

Volume 12, Issue 3

Published online: October 02, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

$bu_*(B\mathbb{Z}/p)^n$ AS A GRADED GROUP

Khairia Mohamed Mira Department of Mathematics, Faculty of Science, Tripoli University, Libya

ABSTRACT. Let p be a prime. We calculate $bu_*(B\mathbb{Z}/p)^n$, the connective unitary K-theory of the n-fold smash product of the classifying space for the cyclic group of order p, as a graded group using a Künneth formula short exact sequence for n=2 and inductively for any $n\geq 2$. While this smashing is in progress some other spectra appear, for instance, the spectrum $H\mathbb{Z}/p \wedge (B\mathbb{Z}/p)^r$ for r < n. In order to producing a new homotopy equivalent to $bu \wedge (B\mathbb{Z}/p)^n$, we need to find a homotopy equivalence which simplifies the spectrum $H\mathbb{Z}/p \wedge (B\mathbb{Z}/p)^r$.

Keywords: The connective unitary K-theory; a Künneth formula short exact sequence.

1. Introduction

Let bu_* denote connective unitary K-homology on the stable homotopy category of CW spectra [1] so that if X is a space without a basepoint its unreduced bu-homology is $bu_*(\Sigma^{\infty}X_+)$, the homology of the suspension spectrum of the disjoint union of X with a base-point. In particular $bu_*(\Sigma^{\infty}S^0) = \mathbb{Z}[u]$ where $\deg(u) = 2$.

For a prime number p, in [4], we calculate the connective unitary K-theory of the smash product of two copies of the classifying space for the cyclic group of order p, $bu_*(B\mathbb{Z}/p \wedge B\mathbb{Z}/p)$, using a Künneth formula short exact sequence, which is isomorphic to $bu_*(\vee_{i=1}^{p-1}\Sigma^{2i}B\mathbb{Z}/p)$ in odd degrees and isomorphic to $\pi_*(\Sigma^2H\mathbb{Z}/p[u,v,w]/w^{p-1})$ in even degrees.

In this section we shall merely introduce the Künneth formula sequence which implies our results, in case n = 2, upon taking homotopy groups.

In §2 we construct the maps which induce the isomorphisms in 1.3. Inductively, by replacing $B\mathbb{Z}/p \wedge B\mathbb{Z}/p$ by $(B\mathbb{Z}/p)^{\wedge n}$, the n-fold smash product of $B\mathbb{Z}/p$, for n>2, we derive a homotopy equivalence of spectra involving $bu \wedge (B\mathbb{Z}/p)^{\wedge n}$, which in the left-hand side and other spectra appearing while this smashing is in progress, for instance, the spectrum $H\mathbb{Z}/p \wedge (B\mathbb{Z}/p)^{\wedge r}$ for r < n. In order to produce this homotopy equivalence, we need to find first a homotopy equivalence which simplifies the spectrum $H\mathbb{Z}/p \wedge (B\mathbb{Z}/p)^{\wedge r}$, and start with r=1.

Following this homotopy and by a helpful corollary 3.6 in §3 we apply $\pi_*(-)$, the homotopy group, for this homotopy equivalence to compute $bu_*(B\mathbb{Z}/p)^{\wedge n}$ as a graded group for any prime p. Let us fix some notations that we will use for this paper.

Notation 1.1.

- For $n \geq 1$, we write P_n for $(B\mathbb{Z}/p)^{\wedge n}$, the n-fold smash product of $B\mathbb{Z}/p$. In particular, $P_1 = B\mathbb{Z}/p$.
- For i, j > 0, we write $\Lambda_{i,j}$ for 2i + 2j 2.

Theorem 1.2. [4] For any CW-complex X, we have a natural exact sequence [which is called the Künneth formula sequence]

$$0 \to bu_*(P_1) \otimes_{\mathbb{Z}_p[u]} bu_*(X) \to bu_*(P_1 \wedge X) \to \mathrm{Tor}^1_{\mathbb{Z}_p[u]}(bu_*(P_1), bu_*(X))[-1] \to 0.$$

Corollary 1.3. [4]

$$bu_{2*+1}(P_2) \cong bu_{2*+1}(\vee_{i=1}^{p-1}\Sigma^{2i}P_1)$$
 and $bu_{2*}(P_2) \cong \pi_{2*}(\vee_{i=0}^{p-2}\vee_{j,k>0}\Sigma^{\Lambda_{i,j}+2k}H\mathbb{Z}/p).$

In order to compute $bu_*(P_n)$ as a graded group we need to construct the maps which induce the above isomorphisms and inductively, extend these results to construct a spectrum which is homotopy equivalent to $bu \wedge P_n$ for each $n \geq 2$.

