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ABSTRACT 

Various results that relate to almost similarity and other classes of operators such as isometry, 

normal, unitary and compact operators have been extensively discussed. It has been shown that if 

operators S and T are unitarily equivalent, then S is almost similar to T. Similarly, it has been shown 

that if operators A and B are such that A is almost similar to B and if A is Hermitian, then A and B 
are said to be unitarily equivalent. Metric equivalence property which is a new relation in operator 

theory has drawn much attention from mathematicians in the recent past. Two operators S and T are 

unitarily equivalent if they are metrically equivalent projections. It has been shown that if operators 

S and T are unitarily equivalent, then S is metrically equivalent to T. However, there is no literature 

that has been shown for the conditions under which metric equivalence and almost similarity 

coincide. In this paper we will therefore strive to establish the equivalence relation between metric 

equivalence property and almost similarity relation. To achieve this, properties of invertible 

operators, normal operators, similar operators, unitarily operators as well as projection and self-

adjoint operators will be employed. 

Mathematics Subject Classification: 47A05, 47B15, 47B25. 

Keywords: Almost similarity relation; Unitarily equivalent relation; Metric equivalence property. 

 

1. INTRODUCTION  

The class of almost similar operators was first introduced by (Jibril, 1996). He defined the class of almost similar 

operators as follows: 

http://www.scitecresearch.com/journals
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Two operators A and B are said to be almost similar if there exists an invertible operator N such that the following 

conditions are satisfied:  

𝐴∗𝐴 = 𝑁−1(𝐵∗𝐵)𝑁 

𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁 

(Jibril, 1996), proved various results that relate almost similarity and other classes of operators. (Musundi et al., 2013) 

have shown that unitary equivalence of operators implies almost similarity of operators. Linear operators 𝑇 ∈ 𝐵(𝐻) and  

𝑆 ∈ 𝐵(𝐾) are unitarily equivalent if there exist a unitary operator  𝑈 ∈ 𝐵(𝐻, 𝐾) such that  𝑈𝑇 = 𝑆𝑈 i.e.𝑇 = 𝑈∗𝑆𝑈, 

(Campbell & Gellar, 1977). (Nzimbi et al., 2008) further studied the concept of almost similarity where they have 

shown that similarity implies almost similarity.  

(Nzimbi et al., 2013) introduced the concept of metric equivalence. They further proved that metric equivalence is an 

equivalence relation. 

 Two operators 𝐴 ∈ 𝐵(𝐻)and 𝐵 ∈ 𝐵(𝐾) are said to be metrically equivalent if 

 𝐴𝑥ǁ = ǁ𝐵𝑥ǁ , (equivalently, ׀ < 𝐴𝑥, 𝐴𝑥 > ׀

1

2 = ׀ < 𝐵𝑥, 𝐵𝑥 > ׀

1

2for all 𝑥 ∈ 𝐻, that is 𝐴∗𝐴 = 𝐵∗𝐵). Of great interest, 

(Nzimbi et al., 2013) concretely discussed the spectral picture of metrically equivalent operators.  They also gave some 

conditions under which metric equivalence of operators implies unitary equivalence of operators. Two operators A and 

B are said to be similar if there exist an invertible operator 𝑁 ∈ 𝐵(𝐻, 𝐾)  such that 𝑁𝐴 = 𝐵𝑁or 𝐴 = 𝑁−1𝐵𝑁. If 

 𝑆 ∈ 𝐵(𝐻) and 𝑇 ∈ 𝐵(𝐻) are similar, then S
*
 and T

*
 are similar. It has been shown (Nzimbi et al., 2008) that if  𝑆 ∈

𝐵(𝐻) and  𝑇 ∈ 𝐵(𝐻)are unitarily equivalent, then S and T are similar, If S and T are normal operators in a Hilbert space 

H, then S is unitarily equivalent to T if and only if S is similar to T. Thus it follows that two similar normal operators S 

and T are unitarily equivalent. (Musundi et al., 2013) have showed that if operators S and T are unitary equivalent, then 

S is almost similar to T. Efforts towards establishment of the relation between the almost similarity and metric 

equivalence properties of operators could mark a significant contribution to the existing knowledge. 

2.   RELATED LITERATURE REVIEW 

The review includes literature on some results on almost similarity, characterization of unitary equivalence of operators 

in terms of almost similarity. We also review metric equivalence relation and closely related relations on some classes 

of operators. In extension, we review some conditions under metric equivalence of operators implies unitary 

equivalence of operators. 

