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Abstract.

In the present article we study some approximation properties of the main operators (upper and lower
operators) and on the basis of these properties a connection between the upper and lower operators in
nonlinear differential games and its applications to the problem of pursuit are established.
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1 Introduction

The structure of nonlinear differential games is described by operators 7" and Ht. [1,2
as natural generalization of the concept of alternating integral for linear differential
games |3 3]. Publications [6-22| deal with further development of operator structures
in nonlinear differential games. In particular, lower analogues operators 1% and Ht and
their applications to study of qualitative structure of phase space of differential games
. Questions of approximation of the operators

of pursuit-evasion were suggested in|10 13
7" and Ht by simpler operators were studied in |6,11]. In the future, for the symmetry
operators 1% and Ht are said to be the upper, and their lower analogues Ty and [],
call lower operators in nonlinear differential games. In the present article we study some
approximation properties of the operators HB and []; (upper and lower operators) and
on the basis of these properties a connection between the upper and lower operators in
nonlinear differential games and its applications to the problem of pursuit are established.
Let K(RY) (respectively C(R?))be family of all nonempty compact (closed) subsets of
Rd, H={>¢ Rd'; |z] < 1} be closed unit ball in Hd; w = {70,71,72,.... Tn} be partition
of segment [0.¢] (0 =79 <71 < Tg < ... < T, = t, n may depend on w;).Let us assume
rA; = ‘T@' — Ti—1/|, and |w‘| = t, w is a partition of the segment [0.?‘-]. If X is subset of
the Euclidean space, A is segment in R, then by X[A] denote the set of all measurable
functions a(-) : A — X. When A = [, 5], we simply write X [, 5].
Let us consider the differential game

dz .
E:f(z_-u._z'), (1)

where 2 € R, ue P, veQand f: R'x P x(QQ = R, P € K(RP),Q € K(RY). Along
with the system (1) we also fix the set of M, M € R?% which is called terminal set.

We suppose that further the function f holds the following conditions.

A. The function f: R%* x P x Q — R" is continuous and is locally the Lipshitz type
by 2( i.e. the function f holds the Lipshitz condition on every compact set D € K (IR%)
with the constant Lp, depending on compact D).

B. There is a constant C' > 0, such that for all 2 € R%, w € P. v € Q. the inequality

|2« flz,u,0) | CO+] 2 %)

holds.

C. The set f(z, P,v) is convex for all = € R, v € @, and the set f(z,u, Q) is convex
for all 2 € R, u € P.

We call every function u(-) € Pla, ] (respectively v(-) € Qa, f]) as admissible
control of pursuer (respectively evader).We denote by z(t,u(-), v(-), &) solution of the
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system (1),which corresponds to admissible control w(t) and v(f) and initial point £ €
Re(precisely definition of a trajectory is given in Section 4).Pursuit starts from a point
2o € R\ M and it is considered to be ended, when the phase point hits the set M.In other
words,pursuer aims to realize the inclusion z(7) € M. Then, we say that pursuit from a
point 2g is completed at the time 7 in the game (1). Naturally, there is a question: From,
which initial points =g pursuit can be completed at the time 7 in the game (1)¢ To solve
this problem L.S. Pontryagin has introduced the second method of pursuit in a linear
differential game. The second method of pursuit is formulated in terms of alternating
integral|3-5|. Solution of this problem for nonlinear differential games is described by
operators 1" and Ht. [1,2
for linear differential games. In the present article, the basic definitions and results are

as natural generalization of the concept of alternating integral

presented in relation to operators I_Ft and ], -

Definition 1. The operator II° associates every set A € R with the set TI°A of
all points ¢ € R, such that for any admissible control of evader v(-) € Q[0,¢] there
is admissible control u(-) € P[0,=] of pursuer, such that the corresponding trajectory
2(t,u(-),0(-). &) with beginning at the initial point ¢ € R? hits A € R at time =, i e.
z(2) € A.

Definition 2. The operator I, associates every set A € RY with the set I1. A of
all points € € R?, such that there is admissible control pursuer u(-) € P[0, 2] for any
admissible control of evader v(-) € Q[0, £].moreover, corresponding trajectory z(¢, u(-), v(+), &)
with the beginning at the point £ € R? hits A © R? at time £, i e. 2(s) € A.

