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Abstract 

In this paper, the existence of at least two solutions for periodic boundary value problems is obtained by the critical 

point theory. The interest is that the nonlinear term includes the first-order derivative and may not satisfy the classical 
Ambrosetti-Rabinowitz condition.   
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1. Introduction 

This paper considers the existence of at least two periodic solutions for the following kind of boundary value 
problems (for short BVPs)  

 

(𝜙𝑝(𝑥 ′(𝑡)))′ = (𝑎(𝑡)𝜙𝑝(𝑥(𝑡)) + 𝑓(𝑡,𝑥(𝑡)))𝑔(𝑥′(𝑡)),   𝑡 ∈ [0,𝑇]\{𝑡1,⋯ , 𝑡𝑘}

Δ𝐺(𝑥 ′(𝑡𝑖)) = 𝐼𝑖(𝑥(𝑡𝑖)), 𝑖 = 1,⋯ ,𝑘(1.2)

𝑥(0) − 𝑥(𝑇) = 0,      𝑥′(0)− 𝑥′(𝑇) = 0.

                                (1.1) 

Here, 𝑝 > 1, 𝑇 > 0, 𝜙𝑝(𝑥) = |𝑥|𝑝−2𝑥, 𝐺(𝑥) =  
(𝑝−1)|𝑠|𝑝−2

𝑔(𝑠)

𝑥

0
𝑑𝑠.  

The periodic BVPs have received a lot of attention. Many works have been carried out to discuss the existence of at 

least one solution, multiple solutions. The methods therein mainly depend on lower and upper solutions with 
monotone iterative

[1]
 and fixed point theorems

[2]
, etc. Reciently, variational methods have been used to study the 

existence of periodic solutions, such as [3,4]. Moreover, Ambrosetti and Rabinowitz
[10]

 established the existence of 
nontrival solutions for Dirichlet problems under the well known Ambrosetti-Rabinowitz condition: there exist some 

𝜇 > 2 and 𝑅 > 0 such that  

0 < 𝜇 𝑓
𝑥

0

(𝑡, 𝑠)𝑑𝑠 ≤ 𝑓(𝑡, 𝑥)𝑥 

for all 𝑡 ∈ [0,𝑇] and |𝑥| ≥ 𝑅. Since then, the AR-condition has been used extensively. By the usual AR-condition, 

it is easy to show that the Euler-Lagrange functional associated with the system has the mountain pass geometry and 
the Palais-Smale sequence is bounded.  

Since it is not easy to verify the corresponding Euler functional satisfying (PS)-condition, few papers consider the 

boundary value problems with the nonlinear term including the first-order derivative. G. A. Afrouzi and S. 
Heidarkhani

[8]
 proved the existence of at least three weak solutions for the Dirichlet problem  
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𝑦 ′′ + 𝜆(𝑦′)𝑓(𝑡, 𝑦) = 0,   𝑎 < 𝑡 < 𝑏
𝑦(𝑎) = 𝑦(𝑏) = 0,

  

where 𝑎,𝑏 ∈ ℝ, 𝜆 > 0 . Based on the three critical points theorem in 
[5]

, the authors did not need to verify 

(PS)-condition of the corresponding Euler functional.  

To the best of our knowledge, no people consider the existence of at least two solutions for periodic BVP with the 

nonlinearity including 𝑥′  by using variational methods. As a result, the goal of this paper is to fill the gap in this area.  

The outline of the paper is as follows. In the forthcoming section, we present some general results. In section 3, we 

exhibit the existence of at least two solutions. Thoughout, assume 𝑎(𝑡) ∈ 𝐶([0,𝑇]; (0, +∞)) , 𝐹(𝑡, 𝑥) =

 𝑓
𝑥

0
(𝑡,𝑢)𝑑𝑢, 𝐺(𝑥) =  

(𝑝−1)|𝑠|𝑝−2

𝑔(𝑠)

𝑥

0
𝑑𝑠 and  

(𝐴1)𝑓(𝑡,𝑥): [0,𝑇] × ℝ → ℝ is continuous.  

(𝐴2)𝑔(𝑥):ℝ → ℝ is continuous and there exist constants 𝑀 > 𝑚 > 0 such that 𝑀 ≥ 𝑔(𝑥) ≥ 𝑚, 𝑥 ∈ ℝ.  

(𝐴3)𝐼𝑖(𝑥):ℝ → ℝ is continuous, 𝑖 = 1,⋯ ,𝑘.  

Remark 1.1 From the expression of 𝐺(𝑥) , one has 
𝑑

𝑑𝑡
𝐺(𝑥) =

(𝑝−1)|𝑥|𝑝−2

𝑔(𝑥)

𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
(𝜙𝑝 (𝑥(𝑡)))

𝑔(𝑥)
, 

1

𝑀
|𝑥|𝑝 ≤ 𝐺(𝑥)𝑥 ≤

1

𝑚
|𝑥|𝑝, 

1

𝑀𝑝
|𝑥|𝑝 ≤  𝐺

𝑥

0
(𝑠)𝑑𝑠 ≤

1

𝑚𝑝
|𝑥|𝑝  .  

