Journal of Progressive Research in Mathematics
www.scitecresearch.com/journals

$b u_{*}(B \mathbb{Z} / p)^{n}$ AS A GRADED GROUP

Khairia Mohamed Mira
Department of Mathematics, Faculty of Science, Tripoli University, Libya

Abstract

Let p be a prime. We calculate $b u_{*}(B \mathbb{Z} / p)^{n}$, the connective unitary K-theory of the n-fold smash product of the classifying space for the cyclic group of order p, as a graded group using a Künneth formula short exact sequence for $n=2$ and inductively for any $n \geq 2$. While this smashing is in progress some other spectra appear, for instance, the spectrum $H \mathbb{Z} / p \wedge(B \mathbb{Z} / p)^{r}$ for $r<n$. In order to producing a new homotopy equivalent to $b u \wedge(B \mathbb{Z} / p)^{n}$, we need to find a homotopy equivalence which simplifies the spectrum $H \mathbb{Z} / p \wedge(B \mathbb{Z} / p)^{r}$.

Keywords: The connective unitary K-theory;a Künneth formula short exact sequence.

1. Introduction

Let $b u_{*}$ denote connective unitary K-homology on the stable homotopy category of CW spectra [1] so that if X is a space without a basepoint its unreduced bu-homology is $b u_{*}\left(\Sigma^{\infty} X_{+}\right)$, the homology of the suspension spectrum of the disjoint union of X with a base-point. In particular $b u_{*}\left(\Sigma^{\infty} S^{0}\right)=\mathbb{Z}[u]$ where $\operatorname{deg}(u)=2$.

For a prime number p, in [4], we calculate the connective unitary K-theory of the smash product of two copies of the classifying space for the cyclic group of order $p, b u_{*}(B \mathbb{Z} / p \wedge B \mathbb{Z} / p)$, using a Künneth formula short exact sequence, which is isomorphic to $b u_{*}\left(\vee_{i=1}^{p-1} \Sigma^{2 i} B \mathbb{Z} / p\right)$ in odd degrees and isomorphic to $\pi_{*}\left(\Sigma^{2} H \mathbb{Z} / p[u, v, w] / w^{p-1}\right)$ in even degrees.

In this section we shall merely introduce the Künneth formula sequence which implies our results, in case $n=2$, upon taking homotopy groups.

In $\S 2$ we construct the maps which induce the isomorphisms in 1.3. Inductively, by replacing $B \mathbb{Z} / p \wedge B \mathbb{Z} / p$ by $(B \mathbb{Z} / p)^{\wedge n}$, the n-fold smash product of $B \mathbb{Z} / p$, for $n>2$, we derive a homotopy equivalence of spectra involving $b u \wedge(B \mathbb{Z} / p)^{\wedge n}$, which in the left-hand side and other spectra appearing while this smashing is in progress, for instance, the spectrum $H \mathbb{Z} / p \wedge(B \mathbb{Z} / p)^{\wedge r}$ for $r<n$. In order to produce this homotopy equivalence, we need to find first a homotopy equivalence which simplifies the spectrum $H \mathbb{Z} / p \wedge(B \mathbb{Z} / p)^{\wedge r}$, and start with $r=1$.

Following this homotopy and by a helpful corollary 3.6 in $\S 3$ we apply $\pi_{*}(-)$, the homotopy group, for this homotopy equivalence to compute $b u_{*}(B \mathbb{Z} / p)^{\wedge n}$ as a graded group for any prime p.

Let us fix some notations that we will use for this paper.

Notation 1.1.

- For $n \geq 1$, we write P_{n} for $(B \mathbb{Z} / p)^{\wedge n}$, the n-fold smash product of $B \mathbb{Z} / p$. In particular, $P_{1}=B \mathbb{Z} / p$.
- For $i, j>0$, we write $\Lambda_{i, j}$ for $2 i+2 j-2$.

