Journal of Progressive Research in Mathematics www.scitecresearch.com/journals
 Lyapunov-type inequalities for fractional differential equations

Sha $\mathrm{Li}^{*}, \mathrm{Xu}$ Han, Qiaoluan Li
College of Mathematics and Information Science, Hebei Normal University
Shijiazhuang, 050024, China
*Corresponding author, Email: $905642060 @ q q . c o m$

Abstract

The principal aim of this paper is to discuss Lyapunov-type inequalities for fractional differential equations with fractional boundary conditions. Some new Lyapunov's inequalities are established, which almost generalize and improve some earlier results in the literature.

Keywords: Lyapunov-type inequalities; Fractional differential equations; Riemann-Liouville derivative; Green's function; Boundary conditions.

1. Introduction

We recall the well-known Lyapunov inequality for Hill's equation

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x(t)=0 \tag{1.1}
\end{equation*}
$$

where $q(t) \in L^{1}[a, b]$ is a real-valued function. If $x(t)$ is a nontrivial solution of Eq. (1.1) such that $x(a)=x(b)=0$, where $a<b$ are two consecutive zeros of $x(t)$, then the following inequality holds:

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t>\frac{4}{b-a} \tag{1.2}
\end{equation*}
$$

where the constant 4 is sharp ${ }^{[1]}$, and Ineq. (1.2) is known as Lyapunov inequality.
The Lyapunov-type inequality and its generalizations have been used as a useful tool in oscillation theory, eigenvalue problems, disconjugacy, and many other areas of differential and difference equations, see for instance [2-5, 8-10] and the references cited therein.
The study of Lyapunov-type inequalities for fractional differential functions has begun recently. Ferreira ${ }^{[7]}$ first study Lyapunov inequality in this direction, where he derived a Lyapunov-type inequality as follows.
Theorem 1.1 (see [7]) Consider the fractional boundary value problem

$$
\left\{\begin{array}{l}
{ }_{a} D^{\alpha} x(t)+q(t) x(t)=0, a<t<b, \tag{1.3}\\
x(a)=x(b)=0,
\end{array}\right.
$$

where ${ }_{a} D^{\alpha}$ is the (left) Riemann-Liouville derivative of order $\alpha \in(1,2]$ and $q(t):[a, b] \rightarrow \mathbb{R}$ is a continuous function. If Eq. (1.3) has a nontrivial solution, then

$$
\begin{equation*}
\int_{a}^{b}|q(s)| d s>\Gamma(\alpha)\left(\frac{4}{b-a}\right)^{\alpha-1} \tag{1.4}
\end{equation*}
$$

In 2017, Agarwall et al. ${ }^{[6]}$ studied Lyapunov type inequalities for mixed nonlinear fractional differential equations with a forcing term

$$
\left\{\begin{array}{l}
{ }_{a} D^{\alpha}(x(t))+p(t)|x(t)|^{\mu-1} x(t)+q(t)|x(t)|^{\gamma-1} x(t)=f(t), \\
x(a)=x(b)=0,
\end{array}\right.
$$

where $0<\alpha \leq 2,0<\gamma<1<\mu<2$.
In this paper, we obtain Lyapunov-type inequalities for the Riemann-Liouville fractional nonlinear differential equations with a forcing term

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\beta}\left(r(t) D_{a^{+}}^{\alpha} x(t)\right)+\sum_{k=1}^{n} p_{k}(t)|x(t)|^{\mu_{k}-1} x(t)=f(t), a<t<b, \tag{1.5}\\
x(a)=x^{\prime}(a)=x^{\prime}(b)=0, D_{a^{+}}^{\alpha} x(a)=D_{a^{+}}^{\alpha} x(b)=0,
\end{array}\right.
$$

where $0<\mu_{k}<2,1 \leq k \leq n, \alpha \in(2,3], \beta \in(1,2] \cdot p_{k}(t), f(t):[a, b] \rightarrow \mathbb{R}$ are continuous functions for all $k=1,2, \cdots, n$, and $r(t) \in C[a, b]$ such that $r(t)>0$.
The organization of the rest of this paper is as follows: the next Section recalls some definitions and Lemmas which will play an important role in the proof of our main results. In Section 3, we establish some new Lyapunove-type inequalities for Eq. (1.5), and a example illustrating the result is also given in Section 4.