2. The homotopy equivalence

2.1. As we have just seen, by the Künneth sequence we can compute $bu_*(P_2)$, which is isomorphic to $bu_*(\vee_{i=1}^{p-1}\Sigma^{2i}P_1)$ in odd degrees and isomorphic to $\pi_*(\Sigma^2H\mathbb{Z}/p[u,v,w]/w^{p-1})$ in even degrees. In this section we will construct the maps which induce these isomorphisms. we will extend these results to construct a spectrum which is homotopy equivalent to $bu \wedge P_n$ for each $n \geq 2$.

Remark 2.2.

- $\vee_{i\geq 0} \Sigma^{ki} H\mathbb{Z}/p \simeq H\mathbb{Z}/p[v]$, where $\deg(v) = k$ and $\vee_{i=0}^{p-2} \Sigma^{2i} H\mathbb{Z}/p \simeq H\mathbb{Z}/p[v]/(v^{p-1})$ where $\deg(v) = 2$.
- For $\deg(v) = 2(p-1), \ \bigvee_{i=0}^{p-2} \Sigma^{2i} H\mathbb{Z}/p[v] \simeq H\mathbb{Z}/p[u]$ where $\deg(u) = 2$. So

 $\vee_{k=0}^{p-2}\vee_{i,j>0}\Sigma^{\Lambda_{i,j}+2k}H\mathbb{Z}/p\simeq\vee_{k=0}^{p-2}\vee_{i,j\geq0}\Sigma^{2i+2j+2k+2}H\mathbb{Z}/p\simeq\Sigma^{2}H\mathbb{Z}/p[u_{1},u_{2},u_{3}]/(u_{3}^{p-1}),$

where $\deg(u_1) = \deg(u_2) = \deg(u_3) = 2$. We are not claiming any ring structure related to $\mathbb{Z}/p[u_1, u_2, u_3]/(u_3^{p-1})$, it is just a nice way to keep track of all the copies.

Lemma 2.3.

For a prime number p, there is a map $bu \wedge P_2 \to \bigvee_{i=1}^{p-1} \Sigma^{2i} bu \wedge P_1$, which induces an isomorphism on homotopy groups in odd degrees.

Proof By [3], we have a homotopy equivalence $bu \wedge BS^1 \simeq \bigvee_{n>0} bu \wedge S^{2n}$. Denote by $\acute{\rho}$: $bu \wedge BS^1 \to \bigvee_{i=1}^{p-1} S^{2i} \wedge bu$ the projection. Therefore we can construct the required map by the composition of the following maps

$$bu \wedge P_2 \xrightarrow{bu \wedge i \wedge P_1} bu \wedge BS^1 \wedge P_1 \xrightarrow{\acute{\rho} \wedge P_1} \bigvee_{i=1}^{p-1} \Sigma^{2i} bu \wedge P_1,$$

where $\alpha: B\mathbb{Z}/p \to BS^1$ is the classifying space of the inclusion map $\mathbb{Z}/p \to S^1$.

Let $f_n: S^{2n+1} \to bu \land P_2$ represents the generator of $bu_{2n+1}(P_2)$, so we have a composition $F_n: S^{2n+1} \to bu \land P_2 \to \bigvee_{i=1}^{p-1} \Sigma^{2i} bu \land P_1$ which represents the generator of $bu_{2n+1}(\bigvee_{i=1}^{p-1} \Sigma^{2i} bu \land P_1)$, and this shows that the map $bu \land P_2 \to \bigvee_{i=1}^{p-1} \Sigma^{2i} bu \land P_1$ induces an isomorphism in homotopy groups in odd degrees as in 1.3.

For an abelian group G, we have $(HG)_n = K(G,n)$ for $n \ge 0$ where K(G,n) is the *Eilenberg-MacLane space*. By [2, p.393], for all CW-complexes X and all n > 0 there is a natural bijection $T: [X, K(G,n)] \cong H^n(X;G)$, where T has the form $T([f]) = f^*(x)$ for $x \in H^n(K(G,n);G)$.

Lemma 2.4.

For a prime number p, there is a map $bu \wedge P_2 \to \vee_{k=0}^{p-2} \vee_{i,j>0} \Sigma^{\Lambda_{i,j}+2k} H\mathbb{Z}/p$, which induces an isomorphism on homotopy groups in even degrees.