2.1 Some Results on Almost Similarity 

(Jibril, 1996) has shown that two operators A and B are said to be almost similar if there exist an invertible operator N 

such that the following two conditions are satisfied: 
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 𝐴∗𝐴 = 𝑁−1(𝐵∗𝐵)𝑁 

𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁.  

Theorem 2.1.1: (Nzimbi et al., 2008) 

Almost similarity of operators is an equivalence relation. 

Proof: (Nzimbi et al., 2008) 

(i) Let 𝐴 ∈ 𝐵 𝐻 .Then 𝐴∗𝐴 = 𝑁−1 𝐴∗𝐴 𝑁,   where N is an invertible operator. 

Also, 𝐴∗ + 𝐴 = 𝑁−1(𝐴∗ + 𝐴)𝑁. Hence  𝐴𝑎 .𝑠𝐴. 

(ii) Now suppose that  𝐴𝑎 .𝑠𝐵, there exist an invertible operator N such that 

 𝐴∗𝐴 = 𝑁−1(𝐵∗𝐵)𝑁   …………....……………… (1) 

And  𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁 . .……………….. (2). 

Since N is invertible, upon pre-multiplication of (1) and (2) by N and post multiplication of (1) and (2) by 𝑁−1 and 

applying the adjoint operation, we have  

 𝐵∗𝐵 = 𝑀−1(𝐴∗𝐴)𝑀,     𝐵∗ + 𝐵 = 𝑀−1 𝐴∗ + 𝐴 𝑀,where 𝑁 = 𝑀−1 which is an invertible operator, since 𝑁−1 is 

invertible. Hence 𝐵𝑎 .𝑠𝐴. 

(iii) Let A,B,C be in B(H).Suppose that 𝐴𝑎 .𝑠𝐵and  𝐵𝑎 .𝑠 𝐶. Then we have  

 𝐴∗𝐴 = 𝑁−1 𝐵∗𝐵 𝑁,   𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁……………….. (3) 

 𝐵∗𝐵 = 𝑀−1 𝐶∗𝐶 𝑀,   𝐵∗ + 𝐵 = 𝑀−1(𝐶∗ + 𝐶)𝑀……………….. (4) 

Where M and N are invertible operators. Using (3) and (4) we have that  

 𝐴∗𝐴 = 𝑁−1 𝑀−1 𝐶∗𝐶 𝑀 𝑁 =  𝑀𝑁 −1𝐶∗𝐶 𝑀𝑁 = 𝑆−1(𝐶∗𝐶)𝑆 

 𝐴∗ + 𝐴 = 𝑁−1 𝑀−1 𝐶∗ + 𝐶 𝑀 𝑁 =  𝑀𝑁 −1𝐶∗ + 𝐶 𝑀𝑁 = 𝑆−1(𝐶∗ + 𝐶)𝑆where 𝑆 = 𝑀𝑁, is invertible since M and 

N are invertible. It then follows that  𝐴𝑎 .𝑠 𝐶. 

Theorem 2.1.2: (Campbell & Gellar, 1977) 

An operator 𝑇 ∈ 𝐵(𝐻) is Hermitian if and only if (𝑇 + 𝑇∗)2 ≥ 4𝑇∗𝑇 

Theorem 2.2.2 helps us to prove the following results, where we assume the equality sign of this theorem. 

Proposition 2.1.3: (Nzimbi et al., 2008) 
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If 𝐴, 𝐵 ∈ 𝐵(𝐻) such that 𝐴𝑎 .𝑠𝐵 and B is Hermitian, then A is Hermitian. 

Proof: (Nzimbi et al., 2008) 

Since 𝐴𝑎 .𝑠𝐵 there exist an invertible operator N such that 𝐴∗𝐴 = 𝑁−1(𝐵∗𝐵)𝑁, on multiplying both sides by 4, we have, 

 4𝐴∗𝐴 = 𝑁−1(4𝐵∗𝐵)𝑁 …………………….. (1) 

Also 𝐴𝑎 .𝑠𝐵, implies   𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁, on squaring both sides, we obtain, 

 (𝐴∗ + 𝐴)2 = 𝑁−1(𝐵∗ + 𝐵)𝑁𝑁−1(𝐵∗ + 𝐵)𝑁 .   