Theorem 1.2. [4] For any CW-complex X, we have a natural exact sequence [which is called the Künneth formula sequence]

$$
0 \rightarrow b u_{*}\left(P_{1}\right) \otimes_{\mathbb{Z}_{p}[u]} b u_{*}(X) \rightarrow b u_{*}\left(P_{1} \wedge X\right) \rightarrow \operatorname{Tor}_{\mathbb{Z}_{p}[u]}^{1}\left(b u_{*}\left(P_{1}\right), b u_{*}(X)\right)[-1] \rightarrow 0
$$

Corollary 1.3. [4]

$$
\begin{aligned}
b u_{2 *+1}\left(P_{2}\right) & \cong b u_{2 *+1}\left(\vee_{i=1}^{p-1} \Sigma^{2 i} P_{1}\right) \text { and } \\
b u_{2 *}\left(P_{2}\right) & \cong \pi_{2 *}\left(\vee_{i=0}^{p-2} \vee_{j, k>0} \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p\right) .
\end{aligned}
$$

In order to compute $b u_{*}\left(P_{n}\right)$ as a graded group we need to construct the maps which induce the above isomorphisms and inductively, extend these results to construct a spectrum which is homotopy equivalent to $b u \wedge P_{n}$ for each $n \geq 2$.

2. The homotopy equivalence

2.1. As we have just seen, by the Künneth sequence we can compute $b u_{*}\left(P_{2}\right)$, which is isomorphic to $b u_{*}\left(\vee_{i=1}^{p-1} \Sigma^{2 i} P_{1}\right)$ in odd degrees and isomorphic to $\pi_{*}\left(\Sigma^{2} H \mathbb{Z} / p[u, v, w] / w^{p-1}\right)$ in even degrees. In this section we will construct the maps which induce these isomorphisms. we will extend these results to construct a spectrum which is homotopy equivalent to $b u \wedge P_{n}$ for each $n \geq 2$.

Remark 2.2.

- $\vee_{i \geq 0} \Sigma^{k i} H \mathbb{Z} / p \simeq H \mathbb{Z} / p[v]$, where $\operatorname{deg}(v)=k$ and $\vee_{i=0}^{p-2} \Sigma^{2 i} H \mathbb{Z} / p \simeq H \mathbb{Z} / p[v] /\left(v^{p-1}\right)$ where $\operatorname{deg}(v)=2$.
- For $\operatorname{deg}(v)=2(p-1), \vee_{i=0}^{p-2} \Sigma^{2 i} H \mathbb{Z} / p[v] \simeq H \mathbb{Z} / p[u]$ where $\operatorname{deg}(u)=2$. So
$\vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p \simeq \vee_{k=0}^{p-2} \vee_{i, j \geq 0} \Sigma^{2 i+2 j+2 k+2} H \mathbb{Z} / p \simeq \Sigma^{2} H \mathbb{Z} / p\left[u_{1}, u_{2}, u_{3}\right] /\left(u_{3}^{p-1}\right)$,
where $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=\operatorname{deg}\left(u_{3}\right)=2$. We are not claiming any ring structure related to $\mathbb{Z} / p\left[u_{1}, u_{2}, u_{3}\right] /\left(u_{3}^{p-1}\right)$, it is just a nice way to keep track of all the copies.

Lemma 2.3.

For a prime number p, there is a map $b u \wedge P_{2} \rightarrow \vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1}$, which induces an isomorphism on homotopy groups in odd degrees.

Proof By [3], we have a homotopy equivalence $b u \wedge B S^{1} \simeq \bigvee_{n>0} b u \wedge S^{2 n}$. Denote by ρ : $b u \wedge B S^{1} \rightarrow \bigvee_{i=1}^{p-1} S^{2 i} \wedge b u$ the projection. Therefore we can construct the required map by the composition of the following maps

$$
b u \wedge P_{2} \xrightarrow{b u \wedge i \wedge P_{1}} b u \wedge B S^{1} \wedge P_{1} \xrightarrow{\rho \wedge \wedge P_{1}} \vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1},
$$

where $\alpha: B \mathbb{Z} / p \rightarrow B S^{1}$ is the classifying space of the inclusion map $\mathbb{Z} / p \rightarrow S^{1}$.
Let $f_{n}: S^{2 n+1} \rightarrow b u \wedge P_{2}$ represents the generator of $b u_{2 n+1}\left(P_{2}\right)$, so we have a composition $F_{n}: S^{2 n+1} \rightarrow b u \wedge P_{2} \rightarrow \vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1}$ which represents the generator of $b u_{2 n+1}\left(\vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1}\right)$, and this shows that the map $b u \wedge P_{2} \rightarrow \vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1}$ induces an isomorphism in homotopy groups in odd degrees as in 1.3.

For an abelian group G, we have $(H G)_{n}=K(G, n)$ for $n \geq 0$ where $K(G, n)$ is the EilenbergMacLane space. By [2, p.393], for all CW-complexes X and all $n>0$ there is a natural bijection $T:[X, K(G, n)] \cong H^{n}(X ; G)$, where T has the form $T([f])=f^{*}(x)$ for $x \in H^{n}(K(G, n) ; G)$.