Proof

Let $t = \alpha \otimes \beta \in H^{\Lambda_{i,j}+2k}(P_2; \mathbb{Z}/p)$ and $g_t : P_2 \to \Sigma^{\Lambda_{i,j}+2k}H\mathbb{Z}/p$, where α , β , respectively, represent generators of mod p cohomology of P_1 of dimension m and n such that $m+n=\Lambda_{i,j}+2k$, and g_t represents t, where

$$H^{\Lambda_{i,j}+2k}(P_2;\mathbb{Z}/p) \cong [P_2,\Sigma^{\Lambda_{i,j}+2k}H\mathbb{Z}/p]$$

Let ψ be the composition of

$$bu \wedge H\mathbb{Z}/p \xrightarrow{\rho \wedge 1} H\mathbb{Z}/p \wedge H\mathbb{Z}/p \xrightarrow{\mu} H\mathbb{Z}/p$$

where $\rho: bu \to H\mathbb{Z}/p$ represents a generator of $(H\mathbb{Z}/p)^0(bu) \cong \mathbb{Z}/p$. The required map is the composition of the following maps,

$$\begin{array}{ccc} bu \wedge P_2 & \xrightarrow{bu \wedge (\vee_{k=0}^{p-2}\vee_{i,j>0}g_t)} & bu \wedge (\vee_{k=0}^{p-2}\vee_{i,j>0} \Sigma^{\Lambda_{i,j}+2k}H\mathbb{Z}/p) \simeq \\ \vee_{k=0}^{p-2}\vee_{i,j>0} \Sigma^{\Lambda_{i,j}+2k}bu \wedge H\mathbb{Z}/p & \xrightarrow{\vee_{k=0}^{p-2}\vee_{i,j>0} \Sigma^{\Lambda_{i,j}+2k}\psi} & \vee_{k=0}^{p-2}\vee_{i,j>0} \Sigma^{\Lambda_{i,j}+2k}H\mathbb{Z}/p, \end{array}$$

and using 1.3, we see that this map induces an isomorphism on homotopy groups in even degrees. \Box By 2.3 and 2.4 we have the following result.

Theorem 2.5. For any prime number p, there is a homotopy equivalence

$$bu \wedge P_2 \simeq \bigvee_{i=1}^{p-1} \Sigma^{2i} bu \wedge P_1 \vee (\bigvee_{k=0}^{p-2} \bigvee_{i,j>0} \Sigma^{\Lambda_{i,j}+2k} H\mathbb{Z}/p).$$

Remark 2.6. From 2.2, the homotopy equivalence in 2.5 can be written as

$$bu \wedge P_2 \simeq \vee_{i=1}^{p-1} \Sigma^{2i} bu \wedge P_1 \vee \Sigma^2 H\mathbb{Z}/p[u,v,w]/(w^{p-1})$$

where deg(u) = deg(v) = deg(w) = 2.

Inductively, by replacing P_2 by P_n , for n > 2, we get another homotopy equivalence, where the left-hand side is $bu \wedge P_n$. While this smashing is in progress some other spectra appear, for instance, the spectrum $H\mathbb{Z}/p \wedge P_r$ for r < n. In order to conclude this section by producing a new homotopy equivalence, we need to find first a homotopy equivalence which simplifies the spectrum $H\mathbb{Z}/p \wedge P_r$. Let us start with r = 1.

Lemma 2.7. For any prime p, $H\mathbb{Z}/p \wedge P_1 \simeq \bigvee_{i > 0} \Sigma^i H\mathbb{Z}/p$.

Proof Let $f_i: S^i \to H\mathbb{Z}/p \wedge P_1$ represents a generator of $\pi_i(H\mathbb{Z}/p \wedge P_1) \cong H_i(P_1, \mathbb{Z}/p) \cong [S^i, H\mathbb{Z}/p \wedge P_1]$, and let $f: \bigvee_{i>0} S^i \to H\mathbb{Z}/p \wedge P_1$ such that $f|_{S^i} = f_i$. We construct F as the composition of these maps

$$\bigvee_{i>0} H\mathbb{Z}/p \wedge S^i \simeq \bigvee_{i>0} \Sigma^i H\mathbb{Z}/p \xrightarrow{H\mathbb{Z}/p \wedge f} H\mathbb{Z}/p \wedge H\mathbb{Z}/p \wedge P_1 \xrightarrow{\mu \wedge P_1} H\mathbb{Z}/p \wedge P_1.$$

Let g represents a generator of $\pi_j(\bigvee_{i>0} H\mathbb{Z}/p \wedge S^i)$, so $g: S^j \to \bigvee_{i>0} H\mathbb{Z}/p \wedge S^i$ and the composition

$$S^j \to \bigvee_{i>0} H\mathbb{Z}/p \wedge S^i \to H\mathbb{Z}/p \wedge P_1$$

represents a generator of $\pi_j(H\mathbb{Z}/p \wedge P_1) = [S^j, H\mathbb{Z}/p \wedge P_1]$. Thus the map F induces an isomorphism $F_*: \pi_{2k+1}(\bigvee_{i>0} H\mathbb{Z}/p \wedge S^i) \cong \mathbb{Z}/p \cong \pi_{2k+1}(H\mathbb{Z}/p \wedge P_1)$ for all k, and Whitehead's Theorem shows the required result.