2. Preliminary 

The Sobolev space 𝑊1,𝑝[0,𝑇] is defined by  

𝑊1,𝑝[0,𝑇] = {𝑥: [0,𝑇] → ℝ|𝑥 is absolutely continuous,  𝑥′ ∈ 𝐿𝑝 (0,𝑇;ℝ),  𝑥(0) = 𝑥(𝑇)}  (2.1) 

and is endowed with the norm  

∥ 𝑥 ∥= ( |
𝑇

0
𝑥(𝑡)|𝑝𝑑𝑡 +  |

𝑇

0
𝑥′(𝑡)|𝑝𝑑𝑡)

1

𝑝 .                            (2.2) 

Then, from [3], 𝑊1,𝑝[0,𝑇] is a sparable and reflexive Banach space. Next, we show some basic knowledge.  

Theorem 2.1
[6]

 For the functional 𝐹:𝑀 ⊂ 𝑋 → [−∞, +∞] with 𝑀 ≠ ∅, min𝑢∈𝑀 𝐹 (𝑢) = 𝛼 has a solution in case 

the following holds:  

(i) 𝑋 is a real reflexive Banach space;  

(ii) 𝑀 is bounded and weak sequentially closed, i.e., for each sequence {𝑢𝑛} in 𝑀 such that 𝑢𝑛 ⇀ 𝑢 as 𝑛 → ∞, we 

always have 𝑢 ∈ 𝑀;  

(iii) 𝐹 is weakly sequentially lower semi-continuous on 𝑀.  

Theorem 2.2
[3]

 Let 𝐸 be a Banach space and 𝜑 ∈ 𝐶1(𝐸,ℝ) satisfy (PS)-condition. Assume there exist 𝑥0, 𝑥1 ∈ 𝐸, 

and a bounded open neighborhood Ω of 𝑥0 such that 𝑥1 ∖ Ω  and  

max{𝜑(𝑥0),𝜑(𝑥1)} < inf
𝑥∈𝜕Ω

𝜑 (𝑥). 

Let  

Γ = {|: [0,1] → 𝐸 is continuous and (0) = 𝑥0 ,(1) = 𝑥1} 

and  

𝑐 = inf
∈Γ

max
𝑠∈[0,1]

𝜑 ((𝑠)). 

Then, 𝑐  is a critical value of 𝜑 , that is, there exists 𝑥∗ ∈ 𝐸  such that 𝜑′(𝑥∗) = and 𝜑(𝑥∗) = 𝑐 , where 𝑐 >
max{𝜑(𝑥0),𝜑(𝑥1)}.  

For 𝑥 ∈ 𝐶[0,𝑇], suppose ∥ 𝑥 ∥∞= max𝑡∈[0,𝑇] |𝑥(𝑡)|, ∥ 𝑥 ∥𝑚= min𝑡∈[0,𝑇] | 𝑥(𝑡)|.  

Lemma 2.1 If 𝑥 ∈ 𝑊1,𝑝[0,𝑇], then, ∥ 𝑥 ∥∞≤ 𝐶 ∥ 𝑥 ∥ where 𝐶 = 𝑇
−

1

𝑝 + 𝑇
1

𝑞 .  

Lemma 2.2
[7]

 There exists a positive constant 𝑐𝑝  such that  
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 (|𝑥|𝑝−2𝑥 − |𝑦|𝑝−2𝑦,𝑥 − 𝑦) ≥  

𝑐𝑝|𝑥 − 𝑦|𝑝 ,   𝑝 ≥ 2, (2.3)

𝑐𝑝
|𝑥 − 𝑦|2

(|𝑥| + |𝑦|)2−𝑝 ,   1 < 𝑝 < 2(2.4)
    (2.3) 

for any 𝑥,𝑦 ∈ ℝ𝑁 , |𝑥| + |𝑦| ≠ 0. Here, (𝑥, 𝑦) = 𝑥 ⋅ 𝑦𝑇.  

In the following, we state the (C) condition
[8]

. Let 𝜑 be a Frechet differential functional and 𝐻 be a Banach space,  

(𝐶) Every sequence (𝑥𝑛)𝑛∈𝑁 ⊂ 𝐻 such that the following conditions hold:  

(𝑖)(𝜑(𝑥𝑛))𝑛∈𝑁 is bounded,  

(𝑖𝑖)(1+∥ 𝑥𝑛 ∥𝐻) ∥ 𝜑′(𝑥𝑛) ∥𝐻∗→ 0 as 𝑛 → ∞ 

has a subsequence which converges strongly in 𝐻.  

3. Existence of at least two solutions 

Define  

 𝜑(𝑥) =  [
𝑇

0

𝐹(𝑡,𝑥) +
1

𝑝
𝑎(𝑡)|𝑥(𝑡)|𝑝 +  𝐺

𝑥 ′

0

(𝑢)𝑑𝑢]𝑑𝑡 +   𝐼𝑖

𝑥(𝑡𝑖)

0

𝑘

𝑖=1

(𝑡)𝑑𝑡,         (3.1) 

Obviously, 𝜑 is continuously differentiable on 𝑊1,𝑝[0,𝑇] and by computation, one has 

< 𝜑′ 𝑥 ,𝑦 ≥  𝑓
𝑇

0

 𝑡, 𝑥 𝑦𝑑𝑡 +  𝑎
𝑇

0

 𝑡 𝜙𝑝 𝑥 𝑦𝑑𝑡 +  𝐺
𝑇

0

 𝑥′ 𝑦′𝑑𝑡 

+ 𝐼𝑖
𝑘
𝑖=1 (𝑥(𝑡𝑖))𝑦(𝑡𝑖),    𝑥, 𝑦 ∈ 𝑊1,𝑝[0,𝑇].(3.2) 

 

Lemma 3.1 If 𝑥 ∈ 𝑊𝑇
1,𝑝

 is a critical point of 𝜑, then, 𝑥 is a solution to BVP(1.1).  