By means of operations of association and intersection we can write operators II° and
I1; as follows:

A= U (€€ R 2(zu().0().€) € A}, (2)

v()EQ[0.] u(-)EP[0.2]

A= |J (1 {¢e B[ 2(zu(),0().€) € A}, (3)

u(-)EP[0,z] v(-)EQ[0,2]
Let w = {79,71. T2, ..., Tn } be partition of segment [0, 1]. We assume
M = 11 11%. 1% M,
I, M =115, 1;,.. 105, M,

where 0; = 73 — Ti—1,i = 1.2, ... n.

Definition 3. Let II'Af = () I¥M, IL,M = |J IL,M .

Jw|=t || =t

M (respectively IT; M) is called the upper (lower) operator of nonlinear differential
games with fixed time |2-15].

Further, if it will be necessary, we shall indicate in notations the dependence of
operators not only of w or ¢, but also of other initial data, e. g. L (M, P, @), 1I5(M, P, Q).

A concepts of the upper and lower operators have the following role in nonlinear
differential games: From points zg with zo € II'M (respectively 2o € I[; M) the pursuit
can be completed at the time 7 with{without) discriminating against the evader controls
[1-13

2 Preliminaries

For completeness we state certain properties of the operators I and II.. We note that
for arbitrary family X the following inclusions take place

1¢ ﬂX;\ c ﬂ X, UHEX,\ c 11, Ux,\ (1)
A A A A
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Lemma 1 [6, 12|. Let Xy € C(R?%) be non increasing (nondecreasing) direction of
closed (open) sets. Then the equality 117 (M Xy = (N IFX (ULLXy = LU Xy is valid.
A X A A

Lemma 2 |6, 12|. The following relations

a) [t 112 M c 11222 0, 1, ey M D 1z 4oy M.

6)for any |wi| =1, |we| =1t and wy C wy, %20 < 11*1 M,
[I“*M < II*2 M, are valid.

6,12| that 1) If M € C(R?), then

It were shown in

MM = () TT(M +6H);
60

2) if M is open subset of R? | then

MM = | J T (Mx6H).
48>0

Let operator A® (correspondingly A.) differs from the operator 1I* ( correspondingly
from IL.) by the property that in Definitions 1 { correspondingly in Definition 2}, only
constant controls v(-) = v € @ ( correspondingly u(-) = u =€ P) are taken instead of
arbitrary adinissible controls v(-) € Q[0,z] ( correspondingly u(-) € P[0, ]).

Let w= {79, 71, T2, ... Tn} be partition of segment [0,7]. We assume

AYNM = A% A% A%

AuM = Ag, As, ... As, M.

where &, =7, — T34, = 1.2, ....n.
Definition 4. A'M = (| A“M, AM = |J A.M.
| |=t || =t

Theorem 1 |G, 17]. We have the equality
II'M = A'M (5)
for M € C(R%) and if M is open subset of RY then
M = A M. (6)
Lemma 3 [6, 17]. Let wy be infinitely reducing sequence of partitions of the segment

[0.7], i e., wp C wpyr, | wi |= tomax | 7F — 75, |= 0 for k = oco. Then the following
equality holds

A = ﬂ 1% M
k=1

for closed M and
MM = | J T, M
k>1

for open M.

3 Approximation of the main operators

For nonlinear problems pursuit the construction of operators II* M and T, M is a lot
of difficulties. Therefore the problem of working out effective schemes for the construction
of these operators is relevant.
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Consider the following operators accordingly

o= UJlter (o) =¢+efEur)e B}

vEQ ueEP

O.B=J ({eer 25008 =6 +ef(Guv) € B}

uePve@

Definition operators @ and ©; are similar to definition II* and II; respectively.

In this paper we consider the problem of approximation operators II* M and TI, M hy
means of iteration of operators ©F and ., respectively. On the basis of these properties
a connection between the operators I'M and II;M in nonlinear differential games and
its applications to the problem ol pursuit are established.

In what follows, we will assume that the boundary of M (9M) is compact. We denote
by D, the set of all points of ¢ € R? of which it is possible to achieve the set M
(the boundary of M) at the appropriate admissible controls w(-) and »(-) for a time
not exceeding #. Let D = D, + H and constant is the quantity that can depend only
on the function f, sets P, ), D. We shall suppose that t < 4. Condition B guarantees
boundedness of the set D |16]. We assume K = max{| f(z,u,v) || 2 € D,u € P,v e Q}.