Lemma 2.4.

For a prime number p, there is a map bu $\wedge P_{2} \rightarrow \vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p$, which induces an isomorphism on homotopy groups in even degrees.

Proof

Let $t=\alpha \otimes \beta \in H^{\Lambda_{i, j}+2 k}\left(P_{2} ; \mathbb{Z} / p\right)$ and $g_{t}: P_{2} \rightarrow \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p$, where α, β, respectively, represent generators of $\bmod p$ cohomology of P_{1} of dimension m and n such that $m+n=\Lambda_{i, j}+2 k$, and g_{t} represents t, where

$$
H^{\Lambda_{i, j}+2 k}\left(P_{2} ; \mathbb{Z} / p\right) \cong\left[P_{2}, \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p\right]
$$

Let ψ be the composition of

$$
b u \wedge H \mathbb{Z} / p \xrightarrow{\rho \wedge 1} H \mathbb{Z} / p \wedge H \mathbb{Z} / p \xrightarrow{\mu} H \mathbb{Z} / p
$$

where $\rho: b u \rightarrow H \mathbb{Z} / p$ represents a generator of $(H \mathbb{Z} / p)^{0}(b u) \cong \mathbb{Z} / p$. The required map is the composition of the following maps,

$$
\begin{aligned}
& b u \wedge P_{2} \quad \xrightarrow{b u \wedge\left(\vee_{k=0}^{p-2} \vee_{i, j>0} g_{t}\right)} \quad b u \wedge\left(\vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p\right) \simeq \\
& \vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} b u \wedge H \mathbb{Z} / p \xrightarrow{\vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} \psi} \quad \vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p,
\end{aligned}
$$

and using 1.3 , we see that this map induces an isomorphism on homotopy groups in even degrees.
By 2.3 and 2.4 we have the following result.
Theorem 2.5. For any prime number p , there is a homotopy equivalence

$$
b u \wedge P_{2} \simeq \vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1} \vee\left(\vee_{k=0}^{p-2} \vee_{i, j>0} \Sigma^{\Lambda_{i, j}+2 k} H \mathbb{Z} / p\right)
$$

Remark 2.6. From 2.2, the homotopy equivalence in 2.5 can be written as

$$
b u \wedge P_{2} \simeq \vee_{i=1}^{p-1} \Sigma^{2 i} b u \wedge P_{1} \vee \Sigma^{2} H \mathbb{Z} / p[u, v, w] /\left(w^{p-1}\right)
$$

where $\operatorname{deg}(u)=\operatorname{deg}(v)=\operatorname{deg}(w)=2$.
Inductively, by replacing P_{2} by P_{n}, for $n>2$, we get another homotopy equivalence, where the left-hand side is $b u \wedge P_{n}$. While this smashing is in progress some other spectra appear, for instance, the spectrum $H \mathbb{Z} / p \wedge P_{r}$ for $r<n$. In order to conclude this section by producing a new homotopy equivalence, we need to find first a homotopy equivalence which simplifies the spectrum $H \mathbb{Z} / p \wedge P_{r}$. Let us start with $r=1$.

Lemma 2.7. For any prime $p, H \mathbb{Z} / p \wedge P_{1} \simeq \bigvee_{i>0} \Sigma^{i} H \mathbb{Z} / p$.
Proof Let $f_{i}: S^{i} \rightarrow H \mathbb{Z} / p \wedge P_{1}$ represents a generator of $\pi_{i}\left(H \mathbb{Z} / p \wedge P_{1}\right) \cong H_{i}\left(P_{1}, \mathbb{Z} / p\right) \cong$ [$S^{i}, H \mathbb{Z} / p \wedge P_{1}$], and let $f: \bigvee_{i>0} S^{i} \rightarrow H \mathbb{Z} / p \wedge P_{1}$ such that $\left.f\right|_{S^{i}}=f_{i}$. We construct F as the composition of these maps

$$
\bigvee_{i>0} H \mathbb{Z} / p \wedge S^{i} \simeq \bigvee_{i>0} \Sigma^{i} H \mathbb{Z} / p \xrightarrow{H \mathbb{Z} / p \wedge f} H \mathbb{Z} / p \wedge H \mathbb{Z} / p \wedge P_{1} \xrightarrow{\mu \wedge P_{1}} H \mathbb{Z} / p \wedge P_{1}
$$