Thus 

𝑁−1(𝐵∗ + 𝐵)2𝑁 = (𝐴 + 𝐴∗)2 ………………………… (2) 

Since B is Hermitian, we have that (B+𝐵∗)2 = (2𝐵)2 = 4𝐵2 = 4𝐵∗𝐵.  Substituting this in (2) we get 

(𝐴 + 𝐴∗)2 = 𝑁−1(4𝐵∗𝐵)𝑁 ……………… (3) 

From (1) and (3) we have 4𝐴∗𝐴 = (𝐴 + 𝐴∗)2 which shows that A is Hermitian, by  

Theorem 2.1.2 

Proposition 2.1.4:  (Musundi et al., 2013) 

If 𝐴, 𝐵 ∈ 𝐵(𝐻) such that A and B are unitarily equivalent, then 𝐴𝑎 .𝑠𝐵. 

Proposition 2.1.5:  (Nzimbi et al., 2008) 

If 𝐴, 𝐵 ∈ 𝐵(𝐻) such that 𝐴𝑎 .𝑠𝐵, and if A is Hermitian, then A and B are unitarily equivalent. 

Proof: (Nzimbi et al., 2008) 

By assumption, there exists an invertible operator N such that 𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁. Since A is Hermitian and  

𝐴𝑎 .𝑠𝐵 by proposition 2.1.3, B is Hermitian. Thus we have 2𝐴 = 𝑁−12𝐵𝑁 which implies that  𝐴 = 𝑁−1𝐵𝑁. This implies 

that, A and B are similar and since both operators are normal (both A and B are Hermitian), they are unitarily 

equivalent. 

Remark 2.1.6: (Nzimbi et al., 2008)  

The above proposition gives a condition under which almost similarity of operators implies similarity. 

Theorem 2.1.7: Fuglede Commutativity Theorem(Rudin, 1991) 

Assume that  𝐴, 𝐵, 𝑇 ∈ 𝐵(𝐻), where A and B are normal, and AT=TB. Then 𝐴∗𝑇 = 𝑇𝐵∗ 
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Theorem 2.1.8: (Nzimbi et al., 2008) 

If  𝑇 ∈ 𝐵(𝐻) is invertible, then T has a unique polar decomposition 𝑇 = 𝑈𝑃, with U an isometry (which is in fact a 

unitary) and 𝑃 ≥ 0. If  𝑇 ∈ 𝐵(𝐻) is normal, then T has a polar decomposition 𝑇 = 𝑈𝑃 in which U and P commute with 

each other and T. 

Theorem 2.1.9: (Nzimbi et al., 2008) 

Suppose  𝐴, 𝐵, 𝑇 ∈ 𝐵(𝐻), A and B are normal, T is invertible, and 𝐴 = 𝑇𝐵𝑇−1. If 𝑇 = 𝑈𝑃 is the polar decomposition of 

T, then  𝐴 = 𝑈𝐵𝑈−1. 

Remarks 2.1.10: (Nzimbi et al., 2008) 

This theorem asserts that similar normal operators are actually unitarily equivalent .The following results shows that 

unitary equivalence preserves normality of operators. 

Theorem 2.1.11: (Sitati et al., 2013) 

If T is a normal operator and 𝑆 ∈ 𝐵(𝐻) is unitarily equivalent to T, then S is normal. 

Theorem 2.1.12: (Nzimbiet al., 2013) 

Two similar normal operators S and T are unitarily equivalent. 

Remark 2.1.13: Having looked at the properties of almost similarity operators, we will employ these properties and 

from the definition of a metric equivalence relation to establish conditions when almost similarity implies metric 

equivalence. 

2.2 Metric Equivalence of Some Operators 

Recall that two operators 𝐴 ∈ 𝐵(𝐻)and 𝐵 ∈ 𝐵(𝐾) are said to be metrically equivalent if  𝐴𝑥ǁ = ǁ𝐵𝑥ǁ , (equivalently, 

׀ < 𝐴𝑥, 𝐴𝑥 > ׀

1

2 = ׀ < 𝐵𝑥, 𝐵𝑥 > ׀

1

2for all 𝑥 ∈ 𝐻, that is 

𝐴∗𝐴 = 𝐵∗𝐵) 

The numerical range W(T) of an operator  𝑇 ∈ 𝐵(𝐻) is defined as  

𝑤 𝑇 = {𝜆 ∈ ℂ: 𝜆 =< 𝑇𝑥, 𝑥 >, ∥ 𝑥 ∥= 1}and 

the numerical radius 𝑟 𝑇  of T is defined as  𝑟 𝑇 = sup{: λϵW(T)}.(Kubrusly,1997) 

An operator T is said to be normaloid if  𝑟 𝑇 =∥ 𝑇 ∥, (equivalently, ∥ 𝑇𝑛 ∥=∥ 𝑇 ∥𝑛 ). In complex Hilbert space H, 

every normal operator is normaloid and so is every positive operator. 