Lemma 4. There exists a positive number L such that the following inclusions

ASM € ©°(M + Le2H) € A% (M + 2L=2H), (7)
A (M#2L22H) € O (M+L2H) € AM (8)

hold ( see|4| about operators + and x).

The proofs are analogous, so we confine ourselves to the proof of (8). Let & be arbitrary
element from the set A (M#2Lz2H). Then, there exists an admissible control of pursuer
uw € P, such that for any admissible control evader v(.) € Q[0, =], the corresponding
trajectory =(f,u, v(-).€) with the initial point of & € R? hits M#2Le2H at time = i.c.
2(2) € M*2L=2H. Therefore

2z u,v(+). ) =&+ ]:f(z(t).-u,a.-‘(f))dt € Mx2L="H. (9)

In virtue of the condition A for arbitrary controls « € P, v(-) € @ and the initial
point ¢ € R we have the relation

| £, a0(t) = F(Euv(t) < Ly | 2(6) = £ | (10)
On the other hand,
| 2(t,u,v(t), &) —¢ | Ke,te[0,2]. (11)
Hence, using the inequality (10), we obtain
| Flz(t),u,v(t)) — f(& u,v(t)) |< Le, (12)

where L = L1 K.
Let us prove now that for every v(-) € Q[0, 2], there is constant control v € @), for
which the equality

£+ /‘;f(é.u_.f_r(t))(it: C4ef(é ), -

take place.
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Due to the condition C, the set f(&, u, Q) is convex [or every w € P.Therelore we
have

/(: (€ u, 0(t))dt € =f(.1, Q).

It follows that there is a o € () such that

/Dc F& u,v(t))dt == f(& u,v).

Consequently, for any v(-) € Q[0, 2] there is a constant control v € @), for which the
equality

et [ e o) =6+ efigun

holds. Applying inequality (12) to the right side ol the equality (13), we obtain

E+cf(& uv) €l —l—] f(z(t)., u,v(t))dt + L2 H. (14)
0
Using the inclusion (9), we have
E4cf(éuv) € M*2L2H + Le2H.

Hence,
£ €O (MxLH).

Similarly, the right side of the turn proved (8). Proof of the inclusion (7) is similar to
prool of the relation (8).
Lemma 5. The following inclusions are valid

O (M) + Lo*H € O (M + L&* (14 Ly=)H). (15)
O (M*Lé*(1 + Ly2)H) + Lé*H ¢ ©_M. (16)

Prool. Let 1 be an arbitrary element ol the left side inclusion (15). Then there is
& € ©5(M) such that
|n—¢|< Lo (17)

By virtue of the condition A we have
| f(&u0) = FOpuv) 1< Ly [ =€ 1. (1)
Now,using (17), we obtain
| f(& uv) — f(n,u,0) |< LiLS2. (19)
Consider the sum of 7+ &f(n,u,v). Using inequality (17) and (18) we have
n+ef(nu.v) €& +L3°H +=(f(&,u,v) + LiL6*H) = & + 2f(&,u,v) + L% (1 4 Ly2).

Now, by virtue of condition ¢ € ©7(M) we have n+=f(n,u.v) € A+ LA?(1 4+ Ly=).
Hence, 1 € ©°(A + L6%(1 4+ Li2)H). Proof of inclusion (16) is similar to proof of the

relation (15). Lemma 5 is proved.

Further, we consider only uniform partition of the segment [0, #]. Let wy, = {0,2, 22, ...,ne =

n
t} be uniform partition of the segment [0,7], where ¢ = % Let I'(z) = L2 3 (1 +
K=

1
Li2)*=1. We assume

O*M = ©°0°M 0 M = 070" VM 0" M = 0",
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O M = 0.0, M, 0. M =0.0,_1).M,0, M =06,.M.

