \tag{36}
\end{equation*}
$$

when $z_{n}=y_{n}+P_{n} y_{n-\tau}$. Define w_{n} by (13) and (29) holds. The remaining of the proof is similar to that of first case of Theorem 2.1 and hence omitted. The proof of the case II is similar to that of second case of Theorem 2.1. The proof is now complete.

Corollary 2.2 Assume that all the conditions of Theorem 2.2 hold except the condition (32) is replace by

$$
\underset{n \rightarrow \infty}{\limsup } \frac{1}{H_{m, n}} \sum_{s=n_{1}}^{n-1} H_{m, s} \rho_{s} Q_{s}^{*}=\infty,
$$

and

$$
\underset{n \rightarrow \infty}{\limsup } \frac{1}{H_{m, n}} \sum_{s=n_{1}}^{n-1} \frac{\rho_{s+1} a_{s-\sigma} h^{2}(m, s)}{4 \rho_{s}}<\infty
$$

Then every solution of equation (1) is almost oscillatory.

3. Examples

In this section, we provide three examples.
Example 3.1. Let us consider the second order neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(2+(-1)^{n} \Delta\left(x_{n}+\frac{1}{2} x_{n-1}\right)^{3}\right)+2 x_{n-3}=2(-1)^{n-4}, \quad n \geq 4 \tag{37}
\end{equation*}
$$

Here $a_{n}=2+(-1)^{n}, p_{n}=\frac{1}{2}, q_{n}=2, \tau=1, \sigma=3, \alpha=3, \beta=1$ and $e_{n}=2(-1)^{n-4}$. All the conditions of Theorem 2.1 are satisfied. Hence every solutions of equation (37) is almost oscillatory. In fact one such solution is $x_{n}=(-1)^{n}$. Here $\left\{x_{n}\right\}$ is oscillatory.

Example 3.2. Let us consider the second order neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(2-(-1)^{n} \Delta\left(x_{n}+x_{n-2}\right)\right)+x_{n-2}^{3}=14+29(-1)^{n-3}, \quad n \geq 3 \tag{38}
\end{equation*}
$$

Here $a_{n}=2-(-1)^{n}, p_{n}=1, q_{n}=1, \tau=2, \sigma=2, \alpha=1, \beta=3$ and $e_{n}=14+29(-1)^{n-3}$. All the conditions of Theorem 2.1 are satisfied. Hence every solutions of equation (38) is almost oscillatory. In fact one such solution is $x_{n}=2+(-1)^{n+1}$. Here $\left\{x_{n}\right\}$ is non-oscillatory and Δx_{n} is oscillatory.

Example 3.3. Let us consider the second order neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(\frac{1}{n} \Delta\left(x_{n}+2 x_{n-2}\right)\right)+n^{3} x_{n-1}^{3}=\frac{(n-1) n(n+1)(n+2)-(6 n+9)}{(n-1) n(n+1)(n+2)}, \quad n \geq 3 . \tag{39}
\end{equation*}
$$

Here $a_{n}=\frac{1}{n}, p_{n}=2, q_{n}=n^{3}, \tau=2, \sigma=1, \alpha=1, \beta=3$ and $e_{n}=\frac{(n-1) n(n+1)(n+2)-(6 n+9)}{(n-1) n(n+1)(n+2)}$. All the conditions of Theorem 2.1 are satisfied. Hence every solutions of equation (39) is almost oscillatory. In fact one such solution is $x_{n}=\frac{1}{n+1}$. Here $\left\{x_{n}\right\}$ is tends to zero as $n \rightarrow \infty$.

References

[1] R.P. Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, New York, 2000.
[2] R.P. Agarwal, M. Bohner, S.R. Grace and D.'O. Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.
[3] R.P. Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order delay difference equations, Appl. Math. Lett., 10(2)(1997), 103-109.
[4] J. Cheng, Existence of nonoscillatory solution of second order linear difference equations, Appl. Math. Lett., 20(2007), 892-899.
[5] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
[6] R. Jankowski and E. Schmeidel, Almost oscillation criterca for second order neutral difference equations with quasi-differences, International Journal of Difference Equations, 9(1)(2014), 77-86.
[7] J. Jiang, Oscillation criteria for second order quasilinear neutral delay difference equations, Appl. Math. Comput., 125(2002), 287-293.
[8] W.G. Kelley and A.C. Peterson, Difference Equations: An Introduction with Applications, Acad. Press, New York, 1991.
[9] G. Ladas, Ch.G. Philos and Y.G. Sticas, Sharp condition for the oscillation of delay difference equations, J. Appl. Math. Simul., 2(2)(1989), 101-112.
[10] H.J. Li and C.C. Yeh, Oscillation criteria for second order neutral delay difference equations, Comput. Math. Appl., 36(1999), 123-132.
[11] E. Thandapani, J.R. Graef and P.W. Spikes, On the oscillation of second order quasilinear difference equations, Nonlinear World, 3(1996), 545-565.
[12] E. Thandapani and K. Mahalingam, Oscillation and nonoscillation of second order neutral difference equations, Czechoslovak Math. J., 53(128)(2003), 935-947.
[13] E. Thandapani and S. Selvarangam, Oscillation theorems for second order nonlinear neutral difference equations, J. Math. Comput. Sci., 2(4)(2012), 866-879.
[14] E. Thandapani, S. Selvarangam, R. Rama and M. Madhan, Improved oscillation criteria for second order nonlinear delay difference equations with nonpositive neutral term, Fasciculi Mathematici, 2016.
[15] E. Thandapani, E. Vijaya and M. Gyori, New oscillation criteria for forced super-linear neutral type difference equations, Fasc. Math., (Pre-Print).

[^0]: ${ }^{1}$ E-Mail Address: srkodeesh@gmail.com

