How to prove the Riemann Hypothesis

Fayez Fok Al Adeh ${ }^{1}$.
${ }^{1}$ President of the Syrian Cosmological Society
P.O.Box:13187, Damascus, SyriaTels:00963-11-2776729,2713005
*Corresponding Author Email address: hayfa@scs-net.org

Abstract

The aim of this paper is to prove the celebrated Riemann Hypothesis. I have already discovered a simple proof of the Riemann Hypothesis. The hypothesis states that the nontrivial zeros of the Riemann zeta function have real part equal to 0.5 . I assume that any such zero is $s=a+b i$. I use integral calculus in the first part of the proof. In the second part I employ variational calculus. Through equations (50) to (59) I consider (a) as a fixed exponent, and verify that a $=0.5$.From equation (60) onward I view (a) as a parameter (a <0.5) and arrive at a contradiction. At the end of the proof (from equation (73)) and through the assumption that (a) is a parameter, I verify again that $\mathrm{a}=0.5$

Subject Classification: Functional Analysis; Complex variables; General Mathematics.
Keywords: Definite Integrel; Indefinite Integral; Variational Calculus.

INTRODUCTION

The Riemann zeta function is the function of the complex variable $\mathrm{s}=\mathrm{a}+\mathrm{bi}(\mathrm{i}=\sqrt{-1})$, defined in the half plane $\mathrm{a}>1$ by the absolute convergent series

$$
\begin{equation*}
\zeta(s)=\sum_{1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

and in the whole complex plane by analytic continuation.
The function $\zeta(s)$ has zeros at the negative even integers $-2,-4, \ldots$ and one refers to them as the trivial zeros. The Riemann hypothesis states that the nontrivial zeros of $\zeta(s)$ have real part equal to 0.5 .

PROOF OF THE HYPOTHESIS

We begin with the equation
(2) $\zeta(s)=0$

And with
(3) $\mathrm{s}=\mathrm{a}+\mathrm{bi}$
(4) $S(a+b i)=0$

It is known that the nontrivial zeros of $\zeta(s)$ are all complex. Their real parts lie between zero and one.

If $\quad 0<\mathrm{a}<1$ then
(5) $\quad \zeta(s)=\mathrm{s} \int_{0}^{\infty} \frac{[x]-x}{x^{s+1}} \mathrm{dx}$
$[\mathrm{x}]$ is the integer function
Hence
(6)

$$
\int_{0}^{\infty} \frac{[x]-x}{x^{s+1}} \mathrm{dx}=0
$$

Therefore
(7)

$$
\int_{0}^{\infty}([x]-x) x^{-1-a-b i} d x=0
$$

(8)

$$
\int_{0}^{\infty}([x]-x) x^{-1-a_{x}-b i} d x=0
$$

(9)

$$
\int_{0}^{\infty} x^{-1-a}([x]-x)(\cos (b \log x)-i \sin (b \log x)) d x=0
$$

Separating the real and imaginary parts we get

$$
\begin{align*}
& \int_{0}^{\infty} x^{-1-a}([x]-x) \cos (b \log x) d x=0 \tag{10}\\
& \int_{0}^{\infty} x^{-1-a}([x]-x) \sin (b \log x) d x=0
\end{align*}
$$

According to the functional equation, if $\zeta(s)=0$ then $\zeta(1-s)=0$. Hence we get besides equation (11)

$$
\begin{equation*}
\int_{0}^{\infty} x^{-2+a}([x]-x) \sin (b \log x) d x=0 \tag{12}
\end{equation*}
$$

In equation (11) replace the dummy variable x by the dummy variable y

$$
\begin{equation*}
\int_{0}^{\infty} y^{-1-a}([y]-y) \sin (b \log y) d y=0 \tag{13}
\end{equation*}
$$

We form the product of the integrals (12)and (13).This is justified by the fact that both integrals (12) and (13) are absolutely convergent .As to integral (12) we notice that

$$
\int_{0}^{\infty} x^{-2+a}([x]-x) \sin (b \log x) d x \leq \int_{0}^{\infty}\left|x^{-2+a}([\mathrm{x}]-\mathrm{x}) \sin (\mathrm{b} \log \mathrm{x})\right| \mathrm{dx}
$$