Lemma 3.2 Assume (𝐴1), (𝐴2), and the following conditions  

(𝐵1) there exists some constants 𝜇 > 𝑝 and 𝛾1,𝛾2 satisfying  

𝜇𝐹(𝑡, 𝑥) − 𝑥𝑓(𝑡,𝑥) ≥ 𝛾1𝑥
𝑝 − 𝛾2,      𝑥 ∈ ℝ; 

 

(𝐵2) lim𝑥→+∞
𝑓(𝑡,𝑥)

|𝑥|𝑝−1
= −∞, lim𝑥→−∞

𝑓(𝑡 ,𝑥)

|𝑥|𝑝−1
= +∞, 𝑡 ∈ [0,𝑇];  

(𝐵3)𝜇min{ ∥ 𝑎 ∥𝑚 ,
1

𝑀
} > 𝑝max{ ∥ 𝑎 ∥∞ ,

1

𝑚
} 

(𝐵4)0 ≤ 𝐼𝑖(𝑥) ⋅ 𝑥, 𝐼𝑖(𝑥) ≤ 𝑏𝑖 + 𝑐𝑖𝑥
𝜏−1,𝜏 < 𝑝,𝑏𝑖 , 𝑐𝑖 ∈ 𝑅+, 𝑖 = 1,⋯ , 𝑘 

hold, then the functional 𝜑 satisfies (𝐶)-condition.  

Proof. Let (𝑥𝑛)𝑛∈𝑁 be a sequence in 𝑊1,𝑝[0,𝑇] such that 𝜑(𝑥𝑛) is bounded and ∥ 𝜑′(𝑥𝑛) ∥× (1+∥ 𝑥𝑛 ∥) → 0 as 

𝑛 → ∞. Then, there exist a constant 𝐶1 > 0 and a sequence (𝜀𝑛)𝑛∈𝑁, 𝜀𝑛 → 0 as 𝑛 → ∞ such that  

 |𝜑(𝑥𝑛)| ≤ 𝐶1,    | < 𝜑′(𝑥𝑛),𝑥𝑛 > | ≤ 𝜀𝑛 . (3.3) 

Suppose ∥ 𝑥𝑛 ∥→ ∞, 𝑛 → ∞. Set 𝑦𝑛 =
𝑥𝑛

∥𝑥𝑛 ∥
 for all 𝑛 ≥ 1. Obviously, ∥ 𝑦𝑛 ∥= 1, that is, (𝑦𝑛)𝑛∈𝑁 is a bounded 

sequence in 𝑊1,𝑝[0,𝑇]. Going to a subsequence if necessary, we may assume that  

𝑦𝑛 ⇀ 𝑦  in 𝑊1,𝑝[0,𝑇],   𝑦𝑛(𝑡) → 𝑦(𝑡)  in [0,𝑇]. 

From (3.3),  

|
 𝑎
𝑇

0
(𝑡)|𝑥𝑛 |𝑝𝑑𝑡+ 𝐺

𝑇

0
(𝑥𝑛

′ )𝑥𝑛
′𝑑𝑡

∥𝑥𝑛 ∥𝑝
+  

𝑓(𝑡,𝑥𝑛 )𝑦𝑛

∥𝑥𝑛 ∥𝑝−1

𝑇

0
𝑑𝑡 +

 𝐼𝑖
𝑘
𝑖=1 (𝑥𝑛 (𝑡𝑖))𝑥𝑛 (𝑡𝑖)

∥𝑥𝑛 ∥𝑝
| ≤

𝜀𝑛

∥𝑥𝑛 ∥𝑝
.                             (3.4) 

Moreover,  
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min{
1

𝑀
, ∥ 𝑎 ∥𝑚 } ≤ |

 𝑎
𝑇

0
(𝑡)|𝑥𝑛 |𝑝𝑑𝑡+ 𝐺

𝑇

0
(𝑥𝑛

′ )𝑥𝑛
′𝑑𝑡

∥𝑥𝑛 ∥
𝑝

| ≤ max{
1

𝑚
, ∥ 𝑎 ∥∞}.(3.5) 

Let Ω0
+ = {𝑡 ∈ [0,𝑇],𝑦(𝑡) > 0} , Ω0

− = {𝑡 ∈ [0,𝑇],𝑦(𝑡) < 0} , then, 𝑥𝑛(𝑡) → +∞ for 𝑡 ∈ Ω0
+ , 𝑥𝑛(𝑡) → −∞ for 

𝑡 ∈ Ω0
−, 𝑛 → ∞. By the hypothesis,  

𝑓(𝑡, 𝑥𝑛(𝑡))

(𝑥𝑛(𝑡))𝑝−1
→ −∞,    𝑡 ∈ Ω0

+,   𝑛 → ∞. 