2. Preliminaries

In this section, we introduce some preliminaries.
Definition 2.1 The Riemann-Liouville fractional derivative of order $\alpha \geq 0$ is defined by

$$
\left(D_{a^{+}}^{0} f\right)(t)=f(t)
$$

and

$$
\left(D_{a^{+}}^{\alpha} f\right)(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{a}^{t} \frac{f(s)}{(t-s)^{\alpha-n+1}} d s, t \in[a, b],
$$

where $n=[\alpha]+1$.
Lemma 2.2 ${ }^{[6]}$ If A is positive, and B, z are nonnegative, then

$$
A z^{2}-B z^{\alpha}+(2-\alpha) \alpha^{\alpha /(2-\alpha)} 2^{2 /(\alpha-2)} A^{-\alpha /(2-\alpha)} B^{2 /(2-\alpha)} \geq 0
$$

for any $\alpha \in(0,2)$ with equality holding if and only if $B=z=0$.
Lemma 2.3 ${ }^{[4]}$ Let $\alpha>0$, if $D_{a^{+}}^{\alpha} u \in C[a, b]$, then

$$
I_{a^{+}}^{\alpha} D_{a^{+}}^{\alpha} u(t)=u(t)+\sum_{k=1}^{n} c_{k}(t-a)^{\alpha-k}
$$

where $n=[\alpha]+1$.
Lemma 2.4 ${ }^{[4]}$ Let $2<\alpha \leq 3$ and $y \in C[a, b]$. Then the problem

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\alpha} u(t)+y(t)=0, a<t<b, \\
u(a)=u^{\prime}(a)=u^{\prime}(b)=0
\end{array}\right.
$$

has a unique solution

$$
u(t)=\int_{a}^{b} G(t, s) y(s) d s
$$

where

$$
G(t, s)=\frac{1}{\Gamma(\alpha)}\left\{\begin{array}{l}
\left(\frac{b-s}{b-a}\right)^{\alpha-2}(t-a)^{\alpha-1}-(t-s)^{\alpha-1}, a \leq s \leq t \leq b, \\
\left(\frac{b-s}{b-a}\right)^{\alpha-2}(t-a)^{\alpha-1}, a \leq t \leq s \leq b
\end{array}\right.
$$

Lemma 2.5 Let $y \in C[a, b], 1<\beta \leq 2<\alpha \leq 3, r(t)>0$ and $r(t) \in C[a, b]$. Then the problem

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\beta}\left(r(t) D_{a^{+}}^{\alpha} x(t)\right)+y(t)=0, a<t<b, \\
x(a)=x^{\prime}(a)=x^{\prime}(b)=0, D_{a^{+}}^{\alpha} x(a)=D_{a^{+}}^{\alpha} x(b)=0
\end{array}\right.
$$

has a unique solution

$$
x(t)=-\int_{a}^{b} G(t, s)\left(\frac{1}{r(s)} \int_{a}^{b} H(s, \tau) y(\tau) d \tau\right) d s
$$

where

$$
\begin{aligned}
& G(t, s)=\frac{1}{\Gamma(\alpha)}\left\{\begin{array}{l}
\left(\frac{b-s}{b-a}\right)^{\alpha-2}(t-a)^{\alpha-1}-(t-s)^{\alpha-1}, a \leq s \leq t \leq b, \\
\left(\frac{b-s}{b-a}\right)^{\alpha-2}(t-a)^{\alpha-1}, a \leq t \leq s \leq b,
\end{array}\right. \\
& H(t, s)=\frac{1}{\Gamma(\beta)}\left\{\begin{array}{l}
\left(\frac{b-s}{b-a}\right)^{\beta-1}(t-a)^{\beta-1}-(t-s)^{\beta-1}, a \leq s \leq t \leq b, \\
\left(\frac{b-s}{b-a}\right)^{\beta-1}(t-a)^{\beta-1}, a \leq t \leq s \leq b .
\end{array}\right.
\end{aligned}
$$