$\leq \int_{0}^{\infty} x^{-2+a}((x)) d x$
(where ((z)) is the fractional part of $\mathrm{z}, 0 \leq((\mathrm{z}))<1)$
$=\lim (\mathrm{t} \rightarrow 0) \int_{0}^{1-t} x^{-1+a} \mathrm{dx}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-2+a}((\mathrm{x})) \mathrm{dx}$
$(\mathrm{t}$ is a very small positive number) (since $((\mathrm{x}))=\mathrm{x}$ whenever $0 \leq \mathrm{x}<1$)
$=\frac{1}{a}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-2+a}((\mathrm{x})) \mathrm{dx}$
$<\frac{1}{a}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-2+a} \mathrm{dx}=\frac{1}{a}+\frac{1}{a-1}$
And as to integral (13) $\int_{0}^{\infty} y^{-1-a}([y]-y) \sin (b \log y) d y$
$\leq \int_{0}^{\infty}\left|y^{-1-a}([y]-y) \sin (b \log y)\right| d y$
$\leq \int_{0}^{\infty} y^{-1-a}((y)) d y$
$=\lim (\mathrm{t} \rightarrow 0) \int_{0}^{1-t} y^{-a} \mathrm{dy}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} y^{-1-a}((y)) d y$
$(t$ is a very small positive number) $($ since $((y))=y$ whenever $0 \leq y<1)$
$=\frac{1}{1-a}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} y^{-1-a}((y)) d y$
$<\frac{1}{1-a}+\int_{1+t}^{\infty} y^{-1-a} d y=\frac{1}{1-a}+\frac{1}{a}$

Since the limits of integration do not involve x or y , the product can be expressed as the double integral

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \sin (b \log y) \sin (b \log x) d x d y=0 \tag{14}
\end{equation*}
$$

Thus
(15)
$\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y)(\cos (b \log y+b \log x)-\cos (b \log y-b \log x)) d x d y=0$
(16) $\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y)\left(\cos (b \log x y)-\cos \left(b \log \frac{y}{x}\right)\right) d x d y=0$

That is
(17)

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos (b \log x y) d x d y= \\
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos \left(b \log \frac{y}{x}\right) d x d y
\end{aligned}
$$

Consider the integral on the right-hand side of equation (17)
(18) $\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos \left(b \log \frac{y}{x}\right) d x d y$

In this integral make the substitution $\mathrm{x}=\frac{1}{z} \quad \mathrm{dx}=\frac{-d z}{z^{2}}$
The integral becomes
(19) $\int_{0}^{\infty} \int_{\infty}^{0} z^{2-a} y^{-1-a}\left(\left[\frac{1}{z}\right]-\frac{1}{z}\right)([y]-y) \cos (b \log z y) \frac{-d z}{z^{2}} d y$

That is
(20)

$$
-\int_{0}^{\infty} \int_{\infty}^{0} z^{-a} y^{-1-a}\left(\left[\frac{1}{z}\right]-\frac{1}{z}\right)([y]-y) \cos (b \log z y) d z d y
$$

This is equivalent to
(21) $\int_{0}^{\infty} \int_{0}^{\infty} z^{-a} y^{-1-a}\left(\left[\frac{1}{z}\right]-\frac{1}{z}\right)([y]-y) \cos (b \log z y) d z d y$

If we replace the dummy variable z by the dummy variable x , the integral takes the form

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-a} y^{-1-a}\left(\left[\frac{1}{x}\right]-\frac{1}{x}\right)([y]-y) \cos (b \log x y) d x d y \tag{22}
\end{equation*}
$$

Rewrite this integral in the equivalent form

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}\left(x^{2-2 a}\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)([y]-y) \cos (b \log x y) d x d y \tag{23}
\end{equation*}
$$

Thus equation 17 becomes
$\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos (b \log x y) d x d y=$
$\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}\left(x^{2-2 a}\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)([y]-y) \cos (b \log x y) d x d y$
Write the last equation in the form

$$
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([y]-y) \cos (b \log x y)\left\{\left(x^{2-2 a}\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)-([\mathrm{x}]-\mathrm{x})\right\} \mathrm{dx}
$$

