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Abstract

In this paper we construct nonuniform multiwavelet packets associated with the nonuniform multiresolution
analysis (NUMRA) with multiplicity D based on the theory of one dimensional spectral pairs, which is a
generalization of NUMRA introduced by Gabardo and Nashed. Further, we obtained an orthonormal basis for
L? (R) from the collection of dilation and transilation of nonuniform multiwavelet packets as a generalization of
nonuniform multiwavelet packets, that generalizes a result of Behera on wavelet packets associated with
NUMRA.
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1. Introduction

One of the most useful methods to construct a wavelet is through the concept of multiresolution analysis
(MRA) introduced by Meyer and Mallat. The notion of MRA and wavelets were generalized to many different
settings. One can replace the dilation factor 2 by any integer N = 2. In general, in higher dimensions, it can be
replaced by a dilation matrix A4, in this case the number of wavelets required is |detA| — 1. But in all these
cases, the translation set is always a group. Recently, Gabardo and Nashed in [7] defined a multiresolution
analysis associated with a translation set {0,7/N} + 2Z, where N > 1 is an integer, 1 <r < 2N — 1, risan
odd integer and r, N are relatively prime, a discrete set which is not necessarily a group. They call this an
NUMRA. As, the case N = 1 reduces to the standard definition of MRA with dyadic dilation. In [12] we
obtain an NUMRA with multiplicity D, we called it NUMRA — D that generalizes a particular case of a result
of Calogero and Garrig“os [3] on biorthogonal MRA’s of multiplicity D in nonstandard setup. A study with
respect to NUMRA has been done by many authors in the references [8-9, 11-15].

As in the case of classical wavelet bases, they have poor frequency localization. To overcome with this
problem Meyer and Wickerhauser [5] constructed wavelet packets which provides better frequency
localization for large j. The concept of wavelet packet was introduced by Coifman, Meyer and Wickerhauser
[5, 6]. Let {V; : j € Z} be an MRA of L?(R) with corresponding scaling function ¢ and wavelet 1. Let
W; = span {y;, : k € Z} be the corresponding wavelet subspaces. Since the space V; splits into two
orthogonal components V, and W;, we can also split WW; into two orthogonal subspaces, which is span of

{1,0(21' —k): k € Z} = {1,0(21' (.— 2"—}.)) : k€ Z}, each of them can further be split into two parts. Repeating

the splitting procedure j times, W; is decomposed into 2/ subspaces each generated by integer translates of a
single function. If we apply this to each W} , then we have a basis of L?(R), which will consist of integer
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translates of a countable number of functions. This basis is called the wavelet packet basis. Taking tensor
product this construction was extended to the higher dimension by Coifman and Meyer [4]. The nontensor
product version is due to Long and Shen [10]. Behra in [2] discuss the corresponding results in higher
dimensions associated with a general matrix dilation and several scaling functions.

Adopting similar procedure Behera study wavelet packets associated with nonuniform multiresolution
analysis in [1] and multiwavelet packets and frame packets of L2(R%) in [2]. Motivated from the work of
Behera on wavelet packets associated with NUMRA, in this article we construct the multiwavelet packets
associated with the nonuniform multiresolution analyses with multiplicity D. We also identify the sub
collections of this system which form orthonormal bases for L?(R). Further we investigate their properties by
means of the Fourier transform.

2. Basic definitions and notation

In this section, we will state some important preliminaries and notation that we are need to construct
multiwavelet packets associated with nonuniform multiresolution analysis with multiplicity D (NUMRA —
D), where D is a positive integer. As mentioned before NUMRA — D is a generalization of MRA as well as
NUMRA.