Proof. From Lemma 2.3 we have

$$
r(t) D_{a^{+}}^{\alpha} x(t)=-\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} y(s) d s+c_{1}(t-a)^{\beta-1}+c_{2}(t-a)^{\beta-2}
$$

where $c_{i}, i=1,2$, are real constants. The condition $D_{a^{+}}^{\alpha} x(a)=0$ implies that $r(a) D_{a^{+}}^{\alpha} x(a)=0$, which concludes $c_{2}=0$. Then the condition $D_{a^{+}}^{\alpha} x(b)=0$ implies that $r(b) D_{a^{+}}^{\alpha} x(b)=0$, which yields

$$
c_{1}=\frac{1}{\Gamma(\beta)} \int_{a}^{b}\left(\frac{b-s}{b-a}\right)^{\beta-1} y(s) d s
$$

Then

$$
r(t) D_{a^{+}}^{\alpha} x(t)=-\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} y(s) d s+\frac{(t-a)^{\beta-1}}{\Gamma(\beta)} \int_{a}^{b}\left(\frac{b-s}{b-a}\right)^{\beta-1} y(s) d s,
$$

this is,

$$
r(t) D_{a^{+}}^{\alpha} x(t)=\int_{a}^{b} H(t, \tau) y(\tau) d \tau .
$$

Therefore,

$$
D_{a^{+}}^{\alpha} x(t)-\frac{1}{r(t)} \int_{a}^{b} H(t, \tau) y(\tau) d \tau=0 .
$$

Setting

$$
y_{1}(t)=-\frac{1}{r(t)} \int_{a}^{b} H(t, \tau) y(\tau) d \tau
$$

we have

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\alpha} x(t)+y_{1}(t)=0, a<t<b, \\
x(a)=x^{\prime}(a)=x^{\prime}(b)=0 .
\end{array}\right.
$$

Finally, applying Lemma 2.4 , we obtain the desired result.

3. Main results

Our main results are the following Lyapunov-type inequalities.

Theorem 3.1 If Eq. (1.5) has a nontrivial continuous solution, then

$$
\begin{align*}
& {\left[\int_{a}^{b} \frac{(b-s)^{\alpha-2}(s-a)}{r(s)} d s\right]^{2} \int_{d}^{b}(b-s)^{\beta-1}(s-a)^{\beta-1} \sum_{k=1}^{n}\left|p_{k}(s)\right| d s \int_{a}^{b}(b-s)^{\beta-1}} \\
& (s-a)^{\beta-1}\left[\sum_{k=1}^{n} \gamma_{k}\left|p_{k}(s)\right|+|f(s)|\right] d s>\frac{\Gamma^{2}(\alpha) \Gamma^{2}(\beta)(b-a)^{2 \beta-2}}{4} \tag{3.1}
\end{align*}
$$

where $\gamma_{k}=\left(2-\mu_{k}\right) \mu_{k}^{\mu_{k} /\left(2-\mu_{k}\right)} 2^{2 /\left(\mu_{k}-2\right)}, k=1,2, \cdots, n$.