$d y=0$
Let $\mathrm{p}>0$ be an arbitrary small positive number. We consider the following regions in the $\mathrm{x}-\mathrm{y}$ plane.
(26) The region of integration $\mathrm{I}=[0, \infty) \times[0, \infty)$
(27) The large region I1 $=[\mathrm{p}, \infty) \times[\mathrm{p}, \infty)$
(28) The narrow strip I $2=[p, \infty) \times[0, p]$
(29) The narrow strip I $3=[0, p] \times[0, \infty)$

Note that
(30) I $=\mathrm{I} 1 \cup \mathrm{I} 2 \cup \mathrm{I} 3$

Denote the integrand in the left hand side of equation (25) by
(31) $\mathrm{F}(\mathrm{x}, \mathrm{y})=x^{-2+a} y^{-1-a}([y]-y) \cos (b \log x y)\left\{\left(x^{2-2 a}\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)-\right.$ ([x]-x) $\}$
Let us find the limit of $\mathrm{F}(\mathrm{x}, \mathrm{y})$ as $\mathrm{x} \rightarrow \infty$ and $\mathrm{y} \rightarrow \infty$. This limit is given by
(32) $\operatorname{Lim} x^{-a} y^{-1-a}[-((\mathrm{y}))] \cos (\operatorname{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right]$
$((\mathrm{z}))$ is the fractional part of the number $\mathrm{z}, 0 \leq((\mathrm{z}))<1$
The above limit vanishes, since all the functions $[-((y))], \cos (b \log x y),-\left(\left(\frac{1}{x}\right)\right)$, and ((x)) remain bounded as $\mathrm{x} \rightarrow \infty$ and $\mathrm{y} \rightarrow \infty$
Note that the function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is defined and bounded in the region I 1. We can prove that the integral
(33) $\iint F(x, y) d x d y$ is bounded as follows

I1
(34) $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}=\iint x^{-a} y^{-1-a}[-((\mathrm{y}))] \cos (\mathrm{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.$

I1 I1

$$
\left.x^{2 a-2}\right] \mathrm{dx} \mathrm{dy}
$$

$\leq\left|\iint x^{-a} y^{-1-a}[-((\mathrm{y}))] \cos (\mathrm{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \mathrm{dy}\right|$
I1

$$
\begin{aligned}
& =\left|\int_{p}^{\infty}\left(\int_{p}^{\infty} x^{-a} \cos (\operatorname{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx}\right) y^{-1-a}[-((\mathrm{y}))] \mathrm{dy}\right| \\
& \leq \int_{p}^{\infty}\left|\left(\int_{p}^{\infty} x^{-a} \cos (\operatorname{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx}\right)\right|\left|y^{-1-a}[-((\mathrm{y}))]\right| \mathrm{dy} \\
& \quad \leq \int_{p}^{\infty}\left(\int_{p}^{\infty} x^{-a}|\cos (\operatorname{blog} \mathrm{xy})|\left|\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right]\right| \mathrm{dx}\right)\left|y^{-1-a}[-((\mathrm{y}))]\right| \mathrm{dy} \\
& \quad<\int_{\mathrm{P}}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \int_{\mathrm{P}}^{\infty} y^{-1-a} \\
& \quad=\frac{1}{a p^{a}} \int_{\mathrm{P}}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \\
& \quad=\frac{1}{a p^{a}}\left\{\lim (\mathrm{t} \rightarrow 0) \int_{\mathrm{P}}^{1-t} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx}+\lim (\mathrm{t} \rightarrow 0)\right. \\
& \left.\int_{1+t}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx}\right\}
\end{aligned}
$$

where t is a very small arbitrary positive. number. Since the integral

$$
\lim (\mathrm{t} \rightarrow 0) \int_{\mathrm{P}}^{1-t} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \text { is bounded, it remains to }
$$

show that $\lim (t \rightarrow 0)$

$$
\int_{1+t}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \text { is bounded. }
$$

Since $\mathrm{x}>1$, then $\left(\left(\frac{1}{x}\right)\right)=\frac{1}{x}$ and we have $\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right.$] dx

$$
\begin{aligned}
& =\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-a}\left[\frac{1}{x}+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \\
& =\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty}\left[x^{-a-1}+((\mathrm{x})) x^{a-2}\right] \mathrm{dx} \\
& <\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty}\left[x^{-a-1}+x^{a-2}\right] \mathrm{dx} \\
& =\frac{1}{a(1-a)}
\end{aligned}
$$

Hence the boundedness of the integral $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx}$ dy is proved.