By a nonuniform orthonormal multiwavelet W = {y'Y, (simply, nonuniform multiwavelet) in L?(R)
associated with the dilation 2N and the translation set A, y , we mean that the family

AW) ={@NY2P((2N)Y - 1) YpEW,jEL A €A}

forms a complete orthonormal system for L?(R). In the situation of N =1, r = 1 and the nonuniform
multiwavelet ¥ is known as orthonormal multiwavelet associated with the dilation 2 and the translation set Z
while W is known as orthonormal wavelet (simply, wavelet) in the case of L = 1. The generalization of the
notion of NUMRAinto NUMRA — D with respect to the dilation 8 = 2Na and translation A,y as
2Na A,y © A, v , where a is defined as follows:

n+1 ) _
a={"> :n€NwhenN = 1,
n :ne€NwhenN > 1,

provides more possibilities of dilation factors with respect to the translation set A, y . NUMRA — D in [12] for
translation set A = A,y is defined as follows:

Definition 2.1. A nonuniform multiresolution analysis with multiplicity D for dilation 6 = 2Na and
translation A, is a collection {V;};¢z of closed subspaces of L?(R) satisfying the following axioms:

PV, cViyy, forallj € Z,

(P2)f() €V, if andonlyif f(8-) €V, forallj €Z,
(P3) NjezV; = {0},

(P4) U; ezV; is dense in L*(R), and

(P5) There exist functions ¢!, ¢?,..., " €V, called the scaling functions, such that the collection {¢? (-
—A): A€ A 1< d < D}isacomplete orthonormal basis for V.

In the axiom (P5), the set of scaling functions ® = {¢', ¢?,..., 9"} is called multiscaling function of
multiplicity D which generates an NUMRA that leads to a nonuniform multiwavelet. A standard NUMRA
theory assumes that there is only one scaling function ¢ whose A-translates, 1 € A constitutes a complete
orthonormal basis of their span V.

For D=1, a=1 and N € N, the sequence {V;};ez in the above definition is nothing but NUMRA with
integer dilation 2N and translation A introduced by Gabardo and Nashed [7, 8] while for the case of N =
land a € {*;*: n € N}, this is same as classical MRA of multiplicity D with dilation 2a and translation set

Z (simply call as MRA — D). When N > 1, the dilation factor of 8 ensures that 6A c 2Z c A.
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In a similar fashion of the classical theory of multresolution analysis, another sequence {W;};c; of closed
subspaces of L?(R) is defined by W, =V, ©V;, j €Z and © denotes the orthogonal complement of V;
in Vj4q, for an NUMRA — D {V}};¢z with dilation factor 6. These subspaces inherit the scaling property of
{V;}j ez, and hence we have the following orthogonal decompositions:

L*(R) =®jez W = Vo ®(®;20W)).

A set of functions {': 1< | < (6 — 1)D}:=¥ in L*(R) is said to be a nonuniform multiwavelet
associated with the NUMRA — D {V;};¢z if the collection (P! —):1 <1 <(- 1)D, 1€ A} forms
an orthonormal basis for W,. We call ¥ to be an NUMRA — D multiwavelet. In view of properties of W} , the
collection

I .
0z ¢! - —1): jeZ1<1l < (6 —1)D,1€ A}
forms an orthonormal basis for L?(R) if W is a nonuniform multiwavelet.
Below we mention a result obtained in [12] that will be used in sequel.

Theorem 2.2 [12]. Suppose {V;}jez is an NUMRA — D with dilation 6 and translation A. If there exist L
functions ¥*,1 < k < L, in V4 such that the family of functions

Vi i={p%C =D —):1<d<D;1 <k <L A€}

forms an orthonormal system for the generating subspace V;, then, L = (6 — 1)D is a necessary and sufficient
condition such that the above system is complete in V;.

The following are some important findings that we will need for the present work.