Theorem 2.2.1: (Nzimbi et al., 2013) 
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If T is a normal operator and 𝑆 ∈ 𝐵(𝐻) is unitarily equivalent to T, then S is normal.  

Theorem 2.2.2: (Dragomir, 2007) 

A necessary and sufficient condition that an operator 𝑇 ∈ 𝐵(𝐻)be normal is that∥ 𝑇𝑥 ∥=∥ 𝑇∗𝑥 ∥  for every  𝑥 ∈ 𝐻. 

Corollary 2.2.3: (Nzimbi et al., 2013) 

An operator 𝑇 ∈ 𝐵(𝐻) is normal if and only if T and 𝑇∗ are metrically equivalent. 

Theorem 2.2.4: (Nzimbi et al., (2013) 

If T is a normal operator, then there exist a unitary operator U such that 𝑇∗ = 𝑈𝑇. 

3. MAIN RESULTS 

3.1 Relationship between metrically equivalence operator and almost similarity operators. 

To show this relationship we need the following results: 

Theorem 3.1.1: (Nzimbi et al., 2013) 

Two operators 𝐴 ∈ 𝐵(𝐻)and 𝐵 ∈ 𝐵(𝐾) are said to be metrically equivalent if 

 𝐴𝑥ǁ = ǁ𝐵𝑥ǁ , (equivalently, ׀ < 𝐴𝑥, 𝐴𝑥 > ׀

1

2 = ׀ < 𝐵𝑥, 𝐵𝑥 > ׀

1

2for all 𝑥 ∈ 𝐻, that is 

𝐴∗𝐴 = 𝐵∗𝐵). 

Corollary 3.1.2: (Nzimbiet al., 2013) 

If S and T are metrically equivalent normal operators, then there exist a unitary operator U such that 𝑆 = 𝑈𝑇. 

Theorem 3.1.3: (Nzimbiet al., (2013) 

 If T is a normal operator, then there exist a unitary operator U such that 𝑇∗ = 𝑈𝑇. 

Corollary 3.1.4: (Nzimbiet al., 2013) 

An operator 𝑇 ∈ 𝐵(𝐻) is normal if and only if  𝑇 𝑎𝑛𝑑 𝑇∗ are metrically equivalent. 

Theorem 3.1.5: (Jibril, 1996), 

Two operators A and B are said to be almost similar if there exists an invertible operator N such that the following 

conditions are satisfied:  

𝐴∗𝐴 = 𝑁−1(𝐵∗𝐵)𝑁 

𝐴∗ + 𝐴 = 𝑁−1(𝐵∗ + 𝐵)𝑁 

Proposition 3.1.6: (Nzimbiet al., 2008) 

If  𝑇, 𝑆 ∈ 𝐵(𝐻) such that 𝑇𝑎 .𝑠𝑆 and S is Hermitian, then T is Hermitian. 

Corollary 3.1.7: All hermitian operators are normal. 

Corollary 3.1.8: (Nzimbi et al., 2013) 

An operator 𝑇 ∈ 𝐵(𝐻) is normal if and only if  𝑇 𝑎𝑛𝑑 𝑇∗ are metrically equivalent. 
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Definition 3.1.9: An operator P is said to be a projection operator if P = P∗ and 𝑃 = 𝑃2 

Theorem 3.1.10: (Dragomir, 2007) 

A necessary and sufficient condition that an operator 𝑆 ∈ 𝐵(𝐻) be normal is that ∥ 𝑆𝑥 ∥=∥ 𝑆∗𝑥 ∥ for every x ∈ H 

Thus our main results follows: 

Theorem 3.2.1: If 𝑆, 𝑇 ∈ 𝐵(𝐻)such that 𝑆𝑎 .𝑠𝑇, then S and T are metrically equivalent. 