 

If 𝑚𝑒𝑎𝑠Ω0
+ > 0, then,  

(𝑦𝑛(𝑡))𝑝
𝑓(𝑡, 𝑥𝑛(𝑡))

(𝑥𝑛(𝑡))𝑝−1 → −∞,    𝑡 ∈ Ω0
+,   𝑛 → ∞. 

If 𝑚𝑒𝑎𝑠Ω0
− > 0, then,  

(𝑦𝑛(𝑡))𝑝
𝑓(𝑡, 𝑥𝑛(𝑡))

(𝑥𝑛(𝑡))𝑝−1 = 𝑦𝑛(𝑡)|𝑦𝑛(𝑡)|𝑝−1
𝑓(𝑡, 𝑥𝑛(𝑡))

|𝑥𝑛(𝑡)|𝑝−1 → −∞,    𝑡 ∈ Ω0
−,   𝑛 → ∞. 

Moreover,  

 
𝑓(𝑡,𝑥𝑛)𝑦𝑛
∥ 𝑥𝑛 ∥

𝑝−1

𝑇

0

𝑑𝑡 =  (
Ω0

+
𝑦𝑛(𝑡))𝑝

𝑓(𝑡, 𝑥𝑛(𝑡))

(𝑥𝑛(𝑡))𝑝−1 𝑑𝑡 +  (
Ω0
−
𝑦𝑛(𝑡))𝑝

𝑓(𝑡, 𝑥𝑛(𝑡))

(𝑥𝑛(𝑡))𝑝−1 𝑑𝑡 

+ 
𝑓(𝑡, 𝑥𝑛(𝑡))𝑥𝑛(𝑡)

∥ 𝑥𝑛 ∥
𝑝

[0,𝑇]\(Ω0
+∪Ω0

−)

𝑑𝑡. 

Then, from (𝐵2), there exists some constant 𝑘 > 0, 𝑓(𝑡, 𝑥)𝑥 < 0 for |𝑥| > 𝑘. For |𝑥| ≤ 𝑘, 𝑓(𝑡,𝑥) is bounded by 

continuity, hence,  
𝑓(𝑡,𝑥𝑛 (𝑡))𝑥𝑛 (𝑡)

∥𝑥𝑛 ∥
𝑝[0,𝑇]\(Ω0

+∪Ω0
−)

𝑑𝑡 is bounded or negative. By (𝐵3) and the discussion above, one has  

 
𝑓(𝑡, 𝑥𝑛)𝑦𝑛
∥ 𝑥𝑛 ∥

𝑝−1

𝑇

0

𝑑𝑡 → −∞,    𝑛 → ∞. 

This reaches a contradiction, that is, 𝑚𝑒𝑎𝑠Ω0
+ = 𝑚𝑒𝑎𝑠Ω0

− = 0. Then, one can conclude that 𝑦(𝑡) = 0 for a.e. 

𝑡 ∈ [0,𝑇]. Hence, 𝑦(𝑡) ≡ 0, 𝑡 ∈ [0,𝑇].  

Moreover,  

1

𝑝
min{ ∥ 𝑎 ∥𝑚 ,

1

𝑀
} ∥ 𝑥𝑛 ∥

𝑝≤  [
𝑇

0

1

𝑝
𝑎(𝑡)|𝑥𝑛(𝑡)|𝑝 + 𝐺

𝑥𝑛
′

0

(𝑢)𝑑𝑢]𝑑𝑡 

≤
1

𝑝
max{ ∥ 𝑎 ∥∞ ,

1

𝑚
} ∥ 𝑥𝑛 ∥

𝑝 , 

 

min{ ∥ 𝑎 ∥𝑚 ,
1

𝑀
} ∥ 𝑥𝑛 ∥

𝑝≤  [
𝑇

0

𝑎(𝑡)|𝑥𝑛(𝑡)|𝑝 + 𝐺(𝑥𝑛
′)𝑥𝑛

′]𝑑𝑡 ≤ max{ ∥ 𝑎 ∥∞ ,
1

𝑚
} ∥ 𝑥𝑛 ∥

𝑝 . 

 

0 ≤ 𝐼𝑖(𝑥𝑛(𝑡𝑖)) ⋅ 𝑥𝑛(𝑡𝑖) ≤ 𝑏𝑖|𝑥𝑛(𝑡𝑖)| + 𝑐𝑖|𝑥𝑛
𝜏(𝑡𝑖)| ≤ 𝑐𝑏𝑖 ∥ 𝑥𝑛 ∥ +𝑐𝜏𝑐𝑖 ∥ 𝑥𝑛 ∥

𝜏 

 

| 𝐼𝑖

𝑥𝑛 (𝑡𝑖)