Let g represents a generator of $\pi_{j}\left(\bigvee_{i>0} H \mathbb{Z} / p \wedge S^{i}\right)$, so $g: S^{j} \rightarrow \bigvee_{i>0} H \mathbb{Z} / p \wedge S^{i}$ and the composition

$$
S^{j} \rightarrow \bigvee_{i>0} H \mathbb{Z} / p \wedge S^{i} \rightarrow H \mathbb{Z} / p \wedge P_{1}
$$

represents a generator of $\pi_{j}\left(H \mathbb{Z} / p \wedge P_{1}\right)=\left[S^{j}, H \mathbb{Z} / p \wedge P_{1}\right]$. Thus the map F induces an isomorphism $F_{*}: \pi_{2 k+1}\left(\bigvee_{i>0} H \mathbb{Z} / p \wedge S^{i}\right) \cong \mathbb{Z} / p \cong \pi_{2 k+1}\left(H \mathbb{Z} / p \wedge P_{1}\right)$ for all k, and Whitehead's Theorem shows the required result.

Remark 2.8. For $r=1$, smashing P_{r} with the Eilenberg-MacLane spectrum of the group \mathbb{Z} / p gives a wedge of suspensions of this spectrum of the same group. This can be written also as $H \mathbb{Z} / p \wedge P_{1} \simeq \widetilde{H} V_{1}$, where \widetilde{H} refers to the reduced case, $V_{1}=\mathbb{Z} / p\left[\alpha_{1}\right]$ and $\operatorname{deg}\left(\alpha_{1}\right)=1$. Next we will explain the corresponding result for $r \geq 1$.

Corollary 2.9. For $r \geq 1, H \mathbb{Z} / p \wedge P_{r} \simeq \vee_{n_{1}, n_{2}, \ldots, n_{r}>0} \sum^{n_{1}+n_{2}+\cdots+n_{r}} H \mathbb{Z} / p$.
Proof It follows by induction from the previous result that

$$
\begin{aligned}
H \mathbb{Z} / p \wedge P_{r} & =H \mathbb{Z} / p \wedge P_{r-1} \wedge P_{1} \\
& \cong \vee_{n_{1}, n_{2}, \ldots, n_{r-1}>0} \Sigma^{n_{1}+n_{2}+\cdots+n_{r-1}}\left(H \mathbb{Z} / p \wedge P_{1}\right) \\
& \cong \vee_{n_{1}, n_{2}, \ldots, n_{r}>0} \Sigma^{n_{1}+n_{2}+\cdots+n_{r}} H \mathbb{Z} / p .
\end{aligned}
$$

Theorem 2.10.

For $n \geq 2$ and a prime number p,

$$
b u \wedge P_{n} \simeq\left(\bigvee_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \Sigma^{2 i_{1}+2 i_{2}+\cdots+2 i_{n-1}} b u \wedge P_{1}\right) \vee \bigvee_{i=1}^{n-1} \Sigma^{n+i-1} H V_{n, i}
$$

where $V_{n, i}=\mathbb{Z} / p\left[u_{1}, u_{2}, \ldots, u_{i+2}, v_{1}, v_{2}, \ldots, v_{n-i-1}\right] /\left(u_{1}^{p-1}, u_{2}^{p-1}, \ldots, u_{i}^{p-1}\right), \operatorname{deg}\left(u_{j}\right)=2$ and $\operatorname{deg}\left(v_{j}\right)$ 1 for all j.

Proof The proof is by induction on n, where the case $n=2$ is considered in 2.5 and 2.6 and the result agrees with the above statement.

Now let us assume that the statement is true for $n-1$. By 2.6 we have

$$
\begin{aligned}
b u \wedge P_{n} & =b u \wedge P_{2} \wedge P_{n-2} \simeq\left(\vee_{j=1}^{p-1} \Sigma^{2 j} b u \wedge P_{n-1}\right) \vee\left(\Sigma^{2} H \mathbb{Z} / p\left[u_{1}, u_{2}, u_{3}\right] /\left(u_{1}^{p-1}\right) \wedge P_{n-2}\right) \\
& \simeq \vee_{j=1}^{p-1} \Sigma^{2 j}\left(\vee_{i_{1}, \ldots, i_{n-2}=1}^{p-1} \Sigma^{2 i_{1}+\cdots+2 i_{n-2}} b u \wedge P_{1} \vee \vee_{i=1}^{n-2} \Sigma^{n+i-2} H V_{n-1, i}\right) \vee\left(\Sigma^{2} H V_{2,1} \wedge P_{n-2}\right)
\end{aligned}
$$

