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Abstract: In this paper, we study the special (α,β)-metric F =
α2

α−β
+ β on a manifold M. Then prove that 𝐹 is of 

scalar flag curvature and isotropic 𝑆-Curvature if and only if it is isotropic Berwald metric with almost isotropic flag 

curvature. 
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1. Introduction 

 

Curvatures are the central concept of Finsler geometry. For a Finsler manifold  𝑀, 𝐹 , the flag curvature is 

a function 𝐾 𝑃, 𝑦  to the tangent planes 𝑃 ⊂ 𝑇𝑥𝑀 and non zero 𝑦 ∈ 𝑃. A Finsler metric 𝐹 is of scalar flag curvature 

if for any non-zero vector 𝑦𝜖𝑇𝑥𝑀, 𝐾 = 𝐾(𝑥, 𝑦) is of independent 𝑃 containing 𝑦𝜖𝑇𝑥𝑀 (hence 𝐾 = 𝜎(𝑥)  when 𝐹 is 

Riemannian) It is of almost isotropic flag curvature if  

                                                                         𝐾 =
3𝑐𝑥𝑚 𝑦𝑚

𝐹
+ 𝜎 ,                                                                             (1.1) 

 

where 𝑐 =  𝑐(𝑥) and 𝜎 =  𝜎(𝑥) are scalar functions on 𝑀. It is one of the important problems in Finsler geometry 

is to study and characterize Finsler manifolds of almost isotropic flag curvature [11]. 

To study the geometric properties of a Finsler metric, one also considers non-Riemannian quantities. In Finsler 

geometry, there are several important non-Riemannian quantities: the Cartan torsion 𝐶 , the Berwald curvature 𝐵, 

the mean Landsberg curvature 𝐽 and S-curvature 𝑆, etc ([6] [9] [13] [20]). these are geometric quantities which 

vanish for Riemannian metrics. 

Among the non-Riemannian quantities, the 𝑆-curvature 𝑆 =  𝑆(𝑥, 𝑦) is closely related to the flag curvature which 

constructed by 𝑍. Shen for given comparison theorems on Finsler manifolds. An n-dimentional Finsler metric 𝐹 is 

said to have isotropic 𝑆-curvature if  

                                                                                𝑆 =  (𝑛 +  1)𝑐𝐹,                                                                      (1.2)  

for some scalar function 𝑐 =  𝑐(𝑥) on M. In [13], it is proved that if a Finsler metric 𝐹 of scalar flag curvature is of 

isotropic 𝑆-curvature (1.2), then it has almost isotropic flag curvature (1.1).  

The geodisc curves of a Finsler metric 𝐹 =  𝐹 (𝑥, 𝑦) on a smooth manifold 𝑀, are determined by 𝑐 𝑖 + 2𝐺 𝑖(𝑐 ) =
 0, where the local functions 𝐺 𝑖 = 𝐺 𝑖 𝑥, 𝑦  are called the spray coefficients. A Finsler metric 𝐹 is called a Berwald 

metric, if 𝐺 𝑖  are quadratic in 𝑦𝜖𝑇𝑥𝑀 for any 𝑥𝜖𝑀.  
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A Finsler metric 𝐹 is said to be isotropic Berwald metric if its Berwald curvature is in the following form 

                                                 𝐵𝑗𝑘𝑙
𝑖 = 𝑐 𝐹𝑦 𝑗𝑦𝑘𝛿𝑗

𝑖 + 𝐹𝑦𝑘𝑦 𝑙𝛿𝑗
𝑖 + 𝐹𝑦 𝑙𝑦 𝑗𝛿𝑘

𝑖 + 𝐹𝑦 𝑗𝑦𝑘𝑦 𝑙𝑦 𝑖 ,                                          (1.3) 

where 𝑐 =  𝑐(𝑥) is a scalar function on 𝑀 [6]. 