0

(𝑡)𝑑𝑡| = |𝐼𝑖(𝜁) ⋅ 𝑥𝑛(𝑡𝑖)| ≤ 𝑏𝑖|𝑥𝑛(𝑡𝑖)| + 𝑐𝑖|𝑥𝑛
𝜏 (𝑡𝑖)| ≤ 𝑐𝑏𝑖 ∥ 𝑥𝑛 ∥ +𝑐𝜏𝑐𝑖 ∥ 𝑥𝑛 ∥

𝜏 

Here 𝒄 = 𝑻
−
𝟏

𝒑 + 𝑻
𝟏

𝒒. Hence,  

−𝐶1 −
1

𝑝
max{ ∥ 𝑎 ∥∞ ,

1

𝑚
} ∥ 𝑥𝑛 ∥

𝑝− (

𝑘

𝑖=1

𝑐𝑏𝑖 ∥ 𝑥𝑛 ∥ +𝑐𝜏𝑐𝑖 ∥ 𝑥𝑛 ∥
𝜏) 
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≤  𝐹
𝑇

0

(𝑡,𝑥𝑛)𝑑𝑡 ≤ 𝐶1 −
1

𝑝
min{ ∥ 𝑎 ∥𝑚 ,

1

𝑀
} ∥ 𝑥𝑛 ∥

𝑝 , 

 

−𝜀𝑛 + min{ ∥ 𝑎 ∥𝑚 ,
1

𝑀
} ∥ 𝑥𝑛 ∥

𝑝  

≤ − 𝑓
𝑇

0

(𝑡, 𝑥𝑛)𝑥𝑛𝑑𝑡 

≤ 𝜀𝑛 + max{ ∥ 𝑎 ∥∞ ,
1

𝑚
} ∥ 𝑥𝑛 ∥

𝑝+ (

𝑘

𝑖=1

𝑐𝑏𝑖 ∥ 𝑥𝑛 ∥ +𝑐𝜏𝑐𝑖 ∥ 𝑥𝑛 ∥
𝜏), 

Then, one has  

−
𝜇𝐶1

∥ 𝑥𝑛 ∥
𝑝 −

𝜇

𝑝
max{ ∥ 𝑎 ∥∞ ,

1

𝑚
} 

≤  
𝜇𝐹(𝑡,𝑥𝑛)

∥ 𝑥𝑛 ∥
𝑝

𝑇

0

𝑑𝑡 ≤ −
𝜇

𝑝
min{ ∥ 𝑎 ∥𝑚 ,

1

𝑀
} +

𝜇𝐶1

∥ 𝑥𝑛 ∥
𝑝
− (

𝑘

𝑖=1

𝑐𝑏𝑖
1

∥ 𝑥𝑛 ∥
𝑝−1

− 𝑐𝜏𝑐𝑖
1

∥ 𝑥𝑛 ∥
𝑝−𝜏

), 

 

−
𝜀𝑛

∥ 𝑥𝑛 ∥
𝑝

+ min{ ∥ 𝑎 ∥𝑚 ,
1

𝑀
} 

≤ − 
𝑓(𝑡, 𝑥𝑛)𝑥𝑛
∥ 𝑥𝑛 ∥

𝑝

𝑇

0

𝑑𝑡 ≤ max{ ∥ 𝑎 ∥∞ ,
1

𝑚
} +

𝜀𝑛
∥ 𝑥𝑛 ∥

𝑝 +  (

𝑘

𝑖=1

𝑐𝑏𝑖
1

∥ 𝑥𝑛 ∥
𝑝−1 + 𝑐𝜏𝑐𝑖

1

∥ 𝑥𝑛 ∥
𝑝−𝜏). 

Moreover,  

 −
𝜇

𝑝
max{ ∥ 𝑎 ∥∞ ,

1

𝑚
} + min{ ∥ 𝑎 ∥𝑚 ,

1

𝑀
} 

≤ lim
𝑛→+∞

 
𝜇𝐹(𝑡,𝑥𝑛) − 𝑥𝑛𝑓(𝑡, 𝑥𝑛)

|𝑥𝑛 |𝑝

𝑇

0

|𝑦𝑛 |𝑝𝑑𝑡 

≤ −
𝜇

𝑝
min{ ∥ 𝑎 ∥𝑚 ,

1

𝑀
} + max{ ∥ 𝑎 ∥∞ ,

1

𝑚
} < 0.                                                 (3.6) 

By (𝐵1),  

lim
𝑛→+∞

𝜇𝐹(𝑡, 𝑥𝑛) − 𝑥𝑛𝑓(𝑡, 𝑥𝑛)

|𝑥𝑛 |𝑝
|𝑦𝑛 |𝑝 ≥ lim

𝑛→+∞

𝛾1𝑥𝑛
𝑝
− 𝛾2

|𝑥𝑛 |𝑝
|𝑦𝑛 |𝑝 → 0, 

which is contradictive with (3.6). Hence, (𝑥𝑛)𝑛∈𝑁 is bounded in 𝑊1,𝑝[0,𝑇]. By the compactness of the embedding 

𝑊1,𝑝[0,𝑇] ↪ 𝐶[0,𝑇], the sequence (𝑥𝑛)𝑛∈𝑁 has a subsequence, again denoted by (𝑥𝑛)𝑛∈𝑁 for convenience, such 

that  

𝑥𝑛 ⇀ 𝑥  weakly in  𝑊1,𝑝[0,𝑇], 

𝑥𝑛 → 𝑥  strongly in 𝐶[0,𝑇]. 