Remark 2.8. For r=1, smashing P_r with the Eilenberg-MacLane spectrum of the group \mathbb{Z}/p gives a wedge of suspensions of this spectrum of the same group. This can be written also as $H\mathbb{Z}/p \wedge P_1 \simeq \widetilde{H}V_1$, where \widetilde{H} refers to the reduced case, $V_1 = \mathbb{Z}/p[\alpha_1]$ and $\deg(\alpha_1) = 1$. Next we will explain the corresponding result for $r \geq 1$.

Corollary 2.9. For $r \geq 1$, $H\mathbb{Z}/p \wedge P_r \simeq \bigvee_{n_1,n_2,\ldots,n_r>0} \sum_{n_1+n_2+\cdots+n_r} H\mathbb{Z}/p$.

Proof It follows by induction from the previous result that

$$\begin{split} H\mathbb{Z}/p \wedge P_r &= H\mathbb{Z}/p \wedge P_{r-1} \wedge P_1 \\ &\cong \vee_{n_1,n_2,\dots,n_{r-1}>0} \Sigma^{n_1+n_2+\dots+n_{r-1}} (H\mathbb{Z}/p \wedge P_1) \\ &\cong \vee_{n_1,n_2,\dots,n_r>0} \Sigma^{n_1+n_2+\dots+n_r} H\mathbb{Z}/p. \end{split}$$

Theorem 2.10.

For $n \geq 2$ and a prime number p,

$$bu \wedge P_n \simeq \Big(\bigvee_{i_1, i_2, \dots, i_{n-1} = 1}^{p-1} \Sigma^{2i_1 + 2i_2 + \dots + 2i_{n-1}} bu \wedge P_1\Big) \vee \bigvee_{i=1}^{n-1} \Sigma^{n+i-1} HV_{n,i}$$

where $V_{n,i} = \mathbb{Z}/p[u_1, u_2, \dots, u_{i+2}, v_1, v_2, \dots, v_{n-i-1}]/(u_1^{p-1}, u_2^{p-1}, \dots, u_i^{p-1})$, $\deg(u_j) = 2$ and $\deg(v_j)$ 1 for all j.

Proof The proof is by induction on n, where the case n = 2 is considered in 2.5 and 2.6 and the result agrees with the above statement.

Now let us assume that the statement is true for n-1. By 2.6 we have

$$\begin{split} bu \wedge P_n &= bu \wedge P_2 \wedge P_{n-2} \simeq \left(\vee_{j=1}^{p-1} \Sigma^{2j} bu \wedge P_{n-1} \right) \vee \left(\Sigma^2 H \mathbb{Z} / p[u_1, u_2, u_3] / (u_1^{p-1}) \wedge P_{n-2} \right) \\ &\simeq \vee_{j=1}^{p-1} \Sigma^{2j} \left(\vee_{i_1, \dots, i_{n-2} = 1}^{p-1} \Sigma^{2i_1 + \dots + 2i_{n-2}} bu \wedge P_1 \vee \vee_{i=1}^{n-2} \Sigma^{n+i-2} H V_{n-1, i} \right) \vee \left(\Sigma^2 H V_{2, 1} \wedge P_{n-2} \right) \end{split}$$

By 2.2 we have

$$\bigvee_{i=1}^{n-2} \bigvee_{j=1}^{p-1} \Sigma^{n+i-2+2j} HV_{n-1,i} = \bigvee_{i=1}^{n-2} \bigvee_{j=0}^{p-2} \Sigma^{n+i+2j} HV_{n-1,i}$$

$$\simeq \bigvee_{i=1}^{n-2} \Sigma^{n+i} H\mathbb{Z}/p[u_1, \dots, u_{i+3}, v_1, \dots, v_{n-i-2}]/(u_1^{p-1}, \dots, u_{i+1}^{p-1})$$

where the right side spectrum is equal to $\bigvee_{i=2}^{n-1} \sum_{i=1}^{n+i-1} HV_{n,i}$. And by 2.9, for r=n-2, we have

$$\Sigma^2 HV_{2,1} \wedge P_{n-2} \simeq \Sigma^n H\mathbb{Z}/p[u_1, u_2, u_3, v_1, v_2, \dots, v_{n-2}]/(u_1^{p-1})$$

where the right side spectrum is equal to $\Sigma^{n+i-1}HV_{n,i}$ when i=1. Therefore