Note that for convenience entry is similar to the notation Ok O, introduced A%<, 4.
Theorem 3. The following inclusions

A9 N € ©%n (M +T(e)H) € A% (M + 2T'(e)H), (20)

Aw, (M#2T(2)H) € O (MsT'(2)H) C Au, (M) (21)

are valid.
Prool. From Lemuma 4 it follows that

AM Cc ©°(M + L*H).
Using Lemma 4 again we obtain
A*M C ©°(0°(M + L2H) 4+ L=2H).
Applying Lemma 5 to the right side of this inclusion we have

A*M c ©*(M + L1+ Lys)H).

Suppose
P
APEM € ©PF (M + Le? Y (14 Lys)"'H). (22)
k=1
We shall show that

p+1
APV c ©PFDE(A 4 LY (14 Lis) ' H). (23)

k=1

Applying Lemma 4 to the inclusion (21), we obtain

p
APTUEN « O (0P (M + L:2 Z(l + o) H) + L),
k=1

Now, using Lemma 3 we have at the relation 1

pt+1
APTDEN c @PFVE(AL 4 L2 (14 Las) T H).
k=1

This implies

A"M C O™ (M + L2 (14 Lie)* ' H).
k=1

Consequently,

A¥ M c @ (M +T(=)H).
Similarly of that, the following inclusion
O (M +T(s)H) C A" (M +2T'(s)H)

will established.
Consequently,

AN C O (M +T(e)H) C A% (M +20'(=)H).
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Theorem 3 is proved.
Theorem 4. The following equality holds

M = | ) o' (M +6H), (24)
48>0
for M C(Rd),
MM = | ) O MxoH), (25)
=0

for open M, M C R®.
T
Proof. Consider the value of T'(s) = Lz% 3 (1 4 Li2)F. Tt is easy to see that T'(z) <
k=1
sL(e*1? —1). By choose of partitions we have I'(2) < sL(el? — 1) < 4. i.e. £ < W%L'_D'

Inclusion (19) implies
A" M C ©¥" (M +d6H) C A~ (M +20H).
Transition to the intersection on the w,, in these relations term by term, we have
AN < ()0®(M +0H) | JA®(M +20H).
Wn w
Now taking into account Lemma 1 we obtain,
A'M c O (M +5H) c AY(M +25H).
Since § > 0 is arbitrary we have
A'M C ﬂ O'(M +6H) C ﬂ AY(M +20H).
50 50
Now, Theorem 1 and Theorem 2 imply
A = ﬂ OM +oH).
60

The proof of the equality (24) is similar to the proof of (23). Theorem 4 is proved.

4 The connection between the upper and lower operators
and its application to the nonlinear differential games
of pursuit with fixed time

We shall study connection between operators II* and L.
Theorem 5. For any ¢ > 0, there exists a number <, for all | w, |< ¢ the inclusions
are valid
O“"M C O, (M+4dH), (26)
O (Mx*xdH) C O, M. (27)

The proofs are analogous, so we confine ourselves to the proof of (25). For convenience,
we consider the operator ©3. By definition

O¥M = () U{& e R 2(sw.8y) = &+ =f (€1, 0) € ©FM

vEQuEF
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Furthermore,

oMc | N{aer |G+t uv)e (JOFM —=f(&,u,0)] + KH}.

uePveq us P

Here we considered the fact f(&,u,v) C KeH.
By repeating this process with respect to ©% and ©° we get

o Mc | (Haer & +ef@uvel] {eeR  &e

ucPve@ ue P veq
e JINEe R & e | M—c/(g uw o)== (G u o)== (¢ u0)+K=H}. (
uweP ve@ ue P

Note that €11 = & + £f(&. u,v). Therefore, in virtue of the condition A, we have
| f(&igr.u,v) — f(&uuw) |< Ly | &1 — & |< L1KeH = LeH, where L = L1 K. This
implies 2f (&1, u,v) Cef(&,u,v) + L2, 2f(& u,0) Caf(€pr, u,v) + Le?,

Taking into account of these relations,we replace any vector =f(&,u,v) in the right
side of the inclusions (27) on =f(&41,u, v) + Le? for i = 1,2 and using the inclusion (4)
we obtain

o¥Mc | N{aer [a+efGuvel) eer we

w inPve@ uce Pve@

€ U ﬂ [(s€ RY| &€ M —cf(ég,u.v) + Le? + KeH]| — e f(€2,u,v)+
ueP ve

+L=%) + K=H}.