 

From (3.2), for 𝑚,𝑛 ∈ 𝑁,  

< 𝜑′ 𝑥𝑛 − 𝜑′ 𝑥𝑚 ,𝑥𝑛 − 𝑥𝑚 > 

=  (
1

0

𝑓(𝑡,𝑥𝑛) − 𝑓(𝑡, 𝑥𝑚 ))(𝑥𝑛 − 𝑥𝑚 )𝑑𝑡 +  𝑎
1

0

(𝑡)(𝜙𝑝(𝑥𝑛)− 𝜙𝑝(𝑥𝑚 )) 
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(𝑥𝑛 − 𝑥𝑚 )𝑑𝑡 +  (
1

0

𝐺(𝑥𝑛
′) − 𝐺(𝑥′𝑚))(𝑥′ 𝑛 − 𝑥′𝑚)𝑑𝑡 

+ (
𝑘

𝑖=1
𝐼𝑖(𝑥𝑛(𝑡𝑖)) − 𝐼𝑖(𝑥𝑚 (𝑡𝑖)))(𝑥𝑛(𝑡𝑖) − 𝑥𝑚 (𝑡𝑖)). 

 

Since (𝑥𝑛)𝑛∈𝑁 is a Cauchy sequence in 𝐶[0,𝑇], 𝑓(𝑡,𝑥) is continuous in 𝑥, 𝐺(𝑥) is continuous, and | < 𝜑′(𝑥𝑛) −
𝜑′(𝑥𝑚 ),𝑥𝑛 − 𝑥𝑚 > | ≤ (∥ 𝜑′(𝑥𝑛) ∥ +∥ 𝜑′(𝑥𝑚) ∥) ∥ 𝑥𝑛 − 𝑥𝑚 ∥ , ∥ 𝑥𝑛 − 𝑥𝑚 ∥  is bounded in 𝑊1,𝑝[0,𝑇] , ∥
𝜑′(𝑥𝑛) ∥ +∥ 𝜑′(𝑥𝑚) ∥→ 0, 𝑛,𝑚 → ∞, one has < 𝜑′(𝑥𝑛) − 𝜑′(𝑥𝑚 ),𝑥𝑛 − 𝑥𝑚 >→ 0. Hence  

 (
𝑇

0

𝐺(𝑥𝑛
′) − 𝐺(𝑥′ 𝑚))(𝑥′ 𝑛 − 𝑥′𝑚)𝑑𝑡 → 0,    𝑛,𝑚 → ∞. 

Moreover,  

 (
𝑇

0

𝐺(𝑥𝑛
′)− 𝐺(𝑥𝑚

′))(𝑥′ 𝑛 − 𝑥𝑚
′)𝑑𝑡 =  (

𝑇

0

 
(𝑝 − 1)|𝑠|𝑝−2

𝑔(𝑠)

𝑥𝑛
′

𝑥𝑚 ′

𝑑𝑠)(𝑥′ 𝑛 − 𝑥𝑚
′)𝑑𝑡 

≥
1

𝑀
 (

1

0

𝜙𝑝(𝑥𝑛
′)− 𝜙𝑝(𝑥𝑚

′))(𝑥𝑛
′ − 𝑥𝑚

′)𝑑𝑡 

≥ 0 

then,  

 (
𝑇

0
𝜙𝑝(𝑥𝑛

′) − 𝜙𝑝(𝑥𝑚
′))(𝑥𝑛

′ − 𝑥𝑚
′)𝑑𝑡 → 0,   as 𝑛,𝑚 → ∞.          (3.7) 

 

If 𝑝 ≥ 2, from Lemma 2.2, there exists a positive constant 𝑐𝑝such that  

 (
𝑇

0
𝜙𝑝(𝑥𝑛

′) − 𝜙𝑝(𝑥𝑚
′))(𝑥𝑛

′ − 𝑥𝑚
′)𝑑𝑡 ≥ 𝑐𝑝  |

𝑇

0
𝑥𝑛

′ − 𝑥𝑚
′ |𝑝𝑑𝑡.        (3.8) 

 

If 𝑝 < 2, by Lemma 2.2, H𝑜 lder inequality and the boundedness of (𝑥𝑛)𝑛∈𝑁 in 𝑊1,𝑝 , one has  

 |
𝑇

0

𝑥𝑛
′ − 𝑥𝑚

′ |𝑝𝑑𝑡 =  
|𝑥𝑛

′ − 𝑥𝑚
′ |𝑝

(|𝑥𝑛
′ | + |𝑥𝑚

′ |)
𝑝(2−𝑝 )

2

𝑇

0

(|𝑥𝑛
′ | + |𝑥𝑚

′ |)
𝑝(2−𝑝)

2 𝑑𝑡 

≤ ( 
|𝑥𝑛

′ − 𝑥𝑚
′ |2

(|𝑥𝑛
′ | + |𝑥𝑚

′ |)2−𝑝

𝑇

0

𝑑𝑡)
𝑝

2 ( (
𝑇

0

|𝑥𝑛
′ | + |𝑥𝑚

′ |)𝑝𝑑𝑡)
2−𝑝

2  

≤ 𝑐𝑝

−𝑝

2   (
𝑇

0

𝜙𝑝 𝑥𝑛
′ − 𝜙𝑝 𝑥𝑚

′   𝑥𝑛
′ − 𝑥𝑚

′ 𝑑𝑡)
𝑝

22
 𝑝−1  2−𝑝 

2  

( (
𝑇

0

|𝑥𝑛
′ |𝑝 + |𝑥𝑚

′ |𝑝)𝑑𝑡)
2−𝑝

2  

≤ 𝑐𝑝

−𝑝

2 ( (
𝑇

0

𝜙𝑝(𝑥𝑛
′)− 𝜙𝑝(𝑥𝑚

′))(𝑥𝑛
′ − 𝑥𝑚

′)𝑑𝑡)
𝑝

22
(𝑝−1)(2−𝑝)