Consider the region
(35) I4=I2 UI3

We know that
(36) $0=\iint F(x, y) d x d y=\iint F(x, y) d x d y+\iint F(x, y) d x d y$
I
I1
I4
and that
(37) $\iint F(x, y) d x d y$ is bounded

I1
From which we deduce that the integral
(38) $\iint F(x, y) d x d y$ is bounded

I4

Remember that
(39) $\iint F(x, y) d x d y=\iint F(x, y) d x d y+\iint F(x, y) d x d y$

I4
I2
I3

Consider the integral

(40) $\iint F(x, y) d x d y \leq\left|\iint F(x, y) d x d y\right|$
I2
I2
$=\left|\int_{0}^{p}\left(\int_{p}^{\infty} x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\} \cos (b \log x y) \mathrm{dx}\right) \frac{1}{y^{a}} \mathrm{dy}\right|$
$\leq \int_{0}^{p}\left|\int_{p}^{\infty}\left(x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\} \cos (b \log x y) \mathrm{dx}\right)\right| \frac{1}{y^{a}} \mathrm{dy}$
$\leq \int_{0}^{p}\left(\int_{p}^{\infty}\left|x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right||\cos (b \log x y)| \mathrm{dx}\right) \frac{1}{y^{a}} \mathrm{dy}$
$\leq \int_{\mathrm{P}}^{\infty}\left|x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right| \mathrm{dx} \times \int_{0}^{\mathrm{P}} \frac{1}{y^{a}} \mathrm{dy}$
(This is because in this region $((\mathrm{y}))=\mathrm{y})$. It is evident that the integral $\int_{\mathrm{P}}^{\infty} \left\lvert\, x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)\right.$ - \right. ((x)) $\left.x^{2 a-2}\right\} \mid \mathrm{dx}$ is bounded, this was proved in the course of proving that the integral $\iint F(x, y) d x$ dy is bounded. Also it is evident that the integral

I1

$\int_{0}^{\mathrm{p}} \frac{1}{y^{a}} \mathrm{dy}$
is bounded. Thus we deduce that the integral (40) $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx}$ dy is bounded I2

Hence, according to equation(39), the integral $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx}$ dy is bounded.

Now consider the integral
(41) $\iint F(x, y) d x d y$

I3
We write it in the form
(42) $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}=\int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{xy}) \mathrm{dy}\right) \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}$ I3
(This is because in this region $((\mathrm{x}))=\mathrm{x}$)
$\leq\left|\int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{xy}) \mathrm{dy}\right) \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}\right|$
$\leq \int_{0}^{p}\left|\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{x} y) \mathrm{dy}\right)\right|\left|\frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}}\right| \mathrm{dx}$
$\leq \int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}\right)\left|\frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-\mathrm{x}^{2 a-1}\right\}}{x^{a}}\right| \mathrm{dx}$
Now we consider the integral with respect to y
(43) $\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}$
$=(\lim \mathrm{t} \rightarrow 0) \int_{0}^{1-t} \mathrm{y}^{-1-a} \times \mathrm{y} d \mathrm{y}+(\lim \mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}$
(where t is a very small arbitrary positive number). (Note that $((\mathrm{y}))=\mathrm{y}$ whenever $0 \leq \mathrm{y}<1$).
Thus we have $(\lim \mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}<(\lim \mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} \mathrm{y}^{-1-a} d \mathrm{y}=\frac{1}{a}$
and $(\lim \mathrm{t} \rightarrow 0) \int_{0}^{1-t} \mathrm{y}^{-1-a} \times \mathrm{y} \mathrm{dy}=\frac{1}{1-a}$
Hence the integral (43) $\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}$ is bounded.
Since $\left|\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{x} y) \mathrm{dy}\right| \leq \int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}$, we conclude that the integral $\left|\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \operatorname{logxy}) \mathrm{dy}\right|$ is a bounded function of x . Let this function be $\mathrm{H}(\mathrm{x})$. Thus we have
(44) $\left|\int_{0}^{\infty} y^{-1-a}((y)) \cos (b \log x y) d y\right|=H(x) \leq K(K$ is a positive number $)$