As a generalization of Berwald curvature, Basco-Matsumato proposed the notion of Douglas curvature [1]. A 

Finsler metric is called a Douglas metric if 𝐺 𝑖 =
1

2
ℾ𝑗𝑘

𝑖  𝑥 𝑦 𝑗𝑦𝑘 + 𝑃 𝑥, 𝑦 𝑦𝑖. In order to find explicit examples of 

Douglas metrics, i.e we considered some  (𝛼, 𝛽) −metrics. An (𝛼, 𝛽) −metric is a Finsler metric of the form 

𝐹 = 𝛼𝜑  
𝛽

𝛼
 , where 𝜑 = 𝜑(𝑠) is a 𝐶∞  on (−𝑏0 , 𝑏0) with certain regularity, 𝛼 =  𝑎𝑖𝑗  𝑥 𝑦𝑖𝑦 𝑗  is a R iemannian 

metric and 𝛽 = 𝑏𝑖 𝑥 𝑦𝑖 is a 1-form on 𝑀. 

In this paper, we consider special metric F =
α2

α−β
+ β with some non-Riemannian curvature properties and 

prove the following. 

Theorem 1.1. Let F =
α2

α−β
+ β be a non-Riemannian special metric on a manifold 𝑀 of dimention n. Then 𝐹 is 

of scalar flag curvature with isotropic S-curvature (1.2), if and only if it has isotropic Berwald curvature (1.3) with 

almost isotropic flag curvature (1.1). In this case, 𝐹 must be locally Minkowskian. 

2. Preliminaries 

Let 𝑀 be an n-dimensional 𝐶∞ manifold. Denote by 𝑇𝑥𝑀 the tangent space at 𝑥 ∈ 𝑀, by  𝑇𝑀 = ∪𝑥𝜖𝑀 𝑇𝑥𝑀  

the tangent bundle of 𝑀 and by 𝑇𝑀0 = 𝑇𝑀\{0} the slit tangent bundle on M is a function  𝐹 ∶  𝑇𝑀 →  [0,∞) 

which has  the following properties: 

a) 𝐹 𝑖𝑠 𝐶∞𝑜𝑛 𝑇𝑀\{0}; 

b) 𝐹  is positively 1-homogeneous on the fibers of tangent bundle 𝑇𝑀; 

c) For each 𝑦 ∈ 𝑇𝑥𝑀, the following quadratic form 𝑔𝑦  on 𝑇𝑥𝑀 

𝑔𝑦 𝑢, 𝑣 ≔
1

2
 

 𝜕2

𝜕𝑠𝜕𝑡
 𝐹2 𝑦 + 𝑠𝑢 + 𝑡𝑣    𝑠 , 𝑡 = 0, 𝑢, 𝑣𝜖𝑇𝑥𝑀.    

Let 𝑥 ∈ 𝑀 and 𝐹𝑥 ≔ 𝐹|_𝑇𝑥𝑀. To measure the non-Euclidean feature of 𝐹𝑥 , define 𝐶𝑦 : 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 → 𝑅 by 

Cy u, v, w ≔
1

2
 

d

dt
 gy + tw u, v    t = 0,  u,v,w∈ 𝑇𝑥𝑀. 

The family 𝐶 ≔  𝐶𝑦 𝑦𝜖𝑇𝑀0
is called the cartan torsion. It is well known that 𝐶 = 0 if and only if 𝐹 is Riemannian 

[17]. For 𝑦𝜖𝑇𝑥𝑀0, mean cartan torsion 𝐼𝑦  by 𝐼𝑦 𝑢 ≔ 𝐼𝑖 𝑦 𝑢𝑖, where 𝐼𝑖 ≔ 𝑔𝑗𝑘𝐶𝑖𝑗𝑘 , By Diecke theorem, F is 

Riemannian if and only if 𝐼𝑦 = 0. 

The horizantal covariant derivatives of I along geodiscs give rise to the mean Landsberg cur-vature 𝐽𝑦 𝑢 ≔

𝐽𝑖 𝑦 𝑢𝑖 , where 𝐽𝑖 ≔ 𝐼𝑖   𝑠𝑦
𝑠. A Finsler metric is said to be weakly Landsbergian if 𝐽 = 0. 

Given a Finsler manifold (M, F ), then a global vector field G is induced by F on 𝑇 𝑀𝑜 , which in a standard 

coordinate  𝑥𝑖 , 𝑦𝑖  for 𝑇 𝑀0 is given by 𝐺 = 𝑦𝑖 𝜕

𝜕𝑥 𝑖 − 2𝐺 𝑖 𝑥, 𝑦 
𝜕

𝜕𝑦 𝑖, where 

𝐺 𝑖 ≔ 𝑔𝑖𝑙  
𝜕2 𝐹2 

𝜕𝑥𝑘𝜕𝑦𝑙
𝑦𝑘 −

𝜕 𝐹2 

𝜕𝜕𝑥 𝑙
 , 𝑦𝜖𝑇𝑥𝑀. 