$$bu \wedge P_n \simeq \left(\bigvee_{i_1, i_2, \dots, i_{n-1} = 1}^{p-1} \sum^{2i_1 + 2i_2 + \dots + 2i_{n-1}} bu \wedge P_1\right) \vee \bigvee_{i=2}^{n-1} \sum^{n+i-1} HV_{n,i} \vee \bigvee_{i=1}^{p-1} \sum^{n+i-1} HV_{n,i}$$

$$= \left(\bigvee_{i_1, i_2, \dots, i_{n-1} = 1}^{p-1} \sum^{2i_1 + 2i_2 + \dots + 2i_{n-1}} bu \wedge P_1\right) \vee \bigvee_{i=1}^{n-1} \sum^{n+i-1} HV_{n,i}.$$

3. $bu_*(P_n)$ as a Graded Group

3.1. In this section we are going to compute $bu_*(P_n)$ as a graded group, first for p=2 and after that for any prime p. This calculations follow the homotopy equivalence in 2.10.

Notation 3.2. For $n \ge 2$ and p = 2, the homotopy equivalence which is in 2.10 can be written

$$bu \wedge P_n \simeq \Sigma^{2(n-1)} bu \wedge P_1 \vee \bigvee_{i=1}^{n-1} \bigvee_{j_1,j_2,k_1,k_2,...,k_{i-1}>0} \Sigma^{2(n-i-1)+\Lambda+\sum_{j=1}^{i-1} k_j} H\mathbb{Z}/2$$
 where $\Lambda = 2j_1 + 2j_2 - 2$, see 1.1.

To compute $bu_*(P_n)$ as a graded group, we apply $\pi_*(-)$ for the previous homotopy. In [4] the graded group $\pi_*(\Sigma^{2(n-1)}bu \wedge P_1)$ is computed, which is non-zero just in odd degrees. So to complete this calculation we need to compute the homotopy group of the rest of the wedges of the above homotopy, that is, $\pi_*(\vee_{i=1}^{n-1}\vee_{j_1,j_2,k_1,k_2,...,k_{i-1}>0}\sum^{1/2}(n-i-1)+\Lambda+\sum_{j=1}^{i-1}k_jH\mathbb{Z}/2)$. Now we are going to introduce and prove a supporting corollary for this calculation.

Corollary 3.3. Let $X_*^{m,k_1,k_2,\dots,k_n} = \bigoplus_{i,j>0} \pi_*(\Sigma^{2m+\Lambda_{i,j}+\Sigma_{a=1}^n k_a} H\mathbb{Z}/2)$, where n,m, and $k_a \geq 0$ and $\Lambda_{i,j}$ as in 1.1. Then, for $t,\ell \geq 0$

$$\oplus_{k_1,k_2,\dots,k_{2\ell}>0 \text{ odd}} \oplus_{k_{2\ell+1},\dots,k_n>0 \text{ even }} X_{2t}^{m,k_1,k_2,\dots,k_n} = (\mathbb{Z}/2)^{\binom{t-m+\ell}{n+1}}$$

and

$$\bigoplus_{k_1, k_2, \dots, k_{2\ell+1} > 0 \text{ odd}} \bigoplus_{k_{2\ell+2}, \dots, k_n > 0 \text{ even }} X_{2t+1}^{m, k_1, k_2, \dots, k_n} = (\mathbb{Z}/2)^{\binom{t-m+\ell+1}{n+1}}.$$

Proof Inductively, we will prove the first claim, in degree 2t, and the analogous calculations for the other claims are similar.

Firstly,

$$X_{2t}^{m,k_1,k_2,...,k_n} = (\mathbb{Z}/2)^{\binom{t-m-\sum_{a=1}^n \frac{k_a}{2}}{1}}$$

and analogously,

$$X_{2t+1}^{m,k_1,k_2,...,k_n} = (\mathbb{Z}/2)^{\binom{t-m+\frac{1}{2}-\sum_{a=1}^n\frac{k_a}{2}}{1}}.$$

So

$$\bigoplus_{k_1>0 \text{ even}} X_{2t}^{m,k_1,k_2,...,k_n} = (\mathbb{Z}/2)^{\sum_{s=0}^{t-m-1-\sum_{a=2}^n \frac{k_a}{2}} \binom{s}{1}} = (\mathbb{Z}/2)^{\binom{t-m-\sum_{a=2}^n \frac{k_a}{2}}{2}}.$$