Proof 

Suppose 𝑆, 𝑇 ∈ 𝐵(𝐻)such that 𝑆𝑎 .𝑠𝑇  and let S be hermitian. An operator S is said to be hermitian if 𝑆 = 𝑆∗ 

We note that S and T are said to be almost similar if there exists an invertible operator N such that the following 

conditions are satisfied:  

𝑆∗𝑆 = 𝑁−1(𝑇∗𝑇)𝑁 

𝑆∗ + 𝑆 = 𝑁−1(𝑇∗ + 𝑇)𝑁 

Assume that there exist an invertible operator N such that 

𝑆∗ + 𝑆 = 𝑁−1(𝑇∗ + 𝑇)𝑁. Since S is hermitian and 𝑆𝑎 .𝑠𝑇, then byProposition 4.1.6 T is hermitian Thus we have  

2𝑆 = 𝑁−12𝑇𝑁 ⇒ 𝑆 = 𝑁−1𝑇𝑁. So that S and T are similar and being hermitian operators it means they are also normal, 

so they are unitarily equivalent. i.e.𝑆 = 𝑈∗𝑇𝑈. 

Now if 𝑆 = 𝑈∗𝑇𝑈 then  𝑆∗ = 𝑈∗𝑇∗𝑈 

Let 𝑥 ∈ 𝐻 and since S is normal then by Theorem 4.1.10,∥ 𝑆𝑥 ∥=∥ 𝑆∗𝑥 ∥ 

By the definition of a norm  

∥ 𝑆𝑥 ∥2=< 𝑆𝑥, 𝑆𝑥 > 

=< 𝑆∗𝑆𝑥, 𝑥 > 

=< 𝑈∗𝑇∗𝑈𝑈∗𝑇𝑈𝑥, 𝑥 > 

=< 𝑈∗𝑇∗𝑇𝑈𝑥, 𝑥 > by theorem 4.1.3 we get  

=< 𝑈∗𝑈𝑇𝑇∗𝑈∗𝑈𝑥, 𝑥 > 

=< 𝑇𝑇∗𝑥, 𝑥 > but since T is normal then 𝑇𝑇∗ = 𝑇∗𝑇 then, we have  

=< 𝑇∗𝑇𝑥, 𝑥 > 

=< 𝑇𝑥, 𝑇𝑥 >=∥ 𝑇𝑥 ∥2 so that  
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∥ 𝑆𝑥 ∥=∥ 𝑇𝑥 ∥ 

Thus S and T are metrically equivalent. 

Theorem 3.2.2:If T and S are metrically equivalent projections operators, then T and S are almost similar. 

Proof  

Suppose that T and S are metrically equivalent projections operators. We recall that an operator T is said to be a 

projection operator if T = T∗ and 𝑇 = 𝑇2 

Since T and S are projections (T = T∗ and 𝑇 = 𝑇2, S = S∗and 𝑆 = 𝑆2) then they are self-adjoint and by Corollary 4.1.7 

it  implies that they are normal operators.  

Since T and S are normal operators then they exist a unitary operator U such that 𝑇∗ = 𝑈𝑇. 

Thus S being a projection operator, self-adjoint and also metrically equivalent to T, we have 

𝑆 = 𝑆2 = 𝑆∗𝑆 = 𝑇∗𝑇 = 𝑈𝑇𝑇∗𝑈∗ = 𝑈𝑇2𝑈∗ = 𝑈𝑇𝑈∗ i.e. 𝑆 = 𝑈𝑇𝑈∗, which shows that S and T are unitarily equivalent. 

Again since 𝑆 = 𝑈𝑇𝑈∗ then 𝑆∗ = 𝑈∗𝑇∗𝑈 

and thus  

𝑆∗𝑆 = 𝑈∗𝑇∗𝑈𝑈∗𝑇𝑈 = 𝑈∗𝑇∗𝑇𝑈 = 𝑈−1𝑇∗𝑇𝑈 …………………..…………….(i) 

𝑆∗ + 𝑆 = 𝑈∗𝑇∗𝑈 + 𝑈∗𝑇𝑈 = 𝑈∗(𝑇∗ + 𝑇)𝑈 = 𝑈−1(𝑇∗ + 𝑇)𝑈 ……………….(ii) 

Equation (i) and (ii) shows that 𝑆𝑎 .𝑠𝑇. 

Remark. For two operators that are metrically equivalent to imply almost similarity, then the two operators must be 

projection operators. This gives the condition under which metric equivalence implies almost similarity. 

Corollary 3.2.3: Two metrically equivalent operators implies almost similarity if and only if  they are projection 

operators. 
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