Let G is called the spray assosiated to (𝑀, 𝐹 ). In local coordinates, a curve 𝑐(𝑡) is geodesic if and only if its 

coordinates 𝑐𝑖(𝑡) satisfy 𝑐 𝑖 + 2𝐺 𝑖(𝑐 ) =  0, 

For a tangent vector 𝑦 ∈ 𝑇𝑥𝑀0, define  𝐵𝑦 : 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 → 𝑇𝑥𝑀 and 𝐸𝑦 : 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 → 𝑅 by 

𝐵𝑦 𝑢, 𝑣, 𝑤 ≔ 𝐵𝑗𝑘𝑙
𝑖  𝑦 𝑢𝑗𝑣𝑘𝑤𝑙 𝜕

𝜕𝑥 𝑖
  𝑥  𝑎𝑛𝑑 𝐸𝑦  𝑢, 𝑣 ≔ 𝐸𝑗𝑘  𝑦 𝑢𝑗𝑣𝑘 , 𝑤ℎ𝑒𝑟𝑒 
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𝐵𝑗𝑘𝑙
𝑖 =

𝜕3𝐺 𝑖

𝜕𝑦 𝑗𝜕𝑦𝑘𝜕𝑦𝑙
,   𝐸𝑗𝑘 =

1

2
 𝐵𝑖𝑗𝑚

𝑚 . 

Let B and E are called the Berwald curvature and mean Berwald curvature, respectively. Then F is called a Berwald 

metric and weakly Berwald metric if 𝐵 =  0 and 𝐸 =  0, respectively. 

A Finsler metric F is said to be isotropic mean Berwald metric if its mean Berwald curvature is in the following 

form 

𝐸𝑖𝑗 =
𝑛 + 1

2𝐹
𝑐ℎ𝑖𝑗 , 

where 𝑐 =  𝑐(𝑥) is a scalar function on M and hij is the angular metric [6]. 

Define 𝐷𝑦 : 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 ⊗ 𝑇𝑥𝑀 → 𝑇𝑥𝑀 by 𝐷𝑦 𝑢, 𝑣, 𝑤 ≔ 𝐷𝑗𝑘𝑙
𝑖  𝑦 𝑢𝑖𝑣𝑗𝑤𝑘 𝜕

𝜕𝑥 𝑖
  𝑥  where 

𝐷𝑗𝑘𝑙
𝑖 ≔ 𝐵𝑗𝑘𝑙

𝑖 −
2

𝑛 + 1
 𝐸𝑗𝑘 𝛿𝑙

𝑖 + 𝐸𝑗𝑙𝛿𝑘
𝑖 + 𝐸𝑘𝑙𝛿𝑗

𝑖 + 𝐸𝑗𝑘 , 𝑙𝑦𝑖 . 

We call D:={ 𝐷𝑦 ≔  𝐷𝑦 𝑦∈𝑇𝑀0
 the Douglas curvature. A Finsler metric with 𝐷 = 0 is called a Douglas metric. The 

notion of Douglas metrics was proposed by Basco-Matsumato as a generalization of Berwald metrics [1]. For a 

Finsler metric F on an n-dimentional manifold M, the Busemann-Hausdorff volume form 𝑑𝑉𝐹 = 𝜎𝐹 𝑥 𝑑𝑥1 … . 𝑑𝑥𝑛   
is defined by  

𝜎𝐹  𝑥 =
𝑉𝑜𝑙 𝐵𝑛 1  

𝑉𝑜𝑙  𝑦𝑖 휀𝑅𝑛  𝐹 𝑥, 𝑦 < 1 
 

In general, the local scalar function 𝜎𝐹(𝑥) can not be expressed in terms of elementary func-tions, even F is locally 

expressed by elementary functions. Let 𝐺 𝑖  denote the geodisc coeffi-cients of F in the same local coordinate system. 