Proposition 2.3 [12]. Suppose {V}};¢z is an NUMRA — D with dilation 6 and translation A. Then the space V;
consists precisely of the functions f € L2(R) whose Fourier transform can be written as
D

FOO =) mi@©e'©),  ae {ER, @D

d=1
for locally L? functions m/*? for 1 < d < D together with
2miér
d UL
mf@) =m[* )+ e ¥ m[ (), (22)
where m{'d and mg'd ,d=1,2,...,D, are locally L?, 1/2-periodic functions.
In the above proposition the space V; consist functions f € L?(R). Since (1/68)f(x/6) € Vj, there exists a
2

sequence {a] = (al"',al?,...,al"” Y} 1en satisfying B_; Yrealal?|” < oo such that

1 d

2f (%) =28 Tien ] 0t x = D), (2.3)

or, equivalently, by taking the Fourier transform of both sides of the previous equation, we obtained the result
(2.1) and (2.2), with

mfd (&) = z a/{,de—zma’

AEA
ml? (&) = Z ald e~4miEm and ml? (¢) = a;:Jrl e~Hmigm (2.4)
meZ mez N
We denote by & and ® column vectors in C° and in C- as & = {¢,...,@P} and @ = {¥1,..., P 1},

d
respectively. In particular, since ¢ (x) € V, < V;, from Proposition 2.3 there are locally L? functions my &

for1<d,d < D,suchthat, for a.e.
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_2miér
= Zd =1 <m01 E+e v m()z (’f)) @ (E) (2.5)
Taking mg; d = my, 4 and mis d = mg’z"’d , In the matrix notation, this can be written as follows:

D(68) = My(&) D(E), fora.e. £ ER,
with Mo(§) = (Mo1 (&) + e 2™ /N My, (€)), where the matrices My; and My, defined by My =

d,d d,d
(m01 )1sd,d’g3 and My, = (moz )1<d V< are usually called low-pass filters (or scaling matrix filters)
associated with the scaling family .

Similarly, in case of Y!(x) € W, < Vy, where W, = span{'(x —1):1 <1 < L; A € A}, there are locally
L2 functions m1 “forl <d <Dand1<! < Lsuchthat, forae. ¢ € R,

P! (08) = X2_, m¥ (©)@?(¢)

D

= > (@ + e mty (f)) '), (26)
d=1
— o pld Ld — o ¥'d
whose matrix notation is given as follows by considering m}{ = m},;* and m}% = m?,* :

P(68) = M1 () P(§), forae ER,
with My (&) = My (&) + e 28T /N My, (&), where the matrices M;; and M, defined by

Mll and M12 =

— (v ld Ld
= (1)1 991209 (m12 )19z <00
are usually called high-pass filters associated with the scaling family (¥, ®).

Proposition 2.4 [12]. Consider an NUMRA — D with integer dilation 8 and translation A as in Definition 2.1.
Then the following hold:

Q) The system V:= {¢?(- —1): 1 <d < D; A € A} which generates the space V,, is orthonormal
if and only if fora.e. & € R,

Z [ %) M‘H’%Z (€+ )M} = 8y, (2.7)

[mo'l (¢ +2%) mid (£ + 2p9)+m’5'2d (¢ +2%) mig (¢ + )] = 0,(28)

fork,l =1,...,D, where @ = e ™" /N and locally L2, 1/2-periodic functions m&?, m&?, k,d =1,...,D,

are given by equations (2.4) and (2.5).

S.

DT =
Mb

0d

14 1

(i) The system W:={y*k(- —21): 1 <k < L; 2 € A} which generates the space W, is orthonormal if
and only if

-1 D

Z dZ: [mn ) (5 + ) m’féd (.f + %) mll'g (f + 2%)] =6, (2.9)
b - -

Z Z [m11 % Ymit (¢ + %) Fmlg (g + %) mid (£ + 2%)] — 0,(2.10)

p:
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forae. ¢ €Rand k,l = 1,...,L, where locally L2, 1/2-periodic functions m11 ,mfzd, 1<k <L1=<
d < D are given by equations (2.4) and (2.6).