Proof. Let $x(t)$ be a nontrivial continuous solution, from Lemma 2.5, we have

$$
x(t)=-\int_{a}^{b} G(t, s)\left(\frac{1}{r(s)} \int_{a}^{b} H(s, \tau)\left[\sum_{k=1}^{n} p_{k}(\tau)|x(\tau)|^{\mu_{k}-1} x(\tau)-f(\tau)\right] d \tau\right) d s .
$$

Let $|x(c)|=\max _{t \in[a, b]}|x(t)|$. From [4] we have

$$
\begin{aligned}
& 0 \leq G(t, s) \leq G(b, s),(t, s) \in[a, b] \times[a, b], \\
& 0 \leq H(t, s) \leq H(s, s),(t, s) \in[a, b] \times[a, b] .
\end{aligned}
$$

As a consequence, we have

$$
\begin{align*}
|x(c)| & =\left|-\int_{a}^{b} G(c, s)\left(\frac{1}{r(s)} \int_{a}^{b} H(s, \tau)\left[\sum_{k=1}^{n} p_{k}(\tau)|x(\tau)|^{\mu_{k}-1} x(\tau)-f(\tau)\right] d \tau\right) d s\right| \\
& \leq \int_{a}^{b} \frac{G(c, s)}{r(s)} \int_{a}^{b} H(s, \tau)\left[\sum_{k=1}^{n}\left|p_{k}(\tau)\right||x(\tau)|^{\mu_{k}}+|f(\tau)|\right] d \tau d s \\
& \leq \int_{a}^{b} \frac{G(b, s)}{r(s)} \int_{a}^{b} H(\tau, \tau)\left[\sum_{k=1}^{n}\left|p_{k}(\tau)\right||x(\tau)|^{\mu_{k}}+|f(\tau)|\right] d \tau d s \tag{3.2}\\
& =\int_{a}^{b} \frac{G(b, s)}{r(s)} d s \int_{a}^{b} H(s, s)\left[\sum_{k=1}^{n}\left|p_{k}(s)\right||x(s)|^{\mu_{k}}+|f(s)| \mid d s\right. \\
& \leq \sum_{k=1}^{n} Q_{k}|x(c)|^{\mu_{k}}+F,
\end{align*}
$$

where

$$
\begin{gathered}
Q_{k}=\int_{a}^{b} \frac{G(b, s)}{r(s)} d s \int_{a}^{b} H(s, s)\left|p_{k}(s)\right| d s, k=1,2, \cdots, n, \\
F=\int_{a}^{b} \frac{G(b, s)}{r(s)} d s \int_{a}^{b} H(s, s)|f(s)| d s .
\end{gathered}
$$

In Lemma 2.2 with $A=B=1$, implies that

$$
|x(c)|^{\mu_{k}}<|x(c)|^{2}+\gamma_{k}, k=1,2, \cdots, n .
$$

Using this inequality and Ineq. (3.2) we find the following quadratic inequality:

$$
\sum_{k=1}^{n} Q_{k}|x(c)|^{2}-|x(c)|+\sum_{k=1}^{n} \gamma_{k} Q_{k}+F>0 .
$$

But this is only possible when

$$
\sum_{k=1}^{n} Q_{k}\left(\sum_{k=1}^{n} \gamma_{k} Q_{k}+F\right)>\frac{1}{4},
$$

which is the same as (3.1). This completes the proof of Theoren 3.1.
Theorem 3.2 If Eq. (1.5) has a nontrivial continuous solution, then

$$
\begin{equation*}
\left[\int_{a}^{b} \frac{(b-s)^{\alpha-2}(s-a)}{r(s)} d s\right]^{2} \int_{a}^{b} \sum_{k=1}^{n}\left|p_{k}(s)\right| d s \int_{a}^{b}\left[\sum_{k=1}^{n} \gamma_{k}\left|p_{k}(s)\right|+|f(s)| \left\lvert\, d s>\frac{4^{2 \beta-3} \Gamma^{2}(\alpha) \Gamma^{2}(\beta)}{(b-a)^{2 \beta-2}}\right.\right. \tag{3.3}
\end{equation*}
$$

where $\gamma_{k}=\left(2-\mu_{k}\right) \mu_{k}^{\mu_{k} /\left(2-\mu_{k}\right)} 2^{2 /\left(\mu_{k}-2\right)}, k=1,2, \cdots, n$.