The S-curvature can be defined by  

𝑆 𝑌 ≔
𝜕𝐺 𝑖

𝜕𝑦𝑖
 𝑥, 𝑦 − 𝑦𝑖

𝜕

𝜕𝑥 𝑖
 𝐼𝑛𝜎𝐹(𝑥) , 

where 𝑌 = 𝑦𝑖 𝜕

𝜕𝑥 𝑖
  𝑥𝜖𝑇𝑥𝑀. . It is proved that 𝑆 = 0 if F is a Berwald metric. There are many non-Berwald metrics 

satisfying 𝑆 = 0. S said to be isotropic, if there is a scalar functions 𝑐(𝑥) on M such that 𝑆 =  𝑛 + 1 𝑐(𝑥)𝐹. 

The Riemann curvature 𝑅𝑦 = 𝑅𝑘
𝑖 𝑑𝑥𝑘 ⊗ 𝜕𝑥 𝑖   𝑥 : 𝑇𝑥𝑀 → 𝑇𝑥𝑀 is a family of linear maps on tangent spaces, defined by  

𝑅𝑘
𝑖 =

2𝜕𝐺 𝑖

𝜕𝑥𝑘 −
𝜕2𝐺 𝑖

𝜕𝑥 𝑗𝜕𝑦𝑘 𝑦 𝑗 + 2𝐺 𝑖  
𝜕2𝐺 𝑖

𝜕𝑦 𝑗𝜕𝑦𝑘 −
𝜕𝐺 𝑖

𝜕𝑦 𝑗  
𝜕𝐺𝑗

𝜕𝑦𝑘. 

For a flag 𝑃 = 𝑠𝑝𝑎𝑛{𝑦, 𝑢} ⊂ 𝑇𝑥𝑀 with flagpole y, the flag curvature 𝐾 = 𝐾 𝑝, 𝑦   is defined by 

𝐾 𝑃, 𝑦 ≔
𝑔𝑦  𝑢, 𝑅𝑦 𝑢  

𝑔𝑦 𝑦, 𝑦 𝑔𝑦 𝑢, 𝑢 − 𝑔𝑦 𝑦, 𝑢 2
. 

We say that a Finsler metric 𝐹 is of scalar curvature if for any 𝑦 휀 𝑇𝑥𝑀, the flag curvature 𝐾 =  𝐾(𝑥, 𝑦) is a scalar 

function on the slit tangent bundle 𝑇 𝑀0. In this case , for some scalar function 𝐾 on 𝑇 𝑀0 the Riemann curvature is 

in the following form 

𝑅𝑘
𝑖 = 𝐾𝐹2 𝛿𝑘

𝑖 − 𝐹−1𝐹𝑦𝑘𝑦𝑖 . 

If 𝐾=constant, then 𝐹 is said to be of constant flag curvature. A Finsler metric 𝐹 is called isotropic flag curvature, if 

𝐾 =  𝐾 𝑥 . 

3. Proof of theorem 1.1 

Let 𝐹 = 𝛼 𝜑 𝑠 , 𝑠 =
𝛽

𝛼
 be an  𝛼, 𝛽 − 𝑚𝑒𝑡𝑟𝑖𝑐, where 𝜑 = 𝜑 𝑠  is a 𝐶∞  on  −𝑏0 , 𝑏0  with certain regularity, 

𝛼 =  𝑎𝑖𝑗  𝑥 𝑦𝑖𝑦 𝑗  is a Riemannian metric and 𝛽 = 𝑏𝑖 𝑥 𝑦𝑖 is a 1-form on a manifold M. Let  
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𝑟𝑖𝑗 =  
1

2
 𝑏𝑖|𝑗 +  𝑏𝑗 |𝑖 ,      𝑠𝑖𝑗 =

1

2
 𝑏𝑖|𝑗 −  𝑏𝑗 |𝑖 , 

𝑠𝑗 = 𝑏𝑖𝑠𝑖𝑗 ,   𝑟𝑗 = 𝑏𝑖𝑟𝑖𝑗 . 

where 𝑏𝑖|𝑗  denote the coefficients of the covariant derivative of 𝛽 with respect to 𝛼. Let 

𝑟𝑖0 ≔ 𝑟𝑖𝑗𝑦
𝑗 , 𝑠𝑖0 ≔ 𝑠𝑖𝑗 𝑦

𝑗 , 𝑟0 ≔ 𝑟𝑗𝑦
𝑗 , 𝑠0 ≔ 𝑠𝑗𝑦

𝑗 . 