Then, inductively, if we assume that

$$\bigoplus_{k_1, k_2, \dots, k_{\beta} > 0 \text{ even}} X_{2t}^{m, k_1, k_2, \dots, k_n} = (\mathbb{Z}/2)^{\binom{t - m - \sum_{a = \beta + 1}^{n} \frac{k_a}{2}}{\beta + 1}},$$

then we have

$$\bigoplus_{k_1, k_2, \dots, k_{\beta+1} > 0 \text{ even}} X_{2t}^{m, k_1, k_2, \dots, k_n} = \bigoplus_{k_{\beta+1} > 0 \text{ even}} (\mathbb{Z}/2)^{\binom{t - m - \sum_{a = \beta + 1}^n \frac{k_a}{2}}{\beta + 1}}$$

$$= (\mathbb{Z}/2)^{\sum_{s=0}^{t - m - 1 - \sum_{a = \beta + 2}^n \frac{k_a}{2}} \binom{s}{\beta + 1} = (\mathbb{Z}/2)^{\binom{t - m - \sum_{a = \beta + 2}^n \frac{k_a}{2}}{\beta + 2}}.$$

Similarly, we can calculate that,

$$\bigoplus_{k_1, k_2 > 0 \text{ odd}} \bigoplus_{k_3, k_4, \dots, k_n > 0 \text{ even }} X_{2t}^{m, k_1, k_2, \dots, k_n} = \bigoplus_{k_1, k_2 > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \frac{k_1 + k_2}{2}}{n - 1}}$$

$$= \bigoplus_{k_1 > 0 \text{ odd}} (\mathbb{Z}/2)^{\sum_{s=0}^{t - m - \frac{1 + k_1}{2}} \binom{s}{n - 1}}$$

$$= \bigoplus_{k_1 > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \frac{k_1}{2} + \frac{1}{2}}{n}}$$

$$= (\mathbb{Z}/2)^{\sum_{s=0}^{t - m} \binom{s}{n}} = (\mathbb{Z}/2)^{\binom{t - m + 1}{n + 1}}.$$

Hence

$$\bigoplus_{k_1, k_2, \dots, k_{2\ell} > 0 \text{ odd } \bigoplus k_{2\ell+1}, \dots, k_n > 0 \text{ even } X_{2t}^{m, k_1, k_2, \dots, k_n} = \bigoplus_{k_1, k_2, \dots, k_{2\ell} > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \sum_{a=1}^{2\ell - 1} \frac{k_a}{2}}{n - 2\ell + 1}}$$

$$= \bigoplus_{k_1, k_2, \dots, k_{2\ell-1} > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \sum_{a=1}^{2\ell - 1} \frac{k_a}{2} + \frac{1}{2}}{n - 2\ell + 3}}$$

$$= \bigoplus_{k_1, k_2, \dots, k_{2\ell-2} > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \sum_{a=1}^{2\ell - 2} \frac{k_a}{2} + 1}{n - 2\ell + 3}}$$

$$= \vdots$$

$$= \bigoplus_{k_1, k_2, \dots, k_{2\ell-2\eta} > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \sum_{a=1}^{2\ell - 2\eta} \frac{k_a}{2} + \eta}{n - 2\ell + 2\eta + 1}} .$$

When $\eta = \ell - 1$, the right side is equal to

$$\bigoplus_{k_1, k_2 > 0 \text{ odd}} (\mathbb{Z}/2)^{\binom{t - m - \sum_{a=1}^2 \frac{k_a}{2} + \ell - 1}{n - 1}} = (\mathbb{Z}/2)^{\binom{t - m + \ell}{n + 1}}.$$

This completes the proof.

Lemma 3.4. Let $n_1 \geq 0$. Then

$$bu_s(P_n) \cong$$

$$\begin{cases} (\mathbb{Z}/2)^{\sum_{j=0}^{n-2} \sum_{i=0}^{n_1-1} \binom{j}{2i} \binom{t-n+j+i+2}{j+1}}, & \text{when } s=2t, \, n=2n_1 \text{ or } n=2n_1+1, \\ \mathbb{Z}/2^{t-n+2} \oplus (\mathbb{Z}/2)^{\sum_{j=0}^{n-2} \sum_{i=0}^{n_1-2} \binom{j}{2i+1} \binom{t-n+j+i+3}{j+1}}, & \text{when } s=2t+1, \, n=2n_1, \\ \mathbb{Z}/2^{t-n+2} \oplus (\mathbb{Z}/2)^{\sum_{j=0}^{n-2} \sum_{i=0}^{n_1-1} \binom{j}{2i+1} \binom{t-n+j+i+3}{j+1}}, & \text{when } s=2t+1, \, n=2n_1+1, \\ 0, & \text{otherwise} . \end{cases}$$

Proof If we apply homotopy groups to the homotopy equivalence in 3.2, we get

$$bu_*(P_n) \cong bu_*(\Sigma^{2(n-1)}P_1) \oplus \oplus_{i=1}^{n-1} \oplus_{k_1,k_2,...,k_{i-1}>0} X_*^{n-i-1,k_1,k_2,...,k_{i-1}}.$$

The factor $bu_*(\Sigma^{2(n-1)}P_1)$ is concentrated just in odd degrees, see [4], whereas the factor

$$\bigoplus_{k_1,k_2,\dots,k_{i-1}>0} X_*^{n-i-1,k_1,k_2,\dots,k_{i-1}}$$

is concentrated just in even degrees when i=1 and in both odd and even degrees when i>1. By 3.3, the result follows.