Proof. Let $\psi(s)=(b-s)(s-a), s \in[a, b]$. Observe that the function $\psi(s)$ has a maximum at the point $s_{1}=\frac{a+b}{2}$, that is,

$$
\psi_{\max }(s)=\psi\left(s_{1}\right)=\frac{(b-a)^{2}}{4}
$$

The desired result follows immediately from the last equality and inequality (3.1). This completes the proof of Theoren 3.2.

Theoren 3.3 If Eq. (1.5) has a nontrivial continuous solution, then

$$
\begin{equation*}
\left(\int_{a}^{b} \frac{d s}{r(s)}\right)^{2} \int_{a}^{b} \sum_{k=1}^{n}\left|p_{k}(s)\right| d s \int_{a}^{b}\left[\sum_{k=1}^{n} \gamma_{k}\left|p_{k}(s)\right|+|f(s)| \left\lvert\, d s>\frac{4^{2 \beta-3} \Gamma^{2}(\alpha) \Gamma^{2}(\beta)(\alpha-1)^{2 \alpha-2}}{(\alpha-2)^{2 \alpha-4}(b-a)^{2(\alpha+\beta-2)}}\right.,\right. \tag{3.4}
\end{equation*}
$$

where $\gamma_{k}=\left(2-\mu_{k}\right) \mu_{k}^{\mu_{k} /\left(2-\mu_{k}\right)} 2^{2 /\left(\mu_{k}-2\right)}, k=1,2, \cdots, n$.
Proof. Let

$$
\phi(s)=(b-s)^{\alpha-2}(s-a), s \in[a, b]
$$

then

$$
\phi^{\prime}(s)=(b-s)^{\alpha-3}[b-s-(\alpha-2)(s-a)], s \in[a, b] .
$$

When $s_{*}=\frac{b+a(\alpha-2)}{\alpha-1}$, the function has $\phi^{\prime}\left(s_{*}\right)=0$. So the function $\phi(s)$ has a maximum at the point $s_{*}=\frac{b+a(\alpha-2)}{\alpha-1}$, this is

$$
\phi_{\max }(s)=\phi\left(s_{*}\right)=(\alpha-2)^{\alpha-2}\left(\frac{b-a}{\alpha-1}\right)^{\alpha-1}
$$

The desired result follows immediately from the last equality and inequality (3.3). This completes the proof of Theoren 3.3.

For $\alpha=3, \beta=2$, Eq. (1.5) becomes

$$
\left\{\begin{array}{l}
\left(r(t) x^{(3)}(t)\right)^{\prime \prime}+\sum_{k=1}^{n} p_{k}(t)|x(t)|^{\mu_{k}-1} x(t)=f(t), a<t<b, \tag{3.5}\\
x(a)=x^{\prime}(a)=x^{\prime}(b)=0, x^{(3)}(a)=x^{(3)}(b)=0 .
\end{array}\right.
$$

In this case, taking $\alpha=3, \beta=2$ in Theorem 3.1, we obtain the following result.
Corollary 3.4 If Eq. (3.5) has a nontrivial continuous solution, then

$$
\begin{equation*}
\left(\int_{a}^{b} \frac{(b-s)(s-a)}{r(s)} d s\right)^{2} \int_{a}^{b}(b-s)(s-a) \sum_{k=1}^{n}\left|p_{k}(s)\right| d s \int_{a}^{b}(b-s)(s-a)\left[\sum_{k=1}^{n} \gamma_{k}\left|p_{k}(s)\right|+|f(s)|\right] d s>(b-a)^{2}, \tag{3.6}
\end{equation*}
$$

where $\gamma_{k}=\left(2-\mu_{k}\right) \mu_{k}^{\mu_{k} /\left(2-\mu_{k}\right)} 2^{2 /\left(\mu_{k}-2\right)}, k=1,2, \cdots, n$.
Corollary 3.5 If Eq. (3.5) has a nontrivial continuous solution, then