Now equation (44) gives us
(45) $-\mathrm{K} \leq \int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log x y) \mathrm{dy} \leq \mathrm{K}$

According to equation (42) we have
(46) $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}=\int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{x} y) \mathrm{dy}\right) \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}$

I3
$\geq \int_{0}^{p}(-K) \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}=\mathrm{K} \int_{p}^{0} \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}$
Since $\iint \mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx}$ dy is bounded, then $\int_{p}^{0} \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}$ is also bounded. Therefore I3
the integral
(47) $\mathrm{G}=\int_{0}^{p} \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}$ is bounded

We denote the integrand of (47) by
(48) $\mathrm{F}=\frac{1}{x^{a}}\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}$

Let $\delta \mathrm{G}[\mathrm{F}]$ be the variation of the integral G due to the variation of the integrand $\delta \mathrm{F}$.
Since
(49) $\mathrm{G}[\mathrm{F}]=\int \mathrm{F} \mathrm{dx}$ (the integral (49) is indefinite)
(here we do not consider a as a parameter, rather we consider it as a given exponent)
We deduce that $\frac{\delta G[F]}{\delta F(x)}=1$
that is
(50) $\delta \mathrm{G}[\mathrm{F}]=\delta \mathrm{F}(\mathrm{x})$

But we have
(51) $\delta \mathrm{G}[\mathrm{F}]=\int \mathrm{dx} \frac{\delta G[F]}{\delta F(x)} \delta F(x)$ (the integral (51) is indefinite)

Using equation (50) we deduce that
(52) $\delta \mathrm{G}[\mathrm{F}]=\int \mathrm{dx} \delta F(x)$ (the integral (52) is indefinite)

Since G[F] is bounded across the elementary interval $[0, \mathrm{p}]$, we must have that
(53) $\delta \mathrm{G}[\mathrm{F}]$ is bounded across this interval

From (52) we conclude that
(54) $\delta G=\int_{0}^{\mathrm{P}} \mathrm{dx} \delta F(x)=\int_{0}^{\mathrm{P}} \mathrm{dx} \frac{d F}{d x} \delta \boldsymbol{x}=[\mathrm{F} \boldsymbol{\delta} \boldsymbol{x}]($ at $\mathrm{x}=\mathrm{p})-[\mathrm{F} \boldsymbol{\delta} \boldsymbol{x}]($ at $\mathrm{x}=0)$

Since the value of $[\mathrm{F} \boldsymbol{\delta} \boldsymbol{x}]($ at $\mathrm{x}=\mathrm{p})$ is bounded, we deduce from equation (54) that
(55) $\lim (\mathrm{x} \rightarrow 0) \mathrm{F} \delta \mathrm{x}$ must remain bounded.

Thus we must have that
(56) $(\lim \mathrm{x} \rightarrow 0)\left[\delta \mathrm{x} \frac{1}{x^{a}}\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}\right]$ is bounded.

First we compute
(57) $(\lim \mathrm{x} \rightarrow 0) \frac{\delta x}{x^{a}}$

Applying L 'Hospital ' rule we get
(58) $(\lim \mathrm{x} \rightarrow 0) \frac{\delta x}{x^{a}}=(\lim \mathrm{x} \rightarrow 0)_{a}^{\frac{1}{-x}} \quad x^{1-a} \times \frac{d(\delta x)}{d x}=0$

We conclude from (56) that the product
(59) $0 \times(\lim x \rightarrow 0)\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}$ must remain bounded.

Assume that a $=0.5$. (remember that we considered a as a given exponent) This value $\mathrm{a}=0.5$
will guarantee that the quantity $\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}$
will remain bounded in the limit as $(x \rightarrow 0)$.Therefore, in this case ($a=0.5$) (56) will approach zero as ($\mathrm{x} \rightarrow 0$) and hence remain bounded.
Now suppose that a<0.5 .In this case we consider a as a parameter. Hence we have
(60) $\mathrm{G}_{a}[\mathrm{x}]=\int \mathrm{dx} \frac{F(x, a)}{x} x$ (the integral (60) is indefinite)

Thus
(61) $\frac{\delta G_{a}[x]}{\delta x}=\frac{F(x, a)}{x}$

But we have that
(62) $\delta G_{a}[x]=\int d x \frac{\delta G_{a}[x]}{\delta x} \delta x$ (the integral (62) is indefinite)

Substituting from (61) we get
(63) $\delta G_{a}[x]=\int d x \frac{F(x, a)}{x} \delta x$ (the integral (63) is indefinite)

We return to equation (49) and write
(64) $\mathrm{G}=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} F d x(\mathrm{t}$ is a very small positive number $0<\mathrm{t}<\mathrm{p})$
$=\{F x($ at $p)-\lim (t \rightarrow 0) F x($ at $t)\}-\lim (t \rightarrow 0) \int_{t}^{p} x d F$
Let us compute
(65) $\lim (\mathrm{t} \rightarrow 0) \mathrm{Fx}($ at t$)=\lim (\mathrm{t} \rightarrow 0) \mathrm{t}^{1-a}\left(\left(\frac{1}{t}\right)\right)-\mathrm{t}^{a}=0$

Thus equation (64) reduces to
(66) $\mathrm{G}-\mathrm{Fx}($ at p$)=-\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \mathrm{xdF}$

Note that the left - hand side of equation (66) is bounded. Equation (63) gives us
(67) $\delta \mathrm{G}_{a}=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \mathrm{dx} \frac{F}{x} \delta x$
(t is the same small positive number $0<\mathrm{t}<\mathrm{p}$)

We can easily prove that the two integrals $\int_{t}^{p} \mathrm{xdF}$ and $\int_{t}^{p} \mathrm{dx} \frac{F}{x} \delta x$ are absolutely convergent .Since the limits of integration do not involve any variable, we form the product of (66) and (67)
(68) $\mathrm{K}=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \int_{t}^{p} \mathrm{xdF} \times \mathrm{dx} \frac{F}{x} \delta x=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \mathrm{FdF} \times \int_{t}^{p} \delta x d x$
(K is a bounded quantity)
That is
(69) $\mathrm{K}=\lim (\mathrm{t} \rightarrow 0)\left[\frac{F^{2}}{2}(\right.$ at p$)-\frac{F^{2}}{2}($ at t$\left.)\right] \times[\delta \mathrm{x}($ at p$)-\delta \mathrm{x}($ at t$)]$

We conclude from this equation that
(70) $\left\{\left[\frac{F^{2}}{2}(\right.\right.$ at p$)-\lim (\mathrm{t} \rightarrow 0) \frac{F^{2}}{2}$ (at t$\left.)\right] \times[\delta \mathrm{x}$ (at p$\left.\left.)\right]\right\}$ is bounded.
(since $\lim (\mathrm{x} \rightarrow 0) \delta \mathrm{x}=0$, which is the same thing as $\lim (\mathrm{t} \rightarrow 0) \delta \mathrm{x}=0$)
Since $\frac{F^{2}}{2}$ (at p) is bounded, we deduce at once that $\frac{F^{2}}{2}$ must remain bounded in the limit as $(\mathrm{t} \rightarrow 0)$, which is the same thing as saying that F must remain bounded in the limit as $(\mathrm{x} \rightarrow 0)$. Therefore .

$$
\left(\left(\frac{1}{r}\right)\right)-x^{2 a-1}
$$

(71) $\lim (x \rightarrow 0) \frac{x}{x^{a}}$ must remain bounded

But
(72) $\lim (\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}}=\lim (\mathrm{x} \rightarrow 0) \frac{x^{1-2 a}}{x^{1-2 a}} \times \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}}$
$=\lim (\mathrm{x} \rightarrow 0) \frac{x^{1-2 a}\left(\left(\frac{1}{x}\right)\right)-1}{x^{1-a}}=\lim (\mathrm{x} \rightarrow 0) \frac{-1}{x^{1-a}}$
It is evident that this last limit is unbounded. This contradicts our conclusion (71) that

$$
\left.\lim (\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}} \text { must remain bounded (for } \mathrm{a}<0.5\right)
$$

Therefore the case $\mathrm{a}<0.5$ is rejected. We verify here that ,for $\mathrm{a}=0.5$ (71)remains bounded as ($\mathrm{x} \rightarrow 0$).

We have that
(73) $\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}<1-x^{2 a-1}$

Therefore
(74) $\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}}<\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{1-x^{2 a-1}}{x^{a}}$

We consider the limit
(75) $\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{1-x^{2 a-1}}{x^{a}}$

We write
(76) $\mathrm{a}=(\lim \mathrm{x} \rightarrow 0)(0.5+\mathrm{x})$

Hence we get
(77) $\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) x^{2 a-1}=\lim (\mathrm{x} \rightarrow 0) \mathrm{x}^{2(0.5+x)-1}=\lim (\mathrm{x} \rightarrow 0) \mathrm{x}^{2 x}=1$
$\left(\right.$ Since $\left.\lim (\mathrm{x} \rightarrow 0) \mathrm{x}^{x}=1\right)$
Therefore we must apply L 'Hospital ' rule with respect to x in the limiting process (75)
(78) $\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{1-x^{2 a-1}}{x^{a}}=\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{-(2 a-1) x^{2 a-2}}{a x^{a-1}}$
$=\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{\left(\frac{1}{a}-2\right)}{x^{1-a}}$
Now we write again
(79) $\mathrm{a}=(\lim \mathrm{x} \rightarrow 0)(0.5+\mathrm{x})$

Thus the limit (78) becomes
(80) $\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{\left(\frac{1}{a}-2\right)}{x^{1-a}}=\lim (\mathrm{x} \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5-x}}=\lim (\mathrm{x} \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5} \times x^{-x}}$ $=\lim (x \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5}}\left(\right.$ Since $\left.\lim (x \rightarrow 0) x^{-x}=1\right)$

We must apply L 'Hospital 'rule
(81) $\lim (x \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5}}=\lim (x \rightarrow 0) \frac{-(0.5+x)^{-2}}{0.5 x^{-0.5}}=\lim (x \rightarrow 0) \frac{-2 \times x^{0.5}}{(0.5+x)^{2}}=0$

Thus we have verified here that, for $\mathrm{a}=0.5$ (71) approaches zero as $(\mathrm{x} \rightarrow 0)$ and hence remains bounded.

We consider the case a >0.5. This case is also rejected, since according to the functional equation, if $(\zeta(s)=0)(\mathrm{s}=\mathrm{a}+\mathrm{bi})$ has a root with $\mathrm{a}>0.5$,then it must have another root with another value of a <0.5. But we have already rejected this last case with a<0.5

Thus we are left with the only possible value of a which is $\mathrm{a}=0.5$
Therefore $\mathrm{a}=0.5$
This proves the Riemann Hypothesis

Conclusion.

The Riemann Hypothesis is now proved.

REFERENCES

[1] Titch marsh ,E.C.(1999)" The Theory of the Riemann zeta -function", London : Oxford University Press.
[2] Apostol,Tom M.(1974)" Mathematical Analysis", Reading ,Massachusetts ;Addison -wesley Publishing Company.
[3] Edwards, H.M. (1974)" Riemann "s zeta function ", New York : Academic Press, Inc.
[4] Apostol ,Tom M. (1976)" Introduction to Analytic Number Theory", New York: Springer Verlag,
[5] Koblits , Neal (1984)" P- adic Numbers , P - adic Analysis, and Zeta - Functions" ,New York : Springer - Verlag,
[6] Geiner ,Walter ; Reinhardt,Joachim (1996)" Field Quantization",Berlin :Springer - Verlag,.