Proposition 2.5 [12]. Consider an NUMRA — D by integer dilation 6 as in Definition 2.1. Then the systems V
and W generate the orthogonal subspaces V, and W, respectively if and only if for ae. { €eR and [ =
1,...,L, d=1,...,D,

D 6-1
Z miy (f+2p9) mgy (E+ ) + mht (H%) md; (§+ ) 0, (2.11)
h=1p=0

and

o\ pl L P\ _an P\, in(;, P\

Z a [mn (f +%) mgyq (g‘ +%) + my, (g‘ +%) mO2 (f + )] 0, (2.12)

h=1p=0

where locally L2, 1/2-periodic functions m&", m&t, mi" mi? 1 <d,h <D, 1 <1 < L, are given by

equations (2.4), (2.5) and (2.6).
3. The splitting lemma for nonuniform multiwavelet

We constructed multiwavelet packets by continual splitting the wavelet subspace into finite number of
orthogonal subspaces. This splitting is done with the help of the following lemma which is generalization of
splitting lemma in [1], whose proof is easily obtained from proof of Theorem 3.2 in [7] and Propositions 2.3-
2.5 given in [12]. In the splitting lemma we discuss the orthonormality of the system

Vii={?( =N, Y*(=A):1<d<D;1 <k <1L; e}

For the sake of convenience we use single function 1§ to denote by ¢? and ¥ by defining

p e : forl=0,1<d<D;
VE=90k. A . . . 3.1)
Yiforl# 0, k=14+(d—-1)0—-1);1<d<D;1<I<(6-1);
also for i € {1, 2},
dlh mol iforl=0,1<d,h < D;
ml,” = kh (32)
mg; i forl =0, k=1+([d-1)0—-1);1<d,h<D;1<1<(6-1).

Lemma 3.1. (Splitting Lemma) Let ® = {¢',¢?,...,9"} c L?(R),be a multiscaling function of
multiplicity D such that {p%(- —A):1 €A, d = 1,...,D} is an orthonormal system in L?(R) and let V =
span{6'/? p¢(-—1): A€A;d=1,--,D}LFor0<l <(0—1); 1<d <D;let

d l h — [ - d,l,h 2
mP(E) = Taenay " e, with TRy Taea|ay | < 1
sothat mdbh (&) = m&Hh(g) 4 e 2mir /N pdlbh

Define

O imd,z,h ) (}) accen

h=1
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Then {yff (- —=2): 1<d < D; 0 <1 < (8 —1); 1 € A}isan orthonormal system if and only if m{""" and

dlh 0<1<(6-1)1<dh< D, satisfying equations (2.7) — (2.12) in the light of relations (3.2).
Moreover this system is an orthonormal basis for V if and only if it is orthonormal.

Corollary 3.2. Let {Ef 1<d<D;Ae A} be an orthonormal basis of a separable Hilbert space H and

locally L2, 1/2-Periodic functions m&*" and m$**" for0 <1 < (6 —1); 1 < d,h < D; be as defined in the
splitting lemma, satisfying equatlons (2.7) — (2.12) in the light of relations (3.2). Define

ZZel/Za;”; Elueh,0<l<@-1);1<d<D.
=1 €A

Then {Fd'l 0<1<(6-1); 1<d<D;pueA}isanorthonormal basis for its closed linear span # ! and
H = G) EBD_lj{dl

Proof. Let @1, ¢?,..., ", be function in L?(R) such that {¢p?(- —=1): A € A, d = 1,...,D} is an orthonormal
system in L?(R). Let V = span {#1/? %6 - —2): A €A, d =1,...,D}. Define a linear operator T from
the Hilbert space V to H by T(8Y2 "6 -—2)) =E} and let p{,0<1<(0—1);1<d <D; be
functions satisfying equation (2.3) (f replaced by ¢ ).

Since Y (t) = XP_1 Taen 6 alHt o (6t — 1), we have
D

pie— =) > o o" O - -2
h=1A€eA

Zze Pt h (Ot — ) — 2)

or, equivalently,

T(yi(t — w) = 0'/2 ajly, T(6M2 ¢"(0 - ~2))
l ;i;;é; A—0u

dLh ph _ pdl
Zzgl/z D o Br = F

=1 1A€A

The result now established from splitting lemma. ]
4. Construction of nonuniform multiwavelet packets associated with NUMRA-D

Suppose {V;}jez is an NUMRA — D with dilation 6 and translation A. As we observed, applying splitting
lemma to the space

Vi = Span {91/2 4O --A):r1eNd=1,-- ,D},
we get the functions {wf: 1< d < D; 0 <1< (8 — 1)}, where
of () = Thymt (£) 9" (5/6),ace. §ER (4.1)

such that {wf’ (-=2):0 <1 <0, d =1,..,D; 1 € A}, from the orthonormal basis for V;. Now w§ = ¢¢,
d =1,..,D is a multiscaling function of multiplicity D while w{ ,1<1<6—- 1, d=1,--,D, are the
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basic multiwavelets associated with NUMRA — D. Now for any n € N, = NU{0}, we define w¢:1<d <D,
recursively as follows. Suppose that {w;}: 1<d <D, p €Ny} are defined already. Then define wf;wp ,0<
q<6-—1,by

0§ op 00) = ER=1 Taen 0 @ " @}l (6x = ). 4.2)

Note that (4.2) defines w¢ for n > 0. Taking Fourier transform we get
(@4 40p)(&) = TRy mO"(E/0) D} (£/6), 0<q<6—1,1<d <D. (4.3)
By defining

FAE) = (w0} (€), w3 (€), ..., wE ()" and

ELO = (@), @E(©), .., a2 (®)'",

expression (4.3) can be written in matrix notation as

i g, () = My (£/6) B2 (£/0). (4.4)

where the square matrix M, () of order D is given by

M, (§) = (méeh(©) (4.5)

1<d<D1<h<D

Definition 4.1. The function w{:1<I<L, 1<d<D as defined above will be called the basic
nonuniform multiwavelet packets corresponding to the NUMRA — D {V; : j € Z} of L?(R) associated with
the dilation 6.

Note that (4.2) defines w{ for every non-negative integer | and every d suchthat 1 < d < D.
5. Fourier Transform of nonuniform multiwavelet packets associated with NUMRA-D

Proposition 5.1. Let {wd:n >0, 1 < d < D} be the basic nonuniform multiwavelet packets and consider
n=1+ @), +(@)?%t3 +--- +(OY! T (5.1

where 0 <7, <6-1, 1<i<j, 7 #0, be the unique expansion of the integer n of length j in base 6.
Then

R = Moy (5 Mo (5/62) - My (5) B9(E/00). (5.2)

Proof. We will prove it by induction on the length of n. Since w§ = ¢? and wf,1<1<6 -1, 1<d <D,
are the multiwavelet, it follows from (2.7) it is true for n of length 1. Assume that the expression (5.2) holds
for all integers n of length j. Then an integer m of length j + 1 is of the form m =t + 6n, where 0 < 7 <
6 — 1, and n has length j. Now from (4.3) and (5.2), we have

B = Flgn (©
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= M,(¢/6) E{(£/6)
= M, (§/0)M;, (§/01IM,, (£/6%) -+ My (555) B(E/07+1).

Since m=71+6n=71+71,0+71,0%+ --+7;, 6/, for £I(§) we obtained desired expression and this
completes the proof by induction. [

Theorem 5.2. Let {w?:n > 0, 1 < d < D} be the basic nonuniform multiwavelet packets associated with the
A—D {V;}. Then

(i) {wd(-=21):(0Y <n< (@Y™ -1, 2€A, 1<d <D} isanorthonormal basis of W;, j >
0.
(ii) {wd(--2):0<n<(0)Y -1, 1€A,1<d < D}isan orthonormal basis of V; , j > 0.

(iii) {wd(-=2): n=0, 1€A, 1<d < D}isan orthonormal basis of L?(R).

Proof. Here, the prove is given by induction on j. Since {w?:1<n<6— 1, 1 <d < D} are the basic
multiwavelets, so (i) is true for j = 0. Assume that it holds for j. By (2.3) and the assumption, we have

1 , ,
{efwg(e-—A):AeA, o) SnSB”l—l,lSdSD}

is an orthonormal basis of W, ;. Denote

Ef =span{0'/?wi(0- —2): 1€ A 1<d <D}
so that
(2] Jj+1
@1 B =038, Er.
Applying the splitting lemma to EZ, we get functions gl"' , 0<1 <6 -1, defined by (gld'")/\(f) =
P mdth(g/0) @d(£/6), 0<1<6—1, such that {g" (—D):0<1<6-1 A€A} is an
orthonormal basis of EZ. Letn have the expansion as in (4.3). Then, using (5.2), we get

GU() = Mi(E\OIM, (\(©)7) -+ My, (£\(OY ) B4\ ©OY ).

Where G% = (gl ")Msa_ijnsgm_l. But the expression on the right-hand side is precisely &% (§), where

m=1+ (0t + (0)°t, + -~ +(9)frj = [ + 6n. Hence, we get g;' = wii+9n' Since
{0lgn:0<1<08-1, (8) <n<(®)Y*-1}={wd:(B)" <n< () -11< d<D}

is orthonormal basis of W, we have proved (i) for j + 1 and the induction is complete. Further (ii) follows
from the fact that V, =V,@®--- ®W,_; and (iii) from the fact that UV =L*(R).
[

6. General multiwavelet packets

Definition 6.1. Let {w%:n > 0, 1 < d < D} be the basic nonuniform multiwavelet packets associated with

NUMRA—D {V; : j € Z} of L*(R). The collection of functions N ={6//? wi(¢/.-2): n =0, j€Z,
A€ is to be called the general nonuniform multiwavelet packets associated with NUMRA—D Vj, where Ais

overcomplete in L2 (R).

At j =0, n>0,1 € A the subcollection of V' gives the basic multiwavelet packet constructed above and
withn= 1,2,---, 8 — 1, j € Z,1 € A the subcollection is a multiwavelet basis.
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Now, we will characterize the subcollection of N which form orthonormal bases for L?(R). Begin with
several decomposition of multiwavelet subspaces W; . Forn =0, 1 <d < D and j € Z, define

an’d =span {6/ wl (0’ .—2): 1€ A}.
Note that

@ U =V, and @301 UM =W,

SO
D nd _ nD m6-1 p7ld
Di=1U{1 = 3=10= U
can generalize to decompose into 8 orthogonal subspaces.

By the following result we can get different decompositions of wavelet subspaces W, j = 0, and different
bases of L?(R).

Proposition 6.2. Forn > 0 and j € Z, we have
d —1 jl+6n,d
@1 U1 = @d= &1 U7
j+1 .
Proof. For1 <d < D;let E{(x) = 07 wd(@*tx — 1), 1€ A Then {E{ : 1 € A} is an orthonormal
basis for the Hilbert space

Uyl =span (0UD/2) wi (9/*1.-1). For 0<1<6 —1,define
L

M (x) = Z Z 912 g0 Eh rep1<d<D,
h=1 A€A

and

®L_, HP = span {F‘Td’l :T€EN1<d<D}

Then, by Corollary 3.2, we have
d -
®d-1 U1 = ®i= ©L HY' -
Now FM = FRo1 Zaen 01 a3y R (%)

1
R o J)) 5 dLhd
= Yh=121en 02 a"" Eyyor (x)

= Yh_1 Xen 60D/ af’l’h wd((071x — 1) — 01)
Lsp Lalh  d(p(p
= 02%0_1 Yaen 020" w0 (0(6/x —1) = 2),

= 915 w? (Hjx - ‘L').
by using (4.2). Therefore

D -1 d _ D 0—1 y6n+ld
D1 O_gH = Dg_1D/S UJ )
and

D pnd _ D myf—1 6n+ld
Da-1 U1 = Bg=1®i= U : "

By the following result we can construct many orthogonal bases of L?(R) of NUMRA — D.
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Theorem 6.3. Let j > 0. Then, we have
—1 y,1d
V|6' = 69321 @?:11 U]
2_
MG’ = 693:163?:9 ! Ujl'—d1

—_ mD om+l_1 .ld .
W, =®¢=1 @=gm Uy m=j

6t

Ld
V]G = 6szl)=1 69[:91' Ug™ -
Proof. By repeated application of the previous proposition we can get the proof. m

Theorem 6.4. Let {w?:n >0, 1 < d < D} be the basic nonuniform multiwavelet packets associated with a
NUMRA—-D{V,: j€Z} and S c Ny X Z. Then the collection N;:={6//? wi(¢/ .—2): 2 €A (n,)) €
S, 1<d<pD

is an orthonormal basis of L?(R) if and only if {Ij:n,j € S} is a partition of Ny, where I, ; = {l €
NO: in<i<@j(n + 1) — 1.

Proof. By Proposition 6.2 and Theorem 3 in [1], we can establish the proof. m

Note that from Theorm 5.2 (iii) we can write for a subsets S of N, x Z that

,d
Dd=1 Omes U = L*(R),

References.

[1] Behera, B., (2007). Wavelet packets associated with nonuniform multiresolution analysis, J. Math.
Anal. Appl, 328, 1237-1246.

[2] Behera, B., (2001) Multiwavelet packets and frame packets of L2(Rd), Proc. Ind. Acad. Sci., 111,
439-463.

[3] Calogero, A., & G. Garrig’os, (2001) A characterization of wavelet families arising from biorthogonal
MRA’s of multiplicity d, J. Geom. Anal. 11(2), 187-217.

[4] Coifman R., & Meyer, Y., (1989). Orthonormal wave packet bases, preprint (Yale University)

[5] Coifman R., Meyer, Y. and Wickerhauser, M. V., (1992). Wavelet analysis and signal procesing, in:
Wavelets and Their Applications (eds) M B Ruskai et al (Boston: Jones and Bartlett), 153-178.

[6] Coifman, R., Y. Meyer and M. V. Wickerhauser, Size properties of wavelet packets, in: Wavelets and
Their Applications (eds) M B Ruskai et al (Boston: Jones and Bartlett) (1992) 453-470.

[7] Gabardo, J. P. and Nashed, M. Z., (1998). Nonuniform multiresolution analyses and spectral pairs, J.
Funct. Anal., 158(1), 209-241.

[8] Gabardo, J.-P. & Nashed, M. Z., (1998). An analogue of Cohen’s condition for nonuniform
multiresolution analyses, Wavelets, multiwavelets, and their applications (San Diego, CA, 1997), 41—
61, Contemp. Math., 216, Amer. Math. Soc., Providence, RI.

[9] Gabardo, J. P. & Yu, X., (2006). Wavelets associated with nonuniform multiresolution analyses and
one-dimensional spectral pairs, J. Math. Anal. Appl., 323(2) 798-817. 13.

[10] Long, R. & Chen, W. (1997). Wavelet basis packets and wavelet frame packets, J. Fourier Anal.
Appl. 3(3) 239256

[11] Mittal, S. and Shukla, N. K., Generalized nonuniform multiresolution analyses, preprint.

Volume 3, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm 201



Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2393-0218

[12] Mittal, S., Shukla, N. K. and N. Atlouba, A. S., Nonuniform multiresolution analyses with
multiplicity D, preprint.

[13] Shukla, N. K. and Mittal, S., (2014). Wavelets on the spectrum, Numer. Funct. Anal. Optim., 35(4),
461-486.

[14] Wang, X. (1995). The study of wavelets from the properties of their Fourier transforms, Thesis
(Ph.D.)- Washington University in St. Louis, 138 pp.

[15] Yu, X. (2005). Wavelet sets, integral self-affine tiles and nonuniform multiresolution analyses,
Thesis(Ph.D.)-McMaster University (Canada), 145 pp.

Volume 3, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm 202|