By 2.2 we have

$$
\begin{aligned}
\vee_{i=1}^{n-2} \vee_{j=1}^{p-1} \Sigma^{n+i-2+2 j} H V_{n-1, i} & =\vee_{i=1}^{n-2} \vee_{j=0}^{p-2} \Sigma^{n+i+2 j} H V_{n-1, i} \\
& \simeq \vee_{i=1}^{n-2} \Sigma^{n+i} H \mathbb{Z} / p\left[u_{1}, \ldots, u_{i+3}, v_{1}, \ldots, v_{n-i-2}\right] /\left(u_{1}^{p-1}, \ldots, u_{i+1}^{p-1}\right)
\end{aligned}
$$

where the right side spectrum is equal to $\vee_{i=2}^{n-1} \Sigma^{n+i-1} H V_{n, i}$. And by 2.9 , for $r=n-2$, we have

$$
\Sigma^{2} H V_{2,1} \wedge P_{n-2} \simeq \Sigma^{n} H \mathbb{Z} / p\left[u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, \ldots, v_{n-2}\right] /\left(u_{1}^{p-1}\right)
$$

where the right side spectrum is equal to $\Sigma^{n+i-1} H V_{n, i}$ when $i=1$. Therefore

$$
\begin{aligned}
b u \wedge P_{n} & \simeq\left(\bigvee_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \Sigma^{2 i_{1}+2 i_{2}+\cdots+2 i_{n-1}} b u \wedge P_{1}\right) \vee \bigvee_{i=2}^{n-1} \Sigma^{n+i-1} H V_{n, i} \vee \bigvee_{i=1} \Sigma^{n+i-1} H V_{n, i} \\
& =\left(\bigvee_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \Sigma^{2 i_{1}+2 i_{2}+\cdots+2 i_{n-1}} b u \wedge P_{1}\right) \vee \bigvee_{i=1}^{n-1} \Sigma^{n+i-1} H V_{n, i} .
\end{aligned}
$$

3. $b u_{*}\left(P_{n}\right)$ as a Graded Group

3.1. In this section we are going to compute $b u_{*}\left(P_{n}\right)$ as a graded group, first for $p=2$ and after that for any prime p. This calculations follow the homotopy equivalence in 2.10.

Notation 3.2. For $n \geq 2$ and $p=2$, the homotopy equivalence which is in 2.10 can be written as

$$
b u \wedge P_{n} \simeq \Sigma^{2(n-1)} b u \wedge P_{1} \vee \vee_{i=1}^{n-1} \vee_{j_{1}, j_{2}, k_{1}, k_{2}, \ldots, k_{i-1}>0} \Sigma^{2(n-i-1)+\Lambda+\Sigma_{j=1}^{i-1} k_{j}} H \mathbb{Z} / 2
$$

where $\Lambda=2 j_{1}+2 j_{2}-2$, see 1.1.
To compute $b u_{*}\left(P_{n}\right)$ as a graded group, we apply $\pi_{*}(-)$ for the previous homotopy. In [4] the graded group $\pi_{*}\left(\sum^{2(n-1)} b u \wedge P_{1}\right)$ is computed, which is non-zero just in odd degrees. So to complete this calculation we need to compute the homotopy group of the rest of the wedges of the above homotopy, that is, $\pi_{*}\left(\vee_{i=1}^{n-1} \vee_{j_{1}, j_{2}, k_{1}, k_{2}, \ldots, k_{i-1}>0} \sum^{2(n-i-1)+\Lambda+\sum_{j=1}^{i i} k_{j}} H \mathbb{Z} / 2\right)$.

Now we are going to introduce and prove a supporting corollary for this calculation.
Corollary 3.3. Let $X_{*}^{m, k_{1}, k_{2}, \ldots, k_{n}}=\oplus_{i, j>0} \pi_{*}\left(\Sigma^{2 m+\Lambda_{i, j}+\Sigma_{a=1}^{n} k_{a}} H \mathbb{Z} / 2\right)$, where n, m, and $k_{a} \geq 0$ and $\Lambda_{i . j}$ as in 1.1. Then, for $t, \ell \geq 0$

$$
\oplus_{k_{1}, k_{2}, \ldots, k_{2 \ell}>0 \text { odd }} \oplus_{k_{2 \ell+1}, \ldots, k_{n}>0 \text { even }} X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}}=(\mathbb{Z} / 2)^{\binom{t-m+\ell}{n+1}},
$$

and

$$
\oplus_{k_{1}, k_{2}, \ldots, k_{2 \ell+1}>0 \text { odd }} \oplus_{k_{2 \ell+2}, \ldots, k_{n}>0 \text { even }} X_{2 t+1}^{m, k_{1}, k_{2}, \ldots, k_{n}}=(\mathbb{Z} / 2)^{\binom{t-m+\ell+1}{n+1}} .
$$

Proof Inductively, we will prove the first claim, in degree 2t, and the analogous calculations for the other claims are similar.