3.5. When p is odd we write bu for the connective unitary K-theory with p-adic integers coefficients where $bu \simeq \vee_{i=0}^{p-2} \Sigma^{2i} lu$, and lu is called the Adams summand, $lu_*(\Sigma^{\infty}S^0) \cong \mathbb{Z}_p[v]$ and $\deg(v) = 2p-2$. By [4] we have $lu_{2k(p-1)+2i-1}(\Sigma^{\infty}B\mathbb{Z}/p) \cong \mathbb{Z}/p^{k+1}$ for $i=1,\ldots,p-1$.

For $n \geq 2$ and any prime p, the homotopy equivalence which is in 2.10 can be written as

$$bu \wedge P_n \simeq \left(\bigvee_{i_1, i_2, \dots, i_{n-1} = 1}^{p-1} \sum_{i_1, i_2, \dots, i_{n-1} = 1} \sum_{i_1, i_2, \dots, i_{n-1} > 0} \sum_{i_1, i_2, \dots, i_{n-1} = 0} \sum_{i_1, i_2, \dots, i_n = 0} \sum_{i_1, i_$$

where $\Lambda_{j_1,j_2} = 2j_1 + 2j_2 - 2$, see 1.1.

And again to compute $bu_*(P_n)$ as a graded group for any prime p, we apply $\pi_*(-)$ for the previous homotopy. The graded group $\bigoplus_{i_1,i_2,\ldots,i_{n-1}=1}^{p-1}\pi_{2t+1}(\Sigma^{2i_1+2i_2+\cdots+2i_{n-1}}bu\wedge P_1)\cong\bigoplus_{i_1,i_2,\ldots,i_{n-1}=1}^{p-1}\bigoplus_{j=0}^{p-2}\mathbb{Z}/p^{k+1}$ where $t=k(p-1)+\sum_{\beta=1}^{n-1}i_{\beta}+j+i$ and $i=0,1,2,\ldots,p-2$, which is non-zero just in odd degrees. So to complete this calculation we need to compute the homotopy group of the rest of the wedges of the above homotopy, that is,

$$\pi_*(\vee_{i=1}^{n-1}\vee_{j_1,j_2,k_1,k_2,...,k_{i-1}>0}\vee_{\lambda_1,\lambda_2,...,\lambda_{n-i}=0}^{p-2}\Sigma^{2(n-i-1)+\Lambda_{j_1,j_2}+\sum_{a=1}^{i-1}k_a+2\sum_{a=1}^{n-i}\lambda_a}H\mathbb{Z}/p).$$

Similarly, we need to introduce a supporting corollary for this calculation.

Corollary 3.6. Let $X_*^{m,k_1,k_2,...,k_n,\lambda} = \bigoplus_{i,j>0} \pi_*(\Sigma^{2m+\Lambda_{i,j}+\Sigma_{a=1}^n k_a+2\Sigma_{a=1}^\alpha \lambda_a} H\mathbb{Z}/p)$, where

 n, m, α, k_a and $\lambda_a \geq 0$ and $\Lambda_{i,j}$ as in 1.1. Then, for $t, \ell \geq 0$

$$\oplus_{k_1,k_2,\dots,k_{2\ell}>0 \text{ odd } } \oplus_{k_{2\ell+1},\dots,k_n>0 \text{ even }} X_{2t}^{m,k_1,k_2,\dots,k_n,\lambda} = (\mathbb{Z}/p)^{\binom{t-m+\ell-\sum_{a=1}^{\alpha}\lambda_a}{n+1}},$$

and

$$\bigoplus_{k_1,k_2,\dots,k_{2\ell+1}>0 \text{ odd}} \bigoplus_{k_{2\ell+2},\dots,k_n>0 \text{ even }} X_{2t+1}^{m,k_1,k_2,\dots,k_n,\lambda} = \left(\mathbb{Z}/p\right)^{\binom{t-m+\ell+1-\sum_{a=1}^{\alpha}\lambda_a}{n+1}}.$$