2  

(∥ 𝑥𝑛 ∥
𝑝 +∥ 𝑥𝑚 ∥𝑝))

2−𝑝

2 .               (3.9) 

From (3.7)-(3.9), we have  |
1

0
𝑥𝑛

′ − 𝑥𝑚
′ |𝑝𝑑𝑡 → 0 as 𝑛,𝑚 → ∞. Then, ∥ 𝑥𝑛 − 𝑥𝑚 ∥→ 0, that is, (𝑥𝑛)𝑛∈𝑁  is a 

Cauchy sequence in 𝑊1,𝑝[0,𝑇] . By the completeness of 𝑊1,𝑝[0,𝑇] , one has (𝑥𝑛)𝑛∈𝑁  has a convergent 

subsequence.⊓⊔ 

Theorem 3.1 Assume (𝐴1), (𝐴2), (𝐵1), (𝐵2), (𝐵3) and the following condition  

(𝐵5) there exist positive constants 𝑙1, 𝑙2,𝑅,𝜎 ≤ 𝑝, such that for ∥ 𝑥 ∥= 𝑅,  
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−𝐹(𝑡, 𝑥) ≤ 𝑙1|𝑥|𝜎 + 𝑙2, 

and  

𝑇
1−

𝜎

𝑝 𝑙1𝑅
𝜎 + 𝑙2𝑇 <

𝑚𝑖𝑛 { ∥ 𝑎 ∥𝑚 ,
1

𝑀
}

𝑝
𝑅𝑝 , 

hold, then, BVP(1.1) has at least two periodic solutions 𝑥0, 𝑥1 and ∥ 𝑥0 ∥< 𝑅.  

Proof. First, we show for the constant 𝑅 > 0 given in (𝐵4), 𝜑  has a local minimum point 𝑥0  in 𝐵𝑅 = {𝑥 ∈

𝑊1,𝑝[0,𝑇]:  ∥ 𝑥 ∥< 𝑅}. There are two steps.  

Step 1, we show 𝑥0 ∈ 𝐵𝑅 . Obviously, 𝐵𝑅  is bounded and weakly sequentially closed. In the following, we show 𝜑 

is weakly sequently lower semi-continuous on 𝐵𝑅 . Let  

𝜑1(𝑥) =  [
𝑇

0

1

𝑝
𝑎(𝑡)|𝑥(𝑡)|𝑝 +  𝐺

𝑥 ′

0

(𝑢)𝑑𝑢]𝑑𝑡,    𝜑2(𝑥) =  𝐹
𝑇

0

(𝑡,𝑥)𝑑𝑡 +   𝐼𝑖

𝑥(𝑡𝑖)

0

𝑘

𝑖=1

(𝑡)𝑑𝑡. 

Assume 𝑥𝑛 → 𝑥 in 𝑊1,𝑝[0,𝑇], then, ∥ 𝑥𝑛
′ − 𝑥′ ∥𝐿𝑝→ 0, ∥ 𝑥𝑛 − 𝑥 ∥𝐿𝑝→ 0. Hence,  

|𝜑1(𝑥𝑛) − 𝜑1(𝑥)| ≤
1

𝑝
∥ 𝑎 ∥∞  |

𝑇

0

|𝑥𝑛 |𝑝 − |𝑥|𝑝|𝑑𝑡 + |
𝑇

0

 𝐺
𝑥𝑛

′

𝑥 ′
(𝑢)𝑑𝑢|𝑑𝑡 

≤
1

𝑝
∥ 𝑎 ∥∞  |

𝑇

0

|𝑥𝑛 |𝑝 − |𝑥|𝑝|𝑑𝑡 +
1

𝑚𝑝
 |
𝑇

0

|𝑥′ 𝑛 |𝑝 − |𝑥′ |𝑝|𝑑𝑡. 

Define (𝑥) = |𝑥|𝑝 , 𝑝 > 1. It is obvious that  ∈ 𝐶1[0,𝑇]. By applying the Mid-value Theorem, there exists 𝜁(𝑡) 

satisfying 0 ≤ 𝜁(𝑡) ≤ 1 such that  

||𝑥′ 𝑛 |𝑝 − |𝑥 ′ |𝑝| = 𝑝|𝑥′(𝑡) + 𝜁(𝑡)(𝑥𝑛
′(𝑡) − 𝑥′(𝑡))|𝑝−1 × |𝑥′ 𝑛(𝑡) − 𝑥′(𝑡)|. 