Put 

𝑄 =
𝜑′

𝜑 − 𝑠𝜑′
, Θ =

 φ− sφ′ ′′′ ′ ′ ′ ′ 𝜑′ − 𝑠𝜑𝜑′′

2𝜑  𝜑 − 𝑠𝜑′ +  𝑏2 − 𝑠2 𝜑′′  
 , Ψ =

φ′ ′′′

2( 𝜑 − 𝑠𝜑′ +  𝑏2 − 𝑠2 𝜑′′ )
. 

 Then the S-curvature is given by  

𝑺 =  Q′ − 2ΨQs − 2 ΨQ ′  b
2
− s2 − 2 n + 1 QΘ + 2λ s0 

                                            +2 Ψ + λ 𝑟0 + 𝛼−1   𝑏2 − 𝑠2 Ψ′ + (n + 1)Θ 𝑟00 .                                               (3.2) 

Let us put  

∆=  1 +  𝑠𝑄 + ( 𝑏2 −  𝑠2)𝑄′   

𝛷 =  − 𝑛∆ + 1 +  𝑠𝑄  𝑄 –  𝑠𝑄′ −   𝑏2 −  𝑠2  1 +  𝑠𝑄 𝑄′′, 

In [5], Cheng- Shen characterize (𝛼, 𝛽) −metrics with isotropic 𝑆 −curvature. 

Lemma 3.1. ([5]) Let 𝐹 =  𝛼𝜑(
𝛽

𝛼
) be an (𝛼, 𝛽)-metric on an n-manifold.Then, 𝐹 is of isotropic 𝑆-curvature 

𝑆 =  (𝑛 +  1)𝑐𝐹 , if and only if one of the following holds 

(i) β satisfies 

                                     𝑟𝑖𝑗 = 𝜖 𝑏2𝑎𝑖𝑗 − 𝑏𝑖𝑏𝑗  , 𝑠𝑗 = 0,                                            (3.3) 

Where 𝜖 = 𝜖(𝑥) is a scalar function and 𝜑 = 𝜑(𝑠) satisfies 

Φ = −2 n + 1 k
φ∆2

𝑏2 − 𝑠2
,  

where k is a constant. In this case, 𝑐 =  𝑘𝜖.  

(i) β satisfies 

                                                   𝑟𝑖𝑗 = 0, 𝑠𝑗 = 0.                                                     (3.4) 

 

In this case, 𝑐 = 0. 

Let  

Ψ1 =   b2 − s2 ∆
1
2  

 𝑏2 − 𝑠2

∆
3
2

Φ 

′ ′

, 

𝛹2  =  2 𝑛 +  1  𝑄 –  𝑠𝑄′ +  3
𝛷

∆
 . 

                                                                          𝜃 ≔
𝑄−𝑠𝑄′

2∆
.                                                                                       (3.6) 

Then the formula for the mean Cartan torsion of an (𝛼, 𝛽) −metric is given by following 
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𝐼𝑖 =
1

2

𝜕

𝜕𝑦𝑖
 
 𝑛 + 1 𝜑′

𝜑
−

 𝑛 − 2 𝑠𝜑′′

𝜑 − 𝑠𝜑′
−

3𝑠𝜑′′ −  𝑏2 − 𝑠2 𝜑′′′

𝜑 − 𝑠𝜑′ +  𝑏2 − 𝑠2 𝜑′′
  

                                                                   𝐼𝑖 = −
𝛷 𝜑  – 𝑠𝜑 ′ 

2∆𝜑𝛼2 (𝛼𝑏𝑖 − 𝑠𝑦𝑖).                                                                  (3.7) 

In [7], it is proved that the condition 𝛷 =  0 characterizes the Riemannian metrics among (𝛼, 𝛽)-metrics. Hence, in 

the continue, we suppose that 𝛷 ≠  0. 

Let 𝐺 𝑖 = 𝐺 𝑖 𝑥, 𝑦  𝑎𝑛𝑑 𝐺 
𝛼
𝑖 = 𝐺 

𝛼
𝑖  𝑥, 𝑦  denote the coefficients of 𝐹 and 𝛼 respectively in the same coordinate system. 

By definition, we have  

𝐺 𝑖 = 𝐺 
𝛼
𝑖 + 𝑃𝑦𝑖 + 𝑄𝑖 , 

where  

𝑃 ≔ 𝛼−1Θ −2Qαs0 + r00  

𝑄𝑖 ≔ 𝛼𝑄𝑠0
𝑖 + Ψ −2Qαs0 + r00 b

i
. 

Simplifying (3.8) yields the following  

               𝐺 𝑖 = 𝐺 
𝛼
𝑖 + 𝛼𝑄𝑠0

𝑖 +  ϴ −2αQs0 + r00  
yi

α
+

Q ′

Q−sQ ′
bi ,                                                                              (3.9) 

Clearly, if 𝛽 is parallel with respect to 𝛼  𝑟𝑖𝑗 = 0 𝑎𝑛𝑑 𝑠𝑖𝑗 = 0 , then 𝑃 = 0 and 𝑄𝑖 = 0. In this case, 𝐺 𝑖 = 𝐺 
𝛼
𝑖  are 

quadratic in 𝑦, and 𝐹 is a Berwald metric. 

For an (𝛼, 𝛽) −metric 𝐹 =  𝛼𝜑(𝑠), the mean Landsberg curvature is given by  

𝐽𝑖 = −
1

2∆𝛼4
{

2𝛼2

𝑏2 − 𝑠2
 Φ

∆
+  𝑛 + 1  𝑄 − 𝑠𝑄′   𝑠0 + 𝑟0 ℎ𝑖 

+
𝛼

𝑏2 − 𝑠2
 Ψ1  + 𝑠 Φ

∆
  𝑟00 − 2𝑄𝛼𝑠0 ℎ𝑖 + 𝛼[−𝛼𝑄′𝑠0ℎ𝑖  

                                                 +𝛼𝑄 𝛼2𝑠𝑖 − 𝑦𝑖𝑠0 + 𝛼2∆𝑠𝑖0] +  𝛼2 𝑟𝑖0 − 2𝛼𝑄𝑠𝑖 − 𝑟00 − 2𝛼𝑄𝑠0 𝑦𝑖] Φ

∆

}.          (3.10) 

Besides, they also obtained 

                                             𝐽   = 𝐽𝑖𝑏
𝑖 = −

1

2∆𝛼2
 Ψ1 𝑟00 − 2𝛼𝑄𝑠0 + 𝛼Ψ2 𝑟0 + 𝑠0  .                                           (3.11) 

The horizontal  covariant derivatives  𝐽𝑖 ;𝑚  and 𝐽𝑖|𝑚  of 𝐽𝑖 with respect to 𝐹 and 𝛼 respectively are given by 

𝐽𝑖;𝑚 =
𝜕𝐽𝑖
𝜕𝑥𝑚

− 𝐽𝑙𝛤𝑖𝑚
𝑙 −

𝜕𝐽𝑖
𝜕𝑦𝑙

𝑁𝑚
𝑙 , 𝐽𝑖|𝑚 =

𝜕𝐽𝑖
𝜕𝑥𝑚

− 𝐽𝑙𝛤 𝑖𝑚
𝑙 −

𝜕𝐽𝑖
𝜕𝑦𝑙

𝑁 𝑚
𝑙 , 

Where 𝛤𝑖𝑗
𝑖 =

𝜕𝐺 𝑙

𝜕𝑦 𝑖𝜕𝑦 𝑗 , 𝑁𝑗
𝑙 =

𝜕𝐺 𝑙

𝜕𝑦 𝑗  𝑎𝑛𝑑 𝛤 𝑖𝑗
𝑙 =

𝜕𝐺 𝑖

𝜕𝑦 𝑖𝜕𝑦 𝑗 , 𝑁 𝑗
𝑙 =

𝜕𝐺 𝑙

𝜕𝑦 𝑗 . 

Then  we have, 

𝐽𝑖;𝑚𝑦𝑚 =  𝐽𝑖|𝑚 − 𝐽𝑙 𝛤𝑖𝑚
𝑙 − 𝛤 𝑖𝑚

𝑙  −
𝜕𝐽𝑖
𝜕𝑦𝑙

(𝑁𝑚
𝑙 − 𝑁 𝑚

𝑙  𝑦𝑚 } 

                                                    =𝐽𝑖|𝑚𝑦𝑚 − 𝐽𝑙 𝑁𝑖
𝑙 − 𝑁 𝑖

𝑙 − 2
𝜕𝐽 𝑖

𝜕𝑦 𝑙
 𝐺 𝑙 − 𝐺 𝑙 .                                                         (3.12)                                    

Let F be a  Finsler metric of scalar flag curvature 𝐾. By Akbar-Zadeh’s