The proof is similar to 3.3, where

$$X_{2t}^{m,k_1,k_2,\dots,k_n,\lambda} = (\mathbb{Z}/p)^{\binom{t-m-\sum_{a=1}^n \frac{k_a}{2} - \sum_{a=1}^n \lambda_a}{1}}$$

and

$$X_{2t+1}^{m,k_1,k_2,...,k_n,\lambda} = (\mathbb{Z}/p)^{\binom{t-m+\frac{1}{2}-\sum_{a=1}^n\frac{k_a}{2}-\sum_{a=1}^\alpha\lambda_a}{1}}.$$

Remark 3.7. We write $\Gamma(k,t)$ for $\bigoplus_{i_1,i_2,...,i_{n-1}=1}^{p-1} \bigoplus_{j=0}^{p-2} \mathbb{Z}/p^{k+1}$ when $t=k(p-1)+\sum_{\beta=1}^{n-1} i_{\beta}+j+i$ and $i=0,1,2,\ldots,p-2$

By applying the homotopy group to the homotopy equivalence in 3.5, and by 3.6 we get the following result.

Theorem 3.8. Let $n_1 \geq 0$. Then for a prime p,

$$bu_s(P_n) \cong$$

$$\begin{cases} (\mathbb{Z}/p)^{\sum_{j=0}^{n-2} \sum_{\lambda_{1},\lambda_{2},...,\lambda_{n-j-1}=0}^{p-2} \sum_{i=0}^{n_{1}-1} \binom{j}{2i} \binom{t-n+j+i+2-\sum_{a=1}^{n-j-1} \lambda_{a}}{j+1}}, & when \ s=2t, \ n=2n_{1} \\ & or \ n=2n_{1}+1, \end{cases}$$

$$\Gamma(k,t) \oplus (\mathbb{Z}/p)^{\sum_{j=0}^{n-2} \sum_{\lambda_{1},\lambda_{2},...,\lambda_{n-j-1}=0}^{p-2} \sum_{i=0}^{n_{1}-2} \binom{j}{2i+1} \binom{t-n+j+i+3-\sum_{a=1}^{n-j-1} \lambda_{a}}{j+1}}, & when \ s=2t+1, \\ n=2n_{1}, \end{cases}$$

$$\Gamma(k,t) \oplus (\mathbb{Z}/p)^{\sum_{j=0}^{n-2} \sum_{\lambda_{1},\lambda_{2},...,\lambda_{n-j-1}=0}^{p-2} \sum_{i=0}^{n_{1}-1} \binom{j}{2i+1} \binom{t-n+j+i+3-\sum_{a=1}^{n-j-1} \lambda_{a}}{j+1}}, & when \ s=2t+1, \\ n=2n_{1}+1, \\ 0, & otherwise \ . \end{cases}$$

Example 3.9. Let p = 2 and n = 5, then by 3.3 we have

$$bu_{2t}(P_5) = (\mathbb{Z}/2)^{\sum_{j=0}^{3} \sum_{\ell=0}^{1} \binom{j}{2\ell} \binom{t-3+j+\ell}{j+1}}.$$

Similarly, we can calculate that

$$bu_{2t+1}(P_5) \cong \mathbb{Z}/2^{t-3} \oplus (\mathbb{Z}/2)^{\sum_{j=0}^{3} \sum_{\ell=0}^{1} {j \choose 2\ell+1} {j+\ell-2 \choose j+1}}.$$

For t = 5, we have $bu_{10}(P_5) = (\mathbb{Z}/2)^{69}$, the direct sum of 69 copies of $\mathbb{Z}/2$. And $bu_{11}(P_5) = \mathbb{Z}/4 \oplus (\mathbb{Z}/2)^{106}$. whereas, in case p = 3, $bu_{11}(P_3) = (\mathbb{Z}/3)^4 \oplus (\mathbb{Z}/3)^2 \oplus (\mathbb{Z}/3)^{25} = (\mathbb{Z}/3)^4 \oplus (\mathbb{Z}/3)^{29}$, and $bu_{10}(P_3) = (\mathbb{Z}/3)^{28}$.

References

- [1] J.F. Adams: Stable Homotopy and Generalised Homology, University of Chicago Press (1974).
- [2] Allen. Hatcher: Algebraic topology; Cambridge University Press. (2002) xii+544.
- [3] David Copeland Johnson and W. Stephen Wilson: On a theorem of Ossa; Proc. A.M. Soc. (12) 125 (1997) 3753-3755.
- [4] Bruner, Robert R. and Mira, Khairia M. and Stanley, Laura A. and Snaith, Victor P: Ossa's theorem via the Künneth formula; Mathematics and Statistics 3(3): 58-64, 2015, DOI: 10.13189/ms.2015.030302, http://www.hrpub.org/download/20150620/MS2-13403792.pdf