
Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218  

 
Volume 3, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                           192|  

 
SCITECH                                                                               Volume 3, Issue 3 

RESEARCH ORGANISATION|                                         May 2, 2015| 

          Journal of Progressive Research in Mathematics 

     www.scitecresearch.com 

Nonuniform Multiwavelet Packets associated with 

Nonuniform Multiresolution Analysis with Multiplicity D 

Nadya A. S. Atlouba
1
, Shiva Mittal

2
, and Ajit Paul

3 

1,3
Department of Mathematics and Statistics 

SHIATS, (Deemed to be University), Allahabad, India-211 007. 
2
Department of Mathematics 

S.P.M. Govt. Degree College, Allahabad, India-211 002. 

 

Abstract 

In this paper we construct nonuniform multiwavelet packets associated with the nonuniform multiresolution 
analysis (NUMRA) with multiplicity D based on the theory of one dimensional spectral pairs, which is a 
generalization of  NUMRA introduced by Gabardo and Nashed. Further, we obtained an orthonormal basis for 

𝐿2(ℝ) from the collection of dilation and transilation of nonuniform multiwavelet packets as a generalization of 

nonuniform multiwavelet packets, that generalizes a result of Behera on wavelet packets associated with 
NUMRA. 
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1. Introduction 

One of the most useful methods to construct a wavelet is through the concept of multiresolution analysis 

(𝑀𝑅𝐴) introduced by Meyer and Mallat. The notion of MRA and wavelets were generalized to many different 

settings. One can replace the dilation factor 2 by any integer 𝑁 ≥ 2. In general, in higher dimensions, it can be 

replaced by a dilation matrix 𝐴, in this case the number of wavelets required is |𝑑𝑒𝑡𝐴| − 1. But in all these 

cases, the translation set is always a group. Recently, Gabardo and Nashed in [7] defined a multiresolution 

analysis associated with a translation set {0, 𝑟/𝑁} + 2ℤ, where 𝑁 ≥ 1 is an integer, 1 ≤ 𝑟 ≤ 2𝑁 − 1, 𝑟 is an 

odd integer and 𝑟, 𝑁 are relatively prime, a discrete set which is not necessarily a group. They call this an 

𝑁𝑈𝑀𝑅𝐴. As, the case 𝑁 =  1 reduces to the standard definition of  𝑀𝑅𝐴 with dyadic dilation. In [12] we 

obtain an NUMRA with multiplicity 𝐷, we called it 𝑁𝑈𝑀𝑅𝐴 −𝐷 that generalizes a particular case of a result 

of Calogero and Garrig´os [3] on biorthogonal 𝑀𝑅𝐴’s of multiplicity 𝐷 in nonstandard setup. A study with 

respect to 𝑁𝑈𝑀𝑅𝐴 has been done by many authors in the references [8-9, 11-15]. 

As in the case of classical wavelet bases, they have poor frequency localization. To overcome with this 

problem Meyer and Wickerhauser [5] constructed wavelet packets which provides better frequency 

localization for large 𝑗. The concept of wavelet packet was introduced by Coifman, Meyer and Wickerhauser 

[5, 6].  Let {𝑉𝑗 ∶  𝑗 ∈ ℤ} be an 𝑀𝑅𝐴 of  𝐿2(ℝ) with corresponding scaling function 𝜑 and wavelet 𝜓. Let 

𝑊𝑗 =  𝑠𝑝𝑎𝑛 {𝜓𝑗𝑘  ∶  𝑘 ∈ ℤ} be the corresponding wavelet subspaces. Since the space 𝑉1 splits into two 

orthogonal components 𝑉0 and 𝑊0, we can also split 𝑊𝑗  into two orthogonal subspaces, which is span of 

 𝜓(2𝑗  . − 𝑘) ∶  𝑘 ∈ ℤ =  𝜓(2𝑗 (. − 𝑘
2𝑗

 )) ∶  𝑘 ∈ ℤ , each of them can further be split into two parts. Repeating 

the splitting procedure 𝑗 times, 𝑊𝑗  is decomposed into 2𝑗  subspaces each generated by integer translates of a 

single function. If we apply this to each 𝑊𝑗  , then we have a basis of 𝐿2(ℝ), which will consist of integer 
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translates of a countable number of functions. This basis is called the wavelet packet basis. Taking tensor 

product this construction was extended to the higher dimension by Coifman and Meyer [4]. The nontensor 

product version is due to Long and Shen [10]. Behra in [2] discuss the corresponding results in higher 

dimensions associated with a general matrix dilation and several scaling functions. 

  Adopting similar procedure Behera study wavelet packets associated with nonuniform multiresolution 

analysis in [1] and multiwavelet packets and frame packets of 𝐿2(ℝ𝑑) in [2]. Motivated from the work of 

Behera on wavelet packets associated with 𝑁𝑈𝑀𝑅𝐴, in this article we construct the multiwavelet packets 

associated with the nonuniform multiresolution analyses with multiplicity 𝐷. We also identify the sub 

collections of this system which form orthonormal bases for 𝐿2(ℝ). Further we investigate their properties by 

means of the Fourier transform. 

2. Basic definitions and notation 

In this section, we will state some important preliminaries and notation that we are need to construct 

multiwavelet packets associated with nonuniform multiresolution analysis with multiplicity 𝐷 (𝑁𝑈𝑀𝑅𝐴 −
𝐷), where 𝐷 is a positive integer. As mentioned before 𝑁𝑈𝑀𝑅𝐴 − 𝐷 is a generalization of 𝑀𝑅𝐴 as well as 

𝑁𝑈𝑀𝑅𝐴. 

By a nonuniform orthonormal multiwavelet   Ψ = {𝜓𝑙}𝑙=1
𝐿  (simply, nonuniform multiwavelet) in 𝐿2(ℝ) 

associated with the dilation 2𝑁 and the translation set Λ𝑟,𝑁 , we mean that the family 

𝒜(Ψ)  ≡  (2𝑁)𝑗 /2 𝜓  2𝑁 𝑗  ·  −𝜆 :  𝜓 ∈ Ψ, 𝑗 ∈ ℤ, 𝜆 ∈ Λ𝑟,𝑁  

forms a complete orthonormal system for 𝐿2(ℝ). In the situation of 𝑁 = 1, 𝑟 = 1 and the nonuniform 

multiwavelet Ψ is known as orthonormal multiwavelet associated with the dilation 2 and the translation set ℤ 

while Ψ is known as orthonormal wavelet (simply, wavelet) in the case of  𝐿 = 1. The generalization of the 

notion of 𝑁𝑈𝑀𝑅𝐴 into 𝑁𝑈𝑀𝑅𝐴 − 𝐷 with respect to the dilation 𝜃 ≡ 2𝑁𝑎 and translation Λ𝑟,𝑁 as 

2𝑁𝑎 Λ𝑟,𝑁 ⊂ Λ𝑟,𝑁  , where a is defined as follows: 