$$
\begin{equation*}
\left(\int_{a}^{b} \frac{d s}{r(s)}\right)^{2} \int_{a}^{b} \sum_{k=1}^{n}\left|p_{k}(s)\right| d s \int_{a}^{b}\left[\sum_{k=1}^{n} \gamma_{k}\left|p_{k}(s)\right|+|f(s)|\right] d s>\frac{256}{(b-a)^{6}} \tag{3.7}
\end{equation*}
$$

where $\gamma_{k}=\left(2-\mu_{k}\right) \mu_{k}^{\mu_{k} /\left(2-\mu_{k}\right)} 2^{2 /\left(\mu_{k}-2\right)}, k=1,2, \cdots, n$.

4. Example

Example 4.1 Consider the fractional equation

$$
\left\{\begin{array}{l}
D_{0^{+}}^{\frac{5}{3}}\left(D_{0^{+}}^{\frac{7}{3}} x(t)\right)+p_{1}(t)|x(t)|^{-\frac{1}{3}} x(t)+p_{2}(t)|x(t)|^{\frac{1}{3}} x(t)=f(t), t \geqslant 0, \\
x(0)=x^{\prime}(0)=x^{\prime}(b)=0, D_{0^{+}}^{\frac{7}{3}} x(0)=D_{0^{+}}^{\frac{7}{3}} x(b)=0,
\end{array}\right.
$$

where $p_{1}(t), p_{2}(t)$ and $f(t):[0, b] \rightarrow \mathbb{R}$ are continuous functions. If the solution $x(t)$ has consecutive zeros at 0 and $b>0$, in view of Theorem 3.1 the following inequality must be satisfied

$$
\begin{aligned}
& {\left[\int_{0}^{b}(b-s)^{\frac{1}{3}} s d s\right]^{2} \int_{0}^{b}(b-s)^{\frac{2}{3}} s^{\frac{2}{3}}\left(\left|p_{1}(s)\right|+\left|p_{2}(s)\right|\right) d s \int_{0}^{b}(b-s)^{\frac{2}{3}} s^{\frac{2}{3}}\left(2 \times\left(\frac{1}{3}\right)^{\frac{3}{2}}\left|p_{1}(s)\right|\right.} \\
& \left.+\frac{4}{27}\left|p_{2}(s)\right|+|f(s)|\right) d s>\frac{\Gamma^{2}\left(\frac{7}{3}\right) \Gamma^{2}\left(\frac{5}{3}\right) b^{\frac{4}{3}}}{4} .
\end{aligned}
$$

Acknowledgements

This work was partially supported by NNSF of China (11571090), GCCHB (GCC2014052).

References

[1] Lyapunov, AM (1907). Probléme géneral de la stabilité du mouvement. Ann. Fac. Sci. Univ., Toulouse 2, 203407.
[2] Borg, G (1949). On a Liapunoff criterion of stability. Amer. J. Math., 71, 67-70.
[3] Kwong, MK (1981). On Lyapunovs inequality for disfocality. J. Math. Anal. Appl.,83, 486-494.
[4] Arifi, NA, Altun, I, Jleli, M, Lashin, A, Samet, B (2016). Lyapunov-type inequalities for a fractional p-Laplacian equation. J. Inequal. Appl., 2016(1), 189.
[5] Napoli, PL, Pinasco, JP (2006). Estimates for eigenvalues of quasilinear elliptic systems. J. Differential Equations., 227, 102-115.
[6] Awarwal, RP, Özbekler, A (2017). Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term. J. Comput. Appl. Math., 314, 69-78.
[7] Ferreira, RAC (2013). A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal., 16 (4), 978-984.
[8] Reid, TW (1965). A matrix equation related to an non-oscillation criterion and Lyapunov stability. Quart. Appl. Math. Soc., 23, 83-87.
[9] Reid, TW (1970). A matrix Lyapunov inequality. J. Math. Anal. Appl., 32, 424-434.
[10] Nehari, Z (1959). Some eigenvalue estimates. J. Anal. Math., 7, 79-88.