Moreover, there exists 𝛿 > 0, such that  

|𝑥′(𝑡) + 𝜁(𝑡)(𝑥𝑛
′(𝑡) − 𝑥′(𝑡))|𝑝−1 ≤ 𝛿[|𝑥′(𝑡)|𝑝−1 + |𝑥𝑛

′(𝑡) − 𝑥′(𝑡)|𝑝−1] ∈ 𝐿𝑞([0,𝑇]). 

Hence,  

 |
𝑇

0

 𝐺
𝑥𝑛

′

𝑥 ′
(𝑢)𝑑𝑢|𝑑𝑡 ≤ [

𝛿

𝑚𝑝
 |
𝑇

0

𝑥′(𝑡)|𝑝−1|𝑥𝑛
′(𝑡) − 𝑥 ′(𝑡)|𝑑𝑡 +  |

𝑇

0

𝑥𝑛
′(𝑡) − 𝑥′(𝑡)|𝑝]𝑑𝑡 

≤
𝛿

𝑚𝑝
[( |

𝑇

0

𝑥 ′(𝑡)|𝑝𝑑𝑡)
1

𝑞( |
𝑇

0

𝑥𝑛
′(𝑡) − 𝑥′(𝑡)|𝑝𝑑𝑡)

1

𝑝 +  |
𝑇

0

𝑥𝑛
′(𝑡) − 𝑥′(𝑡)|𝑝]𝑑𝑡 

→0,n→∞ 

Here, 
𝟏

𝒒
+

𝟏

𝒑
= 𝟏. With the same discussion above, one has  |

𝑇

0
|𝑥𝑛 |𝑝 − |𝑥|𝑝|𝑑𝑡 → 0 as 𝑛 → ∞. Hence, 𝜑1  is 

continuous. Since 𝜑1 is convex, then, 𝜑1 is weakly lower semi-continuous. Assume 𝑥𝑛 ⇀ 𝑥 in 𝑊1,𝑝[0,𝑇], then, 

𝑥𝑛 → 𝑥 in 𝐶[0,𝑇]. Hence, 𝜑2 is weakly semi-continuous. Therefore, 𝜑 is weakly lower semi-continuous. From 

Theorem 2.1, 𝜑 has a local minimum 𝑥0 ∈ 𝐵𝑅 .  

Step 2. If 𝑥0 ∈ 𝜕𝐵𝑅,  

𝜑(𝑥0) ≥  𝐹
𝑇

0

(𝑡,𝑥0)𝑑𝑡 +
∥ 𝑎 ∥𝑚
𝑝

 |
𝑇

0

𝑥0(𝑡)|𝑝𝑑𝑡 +
1

𝑝𝑀
 |
𝑇

0

𝑥′0|𝑝𝑑𝑡 

≥  𝐹
𝑇

0
(𝑡, 𝑥0)𝑑𝑡 +

𝑚𝑖𝑛  {∥𝑎∥𝑚 ,
1

𝑀
}

𝑝
∥ 𝑥0 ∥

𝑝 .                         (3.10) 

Moreover, 𝜑(𝑥0) < 𝜑(0) =  𝐹
𝑇

0
(𝑡, 0)𝑑𝑡 = 0, that is,  

 [
𝑇

0
− 𝐹(𝑡,𝑥0)]𝑑𝑡 ≥

𝑚𝑖𝑛  {∥𝑎∥𝑚 ,
1

𝑀
}

𝑝
𝑅𝑝 .                           (3.11) 

From (𝐵4),  
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 [
𝑇

0

− 𝐹(𝑡, 𝑥0)]𝑑𝑡 ≤ 𝑙1  |
𝑇

0

𝑥0|𝜎𝑑𝑡 + 𝑙2𝑇 ≤ 𝑇
1−

𝜎

𝑝 𝑙1 ∥ 𝑥0 ∥
𝜎+ 𝑙2𝑇 = 𝑇

1−
𝜎

𝑝 𝑙1𝑅
𝜎 + 𝑙2𝑇, 

together with (3.11), we reach a contradiction. Hence, 𝑥0 ∈ 𝐵𝑅, that is 𝑥0 is a critical point of 𝜑.  

In the following, we show there exists 𝑥1  satisfying ∥ 𝑥1 ∥> 𝑅  and 𝜑(𝑥1) < min𝑥∈𝜕𝐵𝑅 𝜑 (𝑥). From (𝐵2), for 

∀𝑀 > 0, there exists 𝐶𝑀 > 0 such that  

𝐹(𝑡, 𝑥) ≤ −𝑀|𝑥|𝑝 ,    |𝑥| > 𝐶𝑀 . 

For large 𝜆 > 0, 𝑀 > 0, one has  

𝜑(𝜆) =  𝐹
𝑇

0

(𝑡, 𝜆)𝑑𝑡 + 𝜆𝑝  
1

𝑝

𝑇

0

𝑎(𝑡)𝑑𝑡 +   𝐼𝑖

𝜆

0

𝑘

𝑖=1
(𝑡)𝑑𝑡 

≤ 𝜆𝑝  
1

𝑝

𝑇

0

𝑎(𝑡)𝑑𝑡 −𝑀𝜆𝑝𝑇 +  (
𝑘

𝑖=1
𝑏𝑖𝜆 + 𝑐𝑖𝜆

2) → −∞. 

Hence, by the mountain pass theorem, one obtain another periodic solution 𝒙𝟏. 
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