Firstly,

$$
\left.X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}}=(\mathbb{Z} / 2)^{\left(t-m-\sum_{1}^{n} \frac{k_{a}}{2}\right.}\right)
$$

and analogously,

$$
\left.X_{2 t+1}^{m, k_{1}, k_{2}, \ldots, k_{n}}=(\mathbb{Z} / 2)^{\left(t-m+\frac{1}{2}-\sum_{1}^{n}=\frac{k_{a}}{2}\right.}\right) .
$$

So

$$
\left.\oplus_{k_{1}>0 \text { even }} X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}}=(\mathbb{Z} / 2)^{\Sigma_{s=0}^{t-m-1-\sum_{a=2}^{n} \frac{k_{a}}{2}}\binom{s}{1}}=(\mathbb{Z} / 2)^{\left(t-m-\sum_{2=2}^{n} \frac{k_{a}}{2}\right.}\right) .
$$

Then, inductively, if we assume that

$$
\oplus_{k_{1}, k_{2}, \ldots, k_{\beta}>0 \text { even }} X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}}=(\mathbb{Z} / 2)^{\binom{t-m-\sum_{a=\beta+1}^{n} \frac{k_{a}}{2}}{\beta+1}, ~}
$$

then we have

$$
\begin{aligned}
\oplus k_{1}, k_{2}, \ldots, k_{\beta+1}>0 \text { even } X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}} & =\oplus_{k_{\beta+1}>0 \text { even }}(\mathbb{Z} / 2)^{\binom{t-m-\sum_{a=\beta+1}^{n} \frac{k_{a}}{2}}{\beta+1}} \\
& =(\mathbb{Z} / 2)^{\Sigma_{s=0}^{t-m-1-\sum_{a=\beta+2}^{n} \frac{k_{a}}{2}}\left({ }_{\beta+1}^{s}\right)}=(\mathbb{Z} / 2)^{\left(\mathrm{C}^{t-m-\sum_{a=\beta+2}^{n} \frac{k_{a}}{2}}\right) .} .
\end{aligned}
$$

Similarly, we can calculate that,

$$
\begin{aligned}
\oplus_{k_{1}, k_{2}>0 \text { odd }} \oplus_{k_{3}, k_{4} \ldots, k_{n}>0 \text { even }} X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}} & =\oplus_{k_{1}, k_{2}>0 \text { odd }}(\mathbb{Z} / 2)^{\left(\begin{array}{c}
t-m-\frac{k_{1}+k_{2}}{n-1} 2
\end{array}\right)} \\
& =\oplus_{k_{1}>0 \text { odd }}(\mathbb{Z} / 2)^{\Sigma_{s=0}^{t-m-\frac{1+k_{1}}{2}}\binom{s}{n-1}} \\
& =\oplus_{k_{1}>0 \text { odd }}(\mathbb{Z} / 2)^{\left(t-m-\frac{k_{1}+\frac{1}{2}}{n^{2}}\right)} \\
& =(\mathbb{Z} / 2)^{\Sigma_{s=0}^{t-m}\binom{s}{n}}=(\mathbb{Z} / 2)^{\binom{t-m+1}{n+1} .}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left.=\oplus_{k_{1}, k_{2}, \ldots, k_{2 \ell-2}>0 \text { odd }}(\mathbb{Z} / 2)^{\left(\begin{array}{c}
t-m-\sum_{a=1}^{2 \ell-2} \frac{k a}{2}+1 \\
n-2 \ell+3
\end{array}\right.}\right) \\
& =\vdots \\
& =\oplus_{k_{1}, k_{2}, \ldots, k_{2 \ell-2 \eta}>0 \text { odd }}(\mathbb{Z} / 2)^{\binom{t-m-\Sigma_{a=1}^{2 \ell-2 \eta} \frac{k_{a}}{2}+\eta}{n-2 \ell+2 \eta+1}} .
\end{aligned}
$$

When $\eta=\ell-1$, the right side is equal to

$$
\oplus_{k_{1}, k_{2}>0 \text { odd }}(\mathbb{Z} / 2)^{\binom{t-m-\Sigma_{a=1}^{2}=\frac{k_{a}}{2}+\ell-1}{n-1}}=(\mathbb{Z} / 2)^{\binom{t-m+\ell}{n+1}} .
$$

This completes the proof.
Lemma 3.4. Let $n_{1} \geq 0$. Then

$$
\begin{aligned}
& b u_{s}\left(P_{n}\right) \cong
\end{aligned}
$$

Proof If we apply homotopy groups to the homotopy equivalence in 3.2 , we get

$$
b u_{*}\left(P_{n}\right) \cong b u_{*}\left(\Sigma^{2(n-1)} P_{1}\right) \oplus \oplus_{i=1}^{n-1} \oplus_{k_{1}, k_{2}, \ldots, k_{i-1}>0} X_{*}^{n-i-1, k_{1}, k_{2}, \ldots, k_{i-1}}
$$

The factor $b u_{*}\left(\sum^{2(n-1)} P_{1}\right)$ is concentrated just in odd degrees, see [4], whereas the factor

$$
\oplus_{k_{1}, k_{2}, \ldots, k_{i-1}>0} X_{*}^{n-i-1, k_{1}, k_{2}, \ldots, k_{i-1}}
$$

is concentrated just in even degrees when $i=1$ and in both odd and even degrees when $i>1$. By 3.3 , the result follows.
3.5. When p is odd we write $b u$ for the connective unitary K-theory with p-adic integers coefficients where $b u \simeq \vee_{i=0}^{p-2} \Sigma^{2 i} l u$, and $l u$ is called the Adams summand, $l u_{*}\left(\Sigma^{\infty} S^{0}\right) \cong \mathbb{Z}_{p}[v]$ and $\operatorname{deg}(v)=$ $2 p-2$. By [4] we have $l u_{2 k(p-1)+2 i-1}\left(\Sigma^{\infty} B \mathbb{Z} / p\right) \cong \mathbb{Z} / p^{k+1}$ for $i=1, \ldots, p-1$.

For $n \geq 2$ and any prime p, the homotopy equivalence which is in 2.10 can be written as

$$
\begin{aligned}
b u \wedge P_{n} & \simeq\left(\bigvee_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \Sigma^{2 i_{1}+2 i_{2}+\cdots+2 i_{n-1}} b u \wedge P_{1}\right) \\
& \vee \vee_{i=1}^{n-1} \vee_{j_{1}, j_{2}, k_{1}, k_{2}, \ldots, k_{i-1}>0} \vee_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-i}=0}^{p-2} \Sigma^{2(n-i-1)+\Lambda_{j_{1}, j_{2}}+\sum_{a=1}^{i-1} k_{a}+2 \Sigma_{a=1}^{n-i} \lambda_{a}} H \mathbb{Z} / p .
\end{aligned}
$$

where $\Lambda_{j_{1}, j_{2}}=2 j_{1}+2 j_{2}-2$, see 1.1 .
And again to compute $b u_{*}\left(P_{n}\right)$ as a graded group for any prime p, we apply $\pi_{*}(-)$ for the previous homotopy. The graded group $\oplus_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \pi_{2 t+1}\left(\sum^{2 i_{1}+2 i_{2}+\cdots+2 i_{n-1}} b u \wedge P_{1}\right) \cong \oplus_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \oplus_{j=0}^{p-2}$ \mathbb{Z} / p^{k+1} where $t=k(p-1)+\sum_{\beta=1}^{n-1} i_{\beta}+j+i$ and $i=0,1,2, \ldots, p-2$, which is non-zero just in odd degrees. So to complete this calculation we need to compute the homotopy group of the rest of the wedges of the above homotopy, that is,

$$
\pi_{*}\left(\vee_{i=1}^{n-1} \vee_{j_{1}, j_{2}, k_{1}, k_{2}, \ldots, k_{i-1}>0} \vee_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-i}=0}^{p-2} \Sigma^{2(n-i-1)+\Lambda_{j_{1}, j_{2}}+\sum_{a=1}^{i-1} k_{a}+2 \Sigma_{a=1}^{n-i} \lambda_{a}} H \mathbb{Z} / p\right) .
$$

Similarly, we need to introduce a supporting corollary for this calculation.
Corollary 3.6. Let $X_{*}^{m, k_{1}, k_{2}, \ldots, k_{n}, \lambda}=\oplus_{i, j>0} \pi_{*}\left(\Sigma^{2 m+\Lambda_{i, j}+\Sigma_{a=1}^{n} k_{a}+2 \Sigma_{a=1}^{\alpha} \lambda_{a}} H \mathbb{Z} / p\right)$, where
n, m, α, k_{a} and $\lambda_{a} \geq 0$ and $\Lambda_{i, j}$ as in 1.1. Then, for $t, \ell \geq 0$

$$
\left.\oplus_{k_{1}, k_{2}, \ldots, k_{2 \ell}>0 \text { odd }} \oplus_{k_{2 \ell+1}, \ldots, k_{n}>0 \text { even }} X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}, \lambda}=(\mathbb{Z} / p)^{\substack{t-m+\ell-\Sigma_{a=1}^{\alpha} \lambda_{a} \\ n+1}}\right),
$$

and

The proof is similar to 3.3 , where

$$
\left.X_{2 t}^{m, k_{1}, k_{2}, \ldots, k_{n}, \lambda}=(\mathbb{Z} / p)^{\left(t-m-\sum_{a=1}^{n} \frac{k_{a}}{2}-\Sigma_{a=1}^{\alpha} \lambda_{a}\right.}\right)
$$

and

$$
X_{2 t+1}^{m, k_{1}, k_{2}, \ldots, k_{n}, \lambda}=(\mathbb{Z} / p)^{\left(t-m+\frac{1}{2}-\sum_{a=1}^{n} \frac{k_{a}}{2}-\Sigma_{a=1}^{\alpha} \lambda_{a}\right)} .
$$

Remark 3.7. We write $\Gamma(k, t)$ for $\oplus_{i_{1}, i_{2}, \ldots, i_{n-1}=1}^{p-1} \oplus_{j=0}^{p-2} \mathbb{Z} / p^{k+1}$ when $t=k(p-1)+\sum_{\beta=1}^{n-1} i_{\beta}+j+i$ and $i=0,1,2, \ldots, p-2$

By applying the homotopy group to the homotopy equivalence in 3.5 , and by 3.6 we get the following result.

Theorem 3.8. Let $n_{1} \geq 0$. Then for a prime p,

$$
\begin{aligned}
& b u_{s}\left(P_{n}\right) \cong
\end{aligned}
$$

Example 3.9. Let $p=2$ and $n=5$, then by 3.3 we have

$$
b u_{2 t}\left(P_{5}\right)=(\mathbb{Z} / 2)^{\sum_{j=0}^{3} \sum_{\ell=0}^{1}\binom{j}{2 \ell}\binom{t-3+j+\ell}{j+1}} .
$$

Similarly, we can calculate that

$$
b u_{2 t+1}\left(P_{5}\right) \cong \mathbb{Z} / 2^{t-3} \oplus(\mathbb{Z} / 2)^{\sum_{j=0}^{3} \sum_{\ell=0}^{1}\binom{j}{2 \ell+1}\binom{t+j+\ell-2}{j+1}} .
$$

For $t=5$, we have bu $u_{10}\left(P_{5}\right)=(\mathbb{Z} / 2)^{69}$, the direct sum of 69 copies of $\mathbb{Z} / 2$. And bu $u_{11}\left(P_{5}\right)=$ $\mathbb{Z} / 4 \oplus(\mathbb{Z} / 2)^{106}$. whereas, in case $p=3$, bu $u_{11}\left(P_{3}\right)=(\mathbb{Z} / 3)^{4} \oplus\left(\mathbb{Z} / 3^{2}\right)^{4} \oplus(\mathbb{Z} / 3)^{25}=\left(\mathbb{Z} / 3^{2}\right)^{4} \oplus(\mathbb{Z} / 3)^{29}$, and bu $u_{10}\left(P_{3}\right)=(\mathbb{Z} / 3)^{28}$.

References

[1] J.F. Adams: Stable Homotopy and Generalised Homology; University of Chicago Press (1974).
[2] Allen. Hatcher: Algebraic topology; Cambridge University Press. (2002) xii +544.
[3] David Copeland Johnson and W. Stephen Wilson: On a theorem of Ossa; Proc. A.M. Soc. (12) 125 (1997) 3753-3755.
[4] Bruner, Robert R. and Mira, Khairia M. and Stanley, Laura A. and Snaith, Victor P: Ossa's theorem via the Künneth formula; Mathematics and Statistics 3(3): 58-64, 2015, DOI: $10.13189 / \mathrm{ms} .2015 .030302$, http://www.hrpub.org/download/20150620/MS2-13403792.pdf