This implies,

o*Mc | Nber [a+efcuwne ) Nker | etfEuoe

ucsPved ucPve

e U (6 € B[ & +=f(éacuv) € [M + Le? + K=H]| 4 Le?) + K=H).
us P ved

Consequently,
O%*M C ©.(0.(0.(M + Le?H + KeH) + Le*H) + K=H). (29)
Now, applying Lemma 5 to the right side of the inclusion (28) we have
O M C O3 (M + L?H + KeH 4+ La2(1 4+ Lye)H + K=(1 + Ly2)?H)
Le.

2
O M C O3 (M + (Le? Y (14 Ly2)* ™ + Ke(1+ (14 Ly2)*)H)
k=1

Repeating this process one more time we obtain

O™ M C O, (M +T()H). (30)
where »
D(e) = Le? Y (14 Lye)* ' + Ke(1 4 (14 Lye)" 1),
k=1
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To complete the proot of Theorem 5 it suflices to choose £ > 0 satistying the inequality

['(z) < 4, as it was done in the proof of Theorem 4.
Therefore, for all | wy, |< = the inclusion

9 M C O, (M + oH)

holds. Theorem 5 is proved.
Theorem 6. The following equality holds

M = () Te(M +6H), (31)
=0
for M € C-‘(Rd] and
M = | ' (M x5H) (32)
40

for open M, M c R?.
Proof. From Theorem 5 it follows that

1" M C @< (M +6H) C O, (M + 25H) C

C T, (M + 36 H).

This implies that for any 4 > 0, there exists a number = > 0 for all wy, such that
| wy |< = the relation

" M C TL,, (M + 30H).

Hence, by Lemma 3, we have

M) C () Te(M + 35H).

80

On the other hand,
() W(M +36H) C () TI'(M +36H).
560 a0

Now, using the first part of Theorem 1, we have

() (M +306H) C TI'M.

620

Hence, we obtain the equality (30).The proof of the equality (31) is similar to the proof
of (30).

Theorem 6 is proved.

Applications of upper and lower operators to nonlinear differential games is similarly
to the linear case|2,4,10-13,19]. Therefore, we confine ourselves to a brief presentation
ol the delinitions ol basic concepts and to state basic results in connection with the
system(1).

In further for brevity entry we assume P(2) = P[0, 2] and Q(2) = Q[0, =]

Defiition 5. The mapping V* : R? = Q(z) is said to be & strategy of the evader
in the upper game.The mapping U* : RY x Q(z) — P(2) is said to be zstrategy of the
pursuer in the upper game.

Detiition 6. The mapping UZ : R — P(2) is said to be == strategy of the pursuer
in the lower game.The mapping V7 : R% x P(z) — (=) is said to be s-strategy of the
evader in the lower game.
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A piven initial point zg and a given pair of strategies UX VZ* give rise to a unique
trajectory z(t) = 2(t, 20. UX. V), t > 0. This trajectory is defined on [0, 2] as solution of
the Cauchy problem

dz
O = 1), (1), v0(1), 2(0) = =,

where vo(+) = V¥ (20) and wo(-) = U (20, v0(-))
The trajectory is then extended from [0, k=] to [0, (k + 1)z] as the solution Cauchy
problem

% = f(2(t), up(t), v (1)), 2 (ke + 0) = 2(ks = 0),

where v (t) = v(t — ke),v(-) = VX (2(ke)) and ug(t) = UF (2pe. v(-))(t — ke). t € [ke, (b +
1)e].

The trajectory 2(t) = 2(t,20,U;, V) corresponding to a given initial point 2o and a
given pair of strategies U7, V7 is defined similarly.

Defiition 7. Pursuit from the point 2o can be completed at the time 7 in the upper
game if for any ¢ = I, there exists s-strategy of the pursuer U} such that 2(7) =
2(7,20, UX, V) € M for any e-strategy of the evader VX,

Concept of possibility to complete pursuit at the time 7 in the lower game can be
introduced similarly.

On the base of these definitions, the equality (30) in Theorem 6 can be interpreted
as follows. If M € C(R?), then pursuit from a point 2y can be completed at the time 7
in the upper game if and only if the pursuer in the lower game can transfer the phase
point from the initial point zg into any neighborhood of the terminal set at the time 7(
see | 2,3,10,12,21-22))
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