𝑎 =  
𝑛 + 1

2
            ∶  𝑛 ∈ ℕ 𝑤𝑕𝑒𝑛 𝑁 =  1,

    𝑛                ∶  𝑛 ∈ ℕ 𝑤𝑕𝑒𝑛 𝑁 >  1,
                 

provides more possibilities of dilation factors with respect to the translation set Λ𝑟,𝑁 . 𝑁𝑈𝑀𝑅𝐴 − 𝐷 in [12] for 

translation set Λ ≡ Λ𝑟,𝑁  is defined as follows: 

Definition 2.1. A nonuniform multiresolution analysis with multiplicity 𝐷 for dilation 𝜃 ≡ 2𝑁𝑎 and 

translation Λ, is a collection {𝑉𝑗 }𝑗∈ℤ of closed subspaces of 𝐿2(ℝ) satisfying the following axioms: 

(𝑃1) 𝑉𝑗  ⊂ 𝑉𝑗+1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈  ℤ, 

 𝑃2 𝑓 · ∈ 𝑉𝑗     𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑓 𝜃 · ∈ 𝑉𝑗+1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ ℤ, 

(𝑃3)  𝑉𝑗  𝑗  ∈ℤ =  {0}, 

(𝑃4)  𝑉𝑗𝑗  ∈ℤ  𝑖𝑠 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 𝐿2(ℝ), and 

(P5) There exist functions 𝜑1 , 𝜑2 , . . . , 𝜑𝐷  ∈ 𝑉0, called the scaling functions, such that the collection {𝜑𝑑(·
 − 𝜆) ∶  𝜆 ∈ Λ, 1 ≤  𝑑 ≤  𝐷} is a complete orthonormal basis for 𝑉0. 

In the axiom (𝑃5), the set of scaling functions Φ ≡ {𝜑1 , 𝜑2 , . . . , 𝜑𝐷} is called multiscaling function of 

multiplicity 𝐷 which generates an 𝑁𝑈𝑀𝑅𝐴 that leads to a nonuniform multiwavelet. A standard 𝑁𝑈𝑀𝑅𝐴 

theory assumes that there is only one scaling function 𝜑 whose 𝜆-translates, 𝜆 ∈ Λ constitutes a complete 

orthonormal basis of their span 𝑉0. 

For 𝐷 = 1, 𝑎 = 1 and 𝑁 ∈ ℕ, the sequence {𝑉𝑗 }𝑗∈ℤ in the above definition is nothing but 𝑁𝑈𝑀𝑅𝐴 with 

integer dilation 2𝑁 and translation Λ introduced by Gabardo and Nashed [7, 8] while for the case of  𝑁 =

 1 and 𝑎 ∈  𝑛+1

2
∶  𝑛 ∈ ℕ , this is same as classical 𝑀𝑅𝐴 of multiplicity 𝐷 with dilation 2𝑎 and translation set 

ℤ (simply call as 𝑀𝑅𝐴− 𝐷). When 𝑁 ≥ 1, the dilation factor of 𝜃 ensures that 𝜃Λ ⊂ 2ℤ ⊂ Λ. 
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In a similar fashion of the classical theory of multresolution analysis, another sequence {𝑊𝑗 }𝑗∈ℤ  of closed 

subspaces of 𝐿2(ℝ) is defined by 𝑊𝑗 = 𝑉𝑗+1  ⊝ 𝑉𝑗  , 𝑗 ∈ ℤ  and ⊝ denotes the orthogonal complement of 𝑉𝑗  

in 𝑉𝑗+1, for an 𝑁𝑈𝑀𝑅𝐴 − 𝐷 {𝑉𝑗 }𝑗∈ℤ with dilation factor 𝜃. These subspaces inherit the scaling property of 

{𝑉𝑗 }𝑗∈ℤ, and hence we have the following orthogonal decompositions: 

𝐿2(ℝ) = ⨁𝑗∈ℤ 𝑊𝑗 = 𝑉0 ⨁(⨁𝑗≥0𝑊𝑗 ) . 

 

A set of functions { 𝜓𝑙 ∶  1 ≤  𝑙 ≤  (𝜃 −  1)𝐷} ∶= Ψ  in 𝐿2(ℝ) is said to be a nonuniform multiwavelet 

associated with the 𝑁𝑈𝑀𝑅𝐴 − 𝐷 {𝑉𝑗 }𝑗∈ℤ  if the collection { 𝜓𝑙(·  − 𝜆) ∶  1 ≤  𝑙 ≤ (𝜃 −  1)𝐷, 𝜆 ∈ Λ} forms 

an orthonormal basis for 𝑊0. We call Ψ to be an 𝑁𝑈𝑀𝑅𝐴 − 𝐷 multiwavelet. In view of properties of 𝑊𝑗  , the 

collection  

{𝜃
𝑗
2 𝜓𝑙(𝜃𝑗  ·  −𝜆) ∶  𝑗 ∈ ℤ, 1 ≤ 𝑙 ≤  (𝜃 − 1)𝐷, 𝜆 ∈ Λ} 

forms an orthonormal basis for 𝐿2(ℝ) if Ψ is a nonuniform multiwavelet. 

Below we mention a result obtained in [12] that will be used in sequel. 

Theorem 2.2 [12]. Suppose {𝑉𝑗 }𝑗∈ℤ is an 𝑁𝑈𝑀𝑅𝐴 − 𝐷 with dilation 𝜃 and translation Λ. If there exist 𝐿 

functions  𝜓𝑘 , 1 ≤ 𝑘 ≤ 𝐿, in 𝑉1 such that the family of functions 

𝑉1
′ ∶=  𝜑𝑑 ·  − 𝜆 , 𝜓𝑘 ·  − 𝜆 : 1 ≤  𝑑 ≤  𝐷;  1 ≤  𝑘 ≤  𝐿;  𝜆 ∈ Λ  

forms an orthonormal system for the generating subspace 𝑉1, then, 𝐿 = (𝜃 − 1)𝐷 is a necessary and sufficient 

condition such that the above system is complete in 𝑉1. 

The following are some important findings that we will need for the present work. 

Proposition 2.3 [12]. Suppose {𝑉𝑗 }𝑗∈ℤ is an 𝑁𝑈𝑀𝑅𝐴 − 𝐷 with dilation 𝜃 and translation Λ. Then the space 𝑉1 

consists precisely of the functions 𝑓 ∈  𝐿2(ℝ) whose Fourier transform can be written as 

                           𝑓  𝜃𝜉 =  𝑚𝑓,𝑑

𝐷

𝑑=1

 𝜉  𝜑𝑑 (𝜉),        𝑎. 𝑒.     𝜉 ∈ ℝ,                              (2.1) 

for locally 𝐿2 functions 𝑚𝑓,𝑑  for 1 ≤ 𝑑 ≤ 𝐷 together with 

                      𝑚𝑓,𝑑 𝜉 = 𝑚1
𝑓,𝑑

  𝜉 + 𝑒−
2𝜋𝑖𝜉𝑟
𝑁 𝑚2

𝑓,𝑑
  𝜉 ,                                               (2.2) 

where 𝑚1
𝑓,𝑑

 and 𝑚2
𝑓,𝑑

 , 𝑑 =  1, 2, . . . , 𝐷, are locally 𝐿2, 1/2-periodic functions. 

In the above proposition the space 𝑉1 consist functions 𝑓 ∈ 𝐿2(ℝ). Since (1/𝜃)𝑓(𝑥/𝜃)  ∈  𝑉0, there exists a 

sequence {𝑎𝜆
𝑓

= (𝑎𝜆
𝑓,1

 , 𝑎𝜆
𝑓,2

 , . . . , 𝑎𝜆
𝑓,𝐷

 )}𝜆∈Λ  satisfying     𝑎𝜆
𝑓,𝑑

 
2

𝜆∈Λ
𝐷
𝑑=1 < ∞ such that  

                  
1

𝜃
𝑓  

𝑥

𝜃
 =   𝑎𝜆

𝑓,𝑑
 𝜑𝑑(𝑥 −  𝜆)𝜆∈Λ

𝐷
𝑑=1 ,                                                                             (2.3) 

or, equivalently, by taking the Fourier transform of both sides of the previous equation, we obtained the result 

(2.1) and (2.2), with 

𝑚𝑓,𝑑 𝜉 =  𝑎𝜆
𝑓,𝑑

𝑒−2𝜋𝑖𝜉𝜆

𝜆∈Λ

, 

𝑚1
𝑓,𝑑

  𝜉 =  𝑎2𝑚
𝑓,𝑑

   𝑒−4𝜋𝑖𝜉𝑚

𝑚∈ℤ

,   𝑎𝑛𝑑    𝑚2
𝑓,𝑑

  𝜉 =  𝑎
2𝑚+𝑟

𝑁

𝑓,𝑑
   𝑒−4𝜋𝑖𝜉𝑚

𝑚∈ℤ

.           (2.4) 

We denote by Φ  and Ψ  column vectors in 𝐶𝐷 and in 𝐶𝐿 as Φ =  {𝜑1 , . . . , 𝜑𝐷 } and Ψ = {𝜓1 , . . . , 𝜓 𝐿 }, 

respectively. In particular, since 𝜑𝑑(𝑥) ∈ 𝑉0 ⊂ 𝑉1, from Proposition 2.3 there are locally 𝐿2 functions 𝑚0
𝜑𝑑 ,𝑑 ′

 

, for 1 ≤ 𝑑, 𝑑 ′ ≤ 𝐷, such that, for a.e.  
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𝜑𝑑  𝜃𝜉 =  𝑚0
𝜑𝑑 ,𝑑 ′

  𝜉  𝜑𝑑 ′
 𝜉 𝐷

𝑑 ′ =1               

              =   𝑚01
𝜑𝑑 ,𝑑 ′

 𝜉 + 𝑒−
2𝜋𝑖𝜉𝑟

𝑁  𝑚02
𝜑𝑑 ,𝑑 ′

  𝜉  𝐷
𝑑 ′ =1 𝜑𝑑 ′

 𝜉 .                                                           (2.5) 

Taking  𝑚01
𝑑,𝑑 ′

≡ 𝑚01
𝜑𝑑 ,𝑑 ′

 and  𝑚02
𝑑,𝑑 ′

 ≡  𝑚02
𝜑𝑑 ,𝑑 ′

, in the matrix notation, this can be written as follows: 

Φ  𝜃𝜉 =  𝑀0 𝜉  Φ  𝜉 ,   𝑓𝑜𝑟 𝑎. 𝑒.  𝜉 ∈ ℝ, 

with 𝑀0(𝜉)  =  𝑀01(𝜉)  + 𝑒−2𝜋𝑖𝜉𝑟 /𝑁  𝑀02(𝜉) , where the matrices 𝑀01 and 𝑀02 defined by 𝑀01  =

 𝑚01
𝑑,𝑑 ′

 
1≤𝑑,𝑑 ′≤𝐷

   and 𝑀02  =  𝑚02
𝑑,𝑑 ′

 
1≤𝑑,𝑑 ′≤𝐷

 are usually called low-pass filters (or scaling matrix filters) 

associated with the scaling family Φ. 

Similarly, in case of  𝜓𝑙(𝑥) ∈ 𝑊0  ⊂ 𝑉1, where 𝑊0 = 𝑠𝑝𝑎𝑛         𝜓𝑙 𝑥 − 𝜆 : 1 ≤ 𝑙 ≤ 𝐿;  𝜆 ∈ Λ , there are locally 

𝐿2 functions 𝑚1
𝜓 𝑙 ,𝑑

, for 1 ≤ 𝑑 ≤ 𝐷 and 1 ≤ 𝑙 ≤ 𝐿 such that, for a.e. 𝜉 ∈ ℝ, 

                  𝜓𝑙   𝜃𝜉 =  𝑚1
𝜓 𝑙 ,𝑑

  𝜉 𝜑𝑑  𝜉 𝐷
𝑑=1  

              =   𝑚11
𝜓 𝑙 ,𝑑

  (𝜉)  +  𝑒−2𝜋𝑖𝜉𝑟 /𝑁   𝑚12
𝜓 𝑙 ,𝑑

 (𝜉) 

𝐷

𝑑=1

 𝜑𝑑(𝜉),                                     (2.6) 

whose matrix notation is given as follows by considering  𝑚11
𝑙,𝑑 ≡ 𝑚11

𝜓 𝑙 ,𝑑
  and 𝑚12

𝑙,𝑑 ≡ 𝑚12
𝜓 𝑙 ,𝑑

∶ 

Ψ  𝜃𝜉 = 𝑀1 𝜉  Φ (𝜉),   𝑓𝑜𝑟 𝑎. 𝑒.   𝜉 ∈ ℝ, 

with 𝑀1 𝜉 =  𝑀11(𝜉) + 𝑒−2𝜋𝑖𝜉𝑟 /𝑁  𝑀12(𝜉), where the matrices 𝑀11 and 𝑀12 defined by  

𝑀11 =  𝑚11
𝑙,𝑑 

1≤𝑙≤𝐿,1≤𝑑≤𝐷
 and   𝑀12 =  𝑚12

𝑙,𝑑 
1≤𝑙≤𝐿,1≤𝑑≤𝐷

 

are usually called high-pass filters associated with the scaling family (Ψ,Φ). 

Proposition 2.4 [12]. Consider an 𝑁𝑈𝑀𝑅𝐴 −𝐷 with integer dilation 𝜃 and translation Λ as in Definition 2.1. 

Then the following hold: 

(i) The system 𝑉: = {𝜑𝑑(·  − 𝜆) ∶  1 ≤ 𝑑 ≤ 𝐷;  𝜆 ∈ Λ} which generates the space 𝑉0 is orthonormal 

if and only if for a.e. 𝜉 ∈ ℝ, 

   𝑚01
𝑘,𝑑  𝜉 +

𝑝

2𝜃
   𝑚01

𝑙,𝑑  𝜉 +
𝑝

2𝜃
  

                  
+ 𝑚02

𝑘,𝑑  𝜉 +
𝑝

2𝜃
  𝑚02

𝑙,𝑑  𝜉 +
𝑝

2𝜃
 

                  
 

𝐷

𝑑=1

𝜃−1

𝑝=0

= 𝛿𝑘𝑙 , (2.7) 

  𝛼𝑃  𝑚01
𝑘,𝑑  𝜉 +

𝑝

2𝜃
   𝑚01

𝑙,𝑑  𝜉 +
𝑝

2𝜃
  

                  
+ 𝑚02

𝑘,𝑑  𝜉 +
𝑝

2𝜃
  𝑚02

𝑙,𝑑  𝜉 +
𝑝

2𝜃
 

                  
 

𝐷

𝑑=1

𝜃−1

𝑝=0

=  0, (2.8) 

for 𝑘, 𝑙 = 1, . . . , 𝐷, where 𝛼 =  𝑒−𝜋𝑖𝑟 /𝑁  and locally 𝐿2, 1/2-periodic functions    𝑚01
𝑘,𝑑 , 𝑚02

𝑘,𝑑 ,   𝑘, 𝑑 = 1, . . . , 𝐷, 
are given by equations (2.4) and (2.5).  

 (ii) The system  𝑊: = { 𝜓𝑘(·  − 𝜆) ∶  1 ≤ 𝑘 ≤  𝐿;  𝜆 ∈ Λ} which generates the space 𝑊0 is orthonormal if 

and only if 

   𝑚11
𝑘,𝑑  𝜉 +

𝑝

2𝜃
  𝑚11

𝑙,𝑑  𝜉 +
𝑝

2𝜃
 

                  
+ 𝑚12

𝑘,𝑑  𝜉 +
𝑝

2𝜃
  𝑚12

𝑙,𝑑  𝜉 +
𝑝

2𝜃
 

                  
 

𝐷

𝑑=1

𝜃−1

𝑝=0

= 𝛿𝑘𝑙 ,   (2.9) 

  𝛼𝑃  𝑚11
𝑘,𝑑  𝜉 +

𝑝

2𝜃
  𝑚11

𝑙,𝑑  𝜉 +
𝑝

2𝜃
 

                  
+ 𝑚12

𝑘,𝑑  𝜉 +
𝑝

2𝜃
  𝑚12

𝑙,𝑑  𝜉 +
𝑝

2𝜃
 

                  
 

𝐷

𝑑=1

𝜃−1

𝑝=0

=  0, (2.10) 
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for a.e.  𝜉 ∈ ℝ and 𝑘, 𝑙 =  1, . . . , 𝐿, where locally 𝐿2, 1/2-periodic functions 𝑚11
𝑘,𝑑  ,𝑚12

𝑘,𝑑  ,   1 ≤ 𝑘 ≤ 𝐿, 1 ≤
𝑑 ≤ 𝐷 are given by equations (2.4) and (2.6). 

Proposition 2.5 [12]. Consider an 𝑁𝑈𝑀𝑅𝐴 −𝐷 by integer dilation 𝜃 as in Definition 2.1. Then the systems 𝑉 

and 𝑊 generate the orthogonal subspaces 𝑉0 and 𝑊0, respectively if and only if for a.e. 𝜉 ∈ ℝ and 𝑙 =
1, . . . , 𝐿,   𝑑 = 1, . . . , 𝐷, 

  𝑚11
𝑙,𝑕  𝜉 +

𝑝

2𝜃
 

                  
 𝑚01

𝑑,𝑕  𝜉 +
𝑝

2𝜃
 +  𝑚12

𝑙,𝑕  𝜉 +
𝑝

2𝜃
 

                  
  𝑚02

𝑑,𝑕  𝜉 +
𝑝

2𝜃
 

𝜃−1

𝑝=0

𝐷

𝑕=1

= 0,           (2.11) 

and 

  𝛼𝑃  𝑚11
𝑙,𝑕  𝜉 +

𝑝

2𝜃
 

                  
 𝑚01

𝑑,𝑕  𝜉 +
𝑝

2𝜃
 +  𝑚12

𝑙,𝑕  𝜉 +
𝑝

2𝜃
 

                  
  𝑚02

𝑑,𝑕  𝜉 +
𝑝

2𝜃
  

𝜃−1

𝑝=0

𝐷

𝑕=1

= 0,                   (2.12) 

 

where locally 𝐿2, 1/2-periodic functions 𝑚01
𝑑,𝑕 ,𝑚02

𝑑,𝑕 ,𝑚11
𝑙,𝑕  ,𝑚12

𝑙,𝑕  , 1 ≤ 𝑑, 𝑕 ≤ 𝐷,   1 ≤  𝑙 ≤  𝐿, are given by 

equations (2.4), (2.5) and (2.6). 

3. The splitting lemma for nonuniform multiwavelet 

We constructed multiwavelet packets by continual splitting the wavelet subspace into finite number of 

orthogonal subspaces. This splitting is done with the help of the following lemma which is generalization of 

splitting lemma in [1], whose proof is easily obtained from proof of Theorem 3.2 in [7] and Propositions 2.3-

2.5 given in [12]. In the splitting lemma we discuss the orthonormality of the system 

 

𝑉1
′ : =  𝜑𝑑(. − 𝜆),  𝜓𝑘(· − 𝜆) ∶  1 ≤  𝑑 ≤ 𝐷;  1 ≤  𝑘 ≤  𝐿;  𝜆 ∈ Λ . 

 

For the sake of convenience we use single function   𝜓𝑙
𝑑  to denote by  𝜑𝑑  and  𝜓𝑘  by defining 

 𝜓𝑙
𝑑 =  

𝜑𝑑 ∶  𝑓𝑜𝑟 𝑙 = 0, 1 ≤ 𝑑 ≤ 𝐷;

𝜓𝑘 : 𝑓𝑜𝑟 𝑙 ≠ 0;  𝑘 = 𝑙 +  𝑑 − 1  𝜃 − 1 ;  1 ≤ 𝑑 ≤ 𝐷;  1 ≤ 𝑙 ≤  𝜃 − 1 ;
                        (3.1)                                                                       

 

also for 𝑖 ∈ {1, 2},  

𝑚𝑖
𝑑,𝑙,𝑕 =  

𝑚0𝑖
𝑑,𝑕 : 𝑓𝑜𝑟 𝑙 = 0, 1 ≤  𝑑, 𝑕 ≤  𝐷;

𝑚0𝑖
𝑘,𝑕 : 𝑓𝑜𝑟 𝑙 ≠ 0;  𝑘 = 𝑙 +  𝑑 − 1  𝜃 − 1 ; 1 ≤ 𝑑, 𝑕 ≤ 𝐷; 1 ≤ 𝑙 ≤  𝜃 − 1 .

               (3.2) 

                                                                                                                          

Lemma 3.1. (Splitting Lemma) Let Φ =  {𝜑1 , 𝜑2 , . . . , 𝜑𝐷}  ⊂ 𝐿2(ℝ), be a multiscaling function of 

multiplicity 𝐷 such that  𝜑𝑑(· −𝜆): 𝜆 ∈ Λ, 𝑑 = 1, . . . , 𝐷  is an orthonormal system in 𝐿2(ℝ) and let 𝑉 =

𝑠𝑝𝑎𝑛        𝜃𝑙/2 𝜑𝑑(· −𝜆) ∶  𝜆 ∈ Λ;  𝑑 = 1,· · · , 𝐷 . For 0 ≤ 𝑙 ≤ (𝜃 − 1);  1 ≤ 𝑑 ≤ 𝐷; let 

𝑚𝑑,𝑙,𝑕 𝜉 =  𝑎𝜆
𝑑,𝑙,𝑕  𝑒−2𝜋𝑖𝜆𝜉

𝜆∈Λ ,   with     𝑎𝜆
𝑑,𝑙,𝑕  

2

𝜆∈Λ
𝐷
𝑕=1 <  1 

so that    𝑚𝑑,𝑙,𝑕(𝜉) = 𝑚1
𝑑,𝑙,𝑕(𝜉) +  𝑒−2𝜋𝑖𝜉𝑟 /𝑁   𝑚2

𝑑,𝑙,𝑕  . 

Define 

𝜓 𝑙
𝑑 𝜉 =  𝑚𝑑,𝑙,𝑕  

𝜉

𝜃
 𝜑 𝑕  

𝜉

𝜃
 ,

𝐷

𝑕=1

   𝑎. 𝑒.  𝜉 ∈ ℝ. 
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Then  𝜓𝑙
𝑑  (· −𝜆) ∶  1 ≤ 𝑑 ≤  𝐷;  0 ≤ 𝑙 ≤ (𝜃 − 1);  𝜆 ∈ Λ  is an orthonormal system if and only if 𝑚1

𝑑,𝑙,𝑕   and 

𝑚2
𝑑,𝑙,𝑕 , 0 ≤ 𝑙 ≤ (𝜃 − 1);  1 ≤ 𝑑, 𝑕 ≤  𝐷, satisfying equations (2.7) − (2.12) in the light of relations (3.2). 

Moreover this system is an orthonormal basis for 𝑉 if and only if it is orthonormal. 

Corollary 3.2. Let  𝐸𝜆
𝑑 : 1 ≤ 𝑑 ≤ 𝐷;  𝜆 ∈ Λ   be an orthonormal basis of a separable Hilbert space ℋ and 

locally 𝐿2, 1/2-Periodic functions 𝑚1
𝑑,𝑙,𝑕

 and 𝑚2
𝑑,𝑙,𝑕

, for 0 ≤ 𝑙 ≤ (𝜃 − 1);  1 ≤ 𝑑, 𝑕 ≤ 𝐷; be as defined in the 

splitting lemma, satisfying equations (2.7) − (2.12) in the light of relations (3.2). Define 

𝐹𝜇
𝑑,𝑙 =   𝜃1/2 𝑎𝜆−𝜃𝜇

𝑑,𝑙,𝑕  𝐸𝜆
𝑕 , 𝜇 ∈ Λ , 0 ≤ 𝑙 ≤ (𝜃 − 1);  1 ≤ 𝑑 ≤ 𝐷.

𝜆∈Λ

𝐷

𝑕=1

 

Then   𝐹𝜇
𝑑,𝑙 : 0 ≤ 𝑙 ≤ (𝜃 − 1);  1 ≤ 𝑑 ≤ 𝐷;  𝜇 ∈ Λ   is an orthonormal basis for its closed linear span ℋ𝑑,𝑙  and 

ℋ = ⨁𝑙=0
𝜃−1 ⨁𝑑=1

𝐷  ℋ𝑑,𝑙 . 

Proof. Let  𝜑1 , 𝜑2 , . . . , 𝜑𝐷, be function in 𝐿2(ℝ) such that  𝜑𝑑 · −𝜆 : 𝜆 ∈ Λ, 𝑑 = 1, . . . , 𝐷  is an orthonormal 

system in 𝐿2(ℝ). Let 𝑉 = 𝑠𝑝𝑎𝑛         𝜃1/2 𝜑𝑑(𝜃 · −𝜆) ∶  𝜆 ∈ Λ, 𝑑 = 1, . . . , 𝐷 .  Define a linear operator 𝑇 from 

the Hilbert space 𝑉 to ℋ by 𝑇 𝜃1/2 𝜑𝑕(𝜃 · −𝜆) = 𝐸𝜆
𝑕  and let 𝜓𝑙

𝑑 , 0 ≤ 𝑙 ≤ (𝜃 − 1);  1 ≤ 𝑑 ≤ 𝐷; be 

functions satisfying equation (2.3) (𝑓 replaced by 𝜓𝑙
𝑑  ). 

Since  𝜓𝑙
𝑑 𝑡 =   𝜃 𝑎𝜆

𝑑,𝑙,𝑕  𝜑𝑕(𝜃𝑡 − 𝜆)𝜆∈Λ
𝐷
𝑕=1 , we have 

𝜓𝑙
𝑑 𝑡 −  𝜇 =   𝜃𝑎𝜆

𝑑,𝑙,𝑕  𝜑𝑕 𝜃 𝑡 − 𝜇 − 𝜆 

𝜆∈Λ

𝐷

𝑕=1

 

 

                   =   𝜃 𝑎𝜆
𝑑,𝑙,𝑕  𝜑𝑕 𝜃 𝑡 − 𝜇 − 𝜆 

𝐷

𝑕=1

 

or, equivalently, 

 

𝑇 𝜓𝑙
𝑑(𝑡 −  𝜇) =   𝜃1/2 𝑎𝜆−𝜃𝜇

𝑑,𝑙,𝑕  𝑇 𝜃1/2 𝜑𝑕(𝜃 · −𝜆) 

𝜆∈Λ

𝐷

𝑕=1

  

 

         =   𝜃1/2 𝑎𝜆−𝜃𝜇
𝑑,𝑙,𝑕  𝐸𝜆

𝑕

𝜆∈Λ

𝐷

𝑕=1

= 𝐹𝜇
𝑑,𝑙  . 

 

The result now established from splitting lemma.                                                     ∎ 

4. Construction of nonuniform multiwavelet packets associated with NUMRA-D 

Suppose {𝑉𝑗 }𝑗∈ℤ is an 𝑁𝑈𝑀𝑅𝐴 − 𝐷 with dilation 𝜃 and translation Λ. As we observed, applying splitting 

lemma to the space 

𝑉1 =  𝑠𝑝𝑎𝑛           𝜃𝑙/2 𝜑𝑑 𝜃 · −𝜆 : 𝜆 ∈ Λ;  𝑑 = 1,· · · , 𝐷 , 

we get the functions {𝜔𝑙
𝑑 : 1 ≤ 𝑑 ≤ 𝐷;  0 ≤ 𝑙 ≤ (𝜃 − 1)}, where 

𝜔 𝑙
𝑑   𝜉 =  𝑚𝑑,𝑙,𝑕  

𝜉

𝜃
 𝜑 𝑕(𝜉/𝜃)𝐷

𝑕=1 , 𝑎. 𝑒.   𝜉 ∈ ℝ.                                                                 (4.1) 

such that  𝜔𝑙
𝑑   · −𝜆 : 0 ≤ 𝑙 ≤ 𝜃, 𝑑 = 1, . . , 𝐷;  𝜆 ∈ Λ , from the orthonormal basis for 𝑉1. Now 𝜔0

𝑑 = 𝜑𝑑 ,

𝑑 = 1, . . , 𝐷 is a multiscaling function of multiplicity 𝐷 while 𝜔𝑙
𝑑   , 1 ≤ 𝑙 ≤ 𝜃 −  1, 𝑑 = 1,· · · , 𝐷, are the 
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basic multiwavelets associated with 𝑁𝑈𝑀𝑅𝐴 − 𝐷. Now for any 𝑛 ∈ ℕ0 = ℕ {0}, we define  𝜔𝑛
𝑑 : 1 ≤ 𝑑 ≤ 𝐷, 

recursively as follows. Suppose that {𝜔𝑝
𝑑 : 1 ≤ 𝑑 ≤ 𝐷, 𝑝 ∈ ℕ0} are defined already. Then define 𝜔𝑞+𝜃𝑝

𝑑  , 0 ≤

𝑞 ≤ 𝜃 − 1, by  

 

𝜔𝑞+𝜃𝑝
𝑑  𝑥 =   𝜃 𝑎𝜆

𝑑,𝑞,𝑕
 𝜔𝑝

𝑕(𝜃𝑥 −  𝜆)𝜆∈Λ
𝐷
𝑕=1 .                                                                    (4.2) 

 

Note that (4.2) defines 𝜔𝑛
𝑑  for 𝑛 ≥ 0. Taking Fourier transform we get 

(𝜔 𝑞+𝜃𝑝
𝑑 )(𝜉) =  𝑚𝑑,𝑞,𝑕(𝜉/𝜃) 𝜔 𝑝

𝑕(𝜉/𝜃)𝐷
𝑕=1 , 0 ≤ 𝑞 ≤ 𝜃 −  1, 1 ≤ 𝑑 ≤ 𝐷.                      (4.3) 

By defining 

𝐹𝑝
𝑑 𝜉 =  𝜔𝑝

1 𝜉 ,𝜔𝑝
2 𝜉 ,… , 𝜔𝑝

𝐷(𝜉) 
𝑡
 and 

                                                       𝐹 𝑝
𝑑 𝜉 =  𝜔 𝑝

1 𝜉 , 𝜔 𝑝
2 𝜉 ,… , 𝜔 𝑝

𝐷(𝜉) 
𝑡
, 

 

 expression (4.3) can be written in matrix notation as   

 

                                                     𝐹 𝑞+𝜃𝑝
𝑑 (𝜉) = 𝑀𝑞(𝜉/𝜃)  𝐹 𝑝

𝑑  (𝜉/𝜃).                                          (4.4) 

 

where the square matrix 𝑀𝑞(𝜉) of order 𝐷 is given by 

 

                         𝑀𝑞 𝜉 =  𝑚𝑑,𝑞,𝑕 𝜉  
1≤𝑑≤𝐷,1≤𝑕≤𝐷

.                                              (4.5) 

 

Definition 4.1. The function  𝜔𝑙
𝑑 : 1 ≤ 𝑙 ≤ 𝐿,   1 ≤ 𝑑 ≤ 𝐷  as defined above will be called the basic 

nonuniform multiwavelet packets corresponding to the 𝑁𝑈𝑀𝑅𝐴 − 𝐷 {𝑉𝑗 ∶  𝑗 ∈ ℤ} of 𝐿2(ℝ) associated with 

the dilation 𝜃. 

Note that (4.2) defines 𝜔𝑙
𝑑  for every non-negative integer l and every 𝑑 such that  1 ≤ 𝑑 ≤ 𝐷. 

5.  Fourier Transform of nonuniform multiwavelet packets associated with NUMRA-D 

Proposition 5.1. Let {𝜔𝑛
𝑑 : 𝑛 ≥ 0, 1 ≤ 𝑑 ≤ 𝐷}  be the basic nonuniform multiwavelet packets and consider 

 

                   𝑛 = 𝜏1 +  𝜃 𝜏2 +  𝜃 2 𝜏3  + · · ·  + (𝜃)𝑗−1  𝜏𝑗                                                          (5.1) 

 

where 0 ≤ 𝜏𝑖 ≤ 𝜃 − 1,   1 ≤ 𝑖 ≤ 𝑗,   𝜏𝑗 ≠ 0, be the unique expansion of the integer 𝑛 of length 𝑗 in base 𝜃. 

Then 

                𝐹 𝑛
𝑑(𝜉) = 𝑀𝜏1  

𝜉

𝜃
 𝑀𝜏2(𝜉/𝜃2)  · · · 𝑀𝜏𝑗  

𝜉

𝜃 𝑗 Φ 
𝑑(𝜉/𝜃𝑗 ).                                               (5.2) 

Proof. We will prove it by induction on the length of 𝑛. Since 𝜔0
𝑑 = 𝜑𝑑  and 𝜔𝑙

𝑑 , 1 ≤ 𝑙 ≤ 𝜃 − 1, 1 ≤ 𝑑 ≤ 𝐷,  
are the multiwavelet, it follows from (2.7) it is true for 𝑛 of length 1.  Assume that the expression (5.2) holds 

for all integers 𝑛 of length 𝑗. Then an integer 𝑚 of length 𝑗 +  1 is of the form 𝑚 = 𝜏 + 𝜃𝑛, where 0 ≤ 𝜏 ≤
𝜃 − 1, and 𝑛 has length 𝑗. Now from (4.3) and (5.2), we have 

                  𝐹 𝑚
𝑑 𝜉 = 𝐹 𝜏+𝜃𝑛

𝑑  𝜉  
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                           = 𝑀𝜏(𝜉/𝜃)  𝐹 𝑛
𝑑(𝜉/𝜃) 

                        = 𝑀𝜏(𝜉/𝜃)𝑀𝜏1
(𝜉/𝜃2)𝑀𝜏2

(𝜉/𝜃3)  · · · 𝑀𝜏𝑗  
𝜉

𝜃 𝑗+1 Φ 
𝑑(𝜉/𝜃𝑗+1). 

Since 𝑚 = 𝜏 + 𝜃𝑛 = 𝜏 + 𝜏1 𝜃 + 𝜏2 𝜃2 +· · · + 𝜏𝑗  𝜃𝑗  , for 𝐹 𝑚
𝑑(𝜉) we obtained desired expression and this 

completes the proof by induction.                           ∎ 

Theorem 5.2. Let  𝜔𝑛
𝑑 : 𝑛 ≥ 0, 1 ≤ 𝑑 ≤ 𝐷  be the basic nonuniform multiwavelet packets associated with the 

𝐴 − 𝐷 {𝑉𝑗 }. Then 

(i)  𝜔𝑛
𝑑 · −𝜆  : (𝜃)𝑗  ≤ 𝑛 ≤ (𝜃)𝑗+1 −  1, 𝜆 ∈ Λ, 1 ≤ 𝑑 ≤ 𝐷    is an orthonormal basis of  𝑊𝑗  , 𝑗 ≥

0. 

(ii)   𝜔𝑛
𝑑(· −𝜆) ∶  0 ≤ 𝑛 ≤ (𝜃)𝑗 − 1, 𝜆 ∈ Λ , 1 ≤ 𝑑 ≤ 𝐷  is an orthonormal basis of 𝑉𝑗  , 𝑗 ≥ 0. 

(iii)   𝜔𝑛
𝑑(· −𝜆) ∶  𝑛 ≥ 0, 𝜆 ∈ Λ, 1 ≤ 𝑑 ≤ 𝐷  is an orthonormal basis of 𝐿2(ℝ). 

 

Proof. Here, the prove is given by induction on 𝑗. Since  𝜔𝑛
𝑑 : 1 ≤ 𝑛 ≤ 𝜃 −  1, 1 ≤ 𝑑 ≤ 𝐷  are the basic 

multiwavelets, so (i) is true for 𝑗 =  0. Assume that it holds for 𝑗. By (2.3) and the assumption, we have 

 𝜃
1
2𝜔𝑛

𝑑 𝜃 · −𝜆 : 𝜆 ∈ Λ,  𝜃𝑗 ≤ 𝑛 ≤ 𝜃𝑗+1 − 1, 1 ≤ 𝑑 ≤ 𝐷  

is an orthonormal basis of  𝑊𝑗+1. Denote 

 

𝐸𝑛
𝑑 = 𝑠𝑝𝑎𝑛        𝜃1/2𝜔𝑛

𝑑(𝜃 ·  −𝜆) ∶  𝜆 ∈ Λ, 1 ≤ 𝑑 ≤ 𝐷   

so that 

⊕𝑑=1
𝐷 𝐹𝑗+1

𝑑 =⊕𝑑=1
𝐷 ⊕

𝑛=(𝜃)𝑗
(𝜃)𝑗+1−1

𝐸𝑛
𝑑 . 

Applying the splitting lemma to 𝐸𝑛
𝑑 , we get functions 𝑔𝑙

𝑛,𝑑  ,   0 ≤ 𝑙 ≤ 𝜃 − 1, defined by   𝑔𝑙
𝑑,𝑛 

∧
(𝜉) =

 𝑚𝑑,𝑙,𝑕(𝜉/𝜃) 𝜔 𝑛
𝑑(𝜉/𝜃)𝐷

𝑕=1 ,   0 ≤ 𝑙 ≤ 𝜃 − 1, such that   𝑔𝑙
𝑑,𝑛  (. − 𝜆) ∶  0 ≤ 𝑙 ≤ 𝜃 −  1,   𝜆 ∈ Λ  is an 

orthonormal basis of  𝐸𝑛
𝑑 . Let 𝑛 have the expansion as in (4.3). Then, using (5.2), we get 

𝐺 𝑑 𝜉 = 𝑀𝑙 𝜉\𝜃 𝑀𝜏𝑙
 𝜉\ 𝜃 2 · · · 𝑀𝜏𝑗  𝜉\ 𝜃 𝑗+1  Φ 𝑑(𝜉\(𝜃)𝑗+1). 

Where  𝐺 𝑑 =  𝑔𝑙
𝑑,𝑛 

1≤𝑙≤𝜃−1,𝜃 𝑗≤𝑛≤𝜃 𝑗+1−1
. But the expression on the right-hand side is precisely 𝜔 𝑚

𝑑 (𝜉),  where 

𝑚 = 𝑙 + (𝜃)𝜏𝑙 + (𝜃)2𝜏2 +· · · +(𝜃)𝑗 𝜏𝑗 = 𝑙 + 𝜃𝑛. Hence, we get 𝑔𝑙
𝑛 = 𝜔𝑙+𝜃𝑛

𝑑 .  Since 

  𝜔𝑙+𝜃𝑛
𝑑 ∶  0 ≤ l ≤ θ − 1, (θ)j ≤ n ≤ (θ)j+1–1 =  ωn

d : (θ)j+1 ≤ n ≤ (θ)j+2 − 1, 1 ≤  d ≤ D , 

is orthonormal basis of  𝑊𝑗+1 we have proved (i) for 𝑗 +  1 and the induction is complete. Further (ii) follows 

from the fact that 𝑉𝑗  = 𝑉0⨁ · · ·  ⨁𝑊𝑗−1 and (iii) from the fact that  𝑉𝑗     = 𝐿2 ℝ .                                                                           

∎ 

6. General multiwavelet packets 

Definition 6.1.  Let  𝜔𝑛
𝑑 : 𝑛 ≥  0, 1 ≤ 𝑑 ≤ 𝐷  be the basic nonuniform multiwavelet packets associated with 

𝑁𝑈𝑀𝑅𝐴 − 𝐷 {𝑉𝑗 ∶  𝑗 ∈ ℤ} of 𝐿2(ℝ). The collection of functions   𝒩 =  𝜃𝑗/2  𝜔𝑛
𝑑(𝜃𝑗 . −𝜆) ∶  𝑛 ≥ 0, 𝑗 ∈ ℤ,

  𝜆∈Λ is to be called the general nonuniform multiwavelet packets associated with NUMRA−D Vj, where 𝒩 is 

overcomplete in 𝐿2(ℝ). 

At 𝑗 = 0, 𝑛 ≥ 0, 𝜆 ∈ Λ  the subcollection of 𝒩 gives the basic multiwavelet packet constructed above and 

with 𝑛 =  1, 2,· · · , 𝜃 −  1, 𝑗 ∈ ℤ, 𝜆 ∈ Λ  the subcollection is a multiwavelet basis. 
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   Now, we will characterize the subcollection of  𝒩 which form orthonormal bases for 𝐿2(ℝ). Begin with 

several decomposition of multiwavelet subspaces 𝑊𝑗  . For 𝑛 ≥ 0, 1 ≤ 𝑑 ≤ 𝐷 and  𝑗 ∈ ℤ, define 

𝑈𝑗
𝑛,𝑑 = 𝑠𝑝𝑎𝑛         𝜃𝑗 /2 𝜔𝑛

𝑑(𝜃𝑗  . −𝜆) ∶  𝜆 ∈ Λ . 

Note that 

⨁𝑑=1
𝐷  𝑈𝑗

0,𝑑 = 𝑉𝑗      𝑎𝑛𝑑    ⨁𝑑=1
𝐷 ⨁𝑙=1

𝜃−1 𝑈𝑗
𝑙,𝑑 = 𝑊𝑗  , 

so 

⨁𝑑=1
𝐷  𝑈𝑗+1

𝑛,𝑑 = ⨁𝑑=1
𝐷 ⨁𝑙=0

𝜃−1  𝑈𝑗
𝑙,𝑑  

can generalize to decompose into 𝜃 orthogonal subspaces. 

 By the following result we can get different decompositions of wavelet subspaces 𝑊𝑗  , 𝑗 ≥ 0, and different 

bases of 𝐿2(ℝ). 

Proposition 6.2.  For 𝑛 ≥ 0 and 𝑗 ∈ ℤ, we have 

⨁𝑑=1
𝐷  𝑈𝑗+1

𝑛,𝑑 = ⨁𝑑=1
𝐷  ⨁𝑙=0

𝜃−1 𝑈𝑗
𝑙+𝜃𝑛 ,𝑑   . 

Proof.  For 1 ≤ 𝑑 ≤ 𝐷; let 𝐸𝜆
𝑑(𝑥) = 𝜃

𝑗+1

2  𝜔𝑛
𝑑(𝜃𝑗+1 𝑥 −  𝜆), 𝜆 ∈ Λ. Then  𝐸𝜆

𝑑 ∶  𝜆 ∈ Λ   is an orthonormal 

basis for the Hilbert space 

 𝑈𝑗+1
𝑛,𝑑 = 𝑠𝑝𝑎𝑛         𝜃(𝑗+1)/2  𝜔𝑛

𝑑  (𝜃𝑗+1 . −𝜆). For   0 ≤ 𝑙 ≤ 𝜃 − 1, define 

𝐹𝜏
𝑑,𝑙 𝑥 =   𝜃1/2 𝑎𝜆−𝜃𝜏

𝑑,𝑙,𝑕  𝐸𝜆
𝑕

𝜆∈Λ

𝐿

𝑕=1

 ,   𝜏 ∈ Λ, 1 ≤ 𝑑 ≤ 𝐷, 

and 

⨁𝑑=1
𝐷  ℋ𝑙

𝑑 = 𝑠𝑝𝑎𝑛         𝐹𝜏
𝑑,𝑙 ∶  𝜏 ∈ Λ, 1 ≤ 𝑑 ≤ 𝐷  . 

 

Then, by Corollary  3.2, we have 

⨁𝑑=1
𝐷  𝑈𝑗+1

𝑛,𝑑  = ⨁𝑑=1
𝐷  ⨁𝑙=1

𝜃−1 ℋ𝑙
𝑑  . 

Now                        𝐹𝜏
𝑑,𝑙 =   𝜃1/2 𝑎𝜆−𝜏𝜃

𝑙,𝑑,𝑕  𝐸𝜆
𝑕(𝑥)𝜆∈Λ

𝐷
𝑕=1  

                                       =   𝜃
1

2    𝑎𝜆
𝑑,𝑙,𝑕𝐸𝜆+𝜃𝜏

𝑑  𝑥 𝜆∈Λ
𝐷
𝑕=1  

 

                                       =   𝜃(𝜃+1)/2 𝑎𝜆
𝑑,𝑙,𝑕  𝜆∈Λ

𝐷
𝑕=1 𝜔𝑛

𝑑 (𝜃𝑗+1𝑥 − 𝜆) − 𝜃𝜏   

                                         = 𝜃
𝑗

2    𝜃
1

2𝑎𝜆
𝑑,𝑙,𝑕  𝜆∈Λ

𝐷
𝑕=1  𝜔𝑛

𝑑 𝜃 𝜃𝑗𝑥 − 𝜏 − 𝜆 ,        

                                        = 𝜃
𝑗

2  𝜔𝑛
𝑑 𝜃𝑗𝑥 − 𝜏 . 

 by using (4.2). Therefore 

⨁𝑑=1
𝐷  ⨁𝑙=0

𝜃−1ℋ𝑙
𝑑  = ⨁𝑑=1

𝐷 ⨁𝑙=0
𝜃−1 𝑈𝑗

𝜃𝑛+𝑙,𝑑  , 

 

and 

                                  ⨁𝑑=1
𝐷  𝑈𝑗+1

𝑛,𝑑 = ⨁𝑑=1
𝐷 ⨁𝑙=0

𝜃−1 𝑈𝜃𝑛+𝑙,𝑑 .                                       ∎ 

By the following result we can construct many orthogonal bases of 𝐿2(ℝ) of 𝑁𝑈𝑀𝑅𝐴 − 𝐷. 
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Theorem 6.3. Let 𝑗 ≥ 0. Then, we have 

𝑊𝑗  = ⨁𝑑=1
𝐷  ⨁𝑙=1

𝜃−1 𝑈𝑗
𝑙,𝑑

 

𝑊𝑗 = ⨁𝑑=1
𝐷 ⨁𝑙=𝜃

𝜃2−1 𝑈𝑗−1
𝑙,𝑑

 

⋮ 

𝑊𝑗 = ⨁𝑑=1 
𝐷  ⨁𝑙=𝜃𝑚

𝜃𝑚+1−1 𝑈𝑗−𝑚
𝑙,𝑑 ,   𝑚 ≤  𝑗 

⋮ 

 

𝑊𝑗 = ⨁𝑑=1
𝐷  ⨁

𝑙=𝜃 𝑗
𝜃 𝑗+1−1 𝑈0

𝑙,𝑑  . 

Proof. By repeated application of the previous proposition we can get the proof. ∎ 

Theorem 6.4. Let  𝜔𝑛
𝑑 : 𝑛 ≥ 0, 1 ≤ 𝑑 ≤ 𝐷  be the basic nonuniform multiwavelet packets associated with a 

𝑁𝑈𝑀𝑅𝐴 − 𝐷 {𝑉𝑗 ∶  𝑗 ∈ ℤ} and 𝑆 ⊂ ℕ0 × ℤ. Then the collection 𝒩𝑠: =  𝜃𝑗/2 𝜔𝑛
𝑑(𝜃𝑗  . −𝜆) ∶  𝜆 ∈ Λ, (𝑛, 𝑗) ∈

𝑆, 1≤𝑑≤𝐷 

is an orthonormal basis of  𝐿2(ℝ) if and only if {𝐼𝑛,𝑗 : 𝑛, 𝑗 ∈ 𝑆} is a partition of ℕ0, where 𝐼𝑛,𝑗 =  𝑙 ∈

ℕ0:  𝜃𝑗𝑛≤𝑙≤𝜃𝑗(𝑛 + 1  − 1. 

Proof. By Proposition 6.2 and Theorem 3 in [1], we can establish the proof. ∎ 

Note that from Theorm 5.2 (iii) we can write for a subsets 𝑆 of ℕ0 × ℤ that 

⨁𝑑=1
𝐷 ⊕(𝑛,𝑗 )∈𝑆 𝑈𝑗

𝑛,𝑑  =  𝐿2(ℝ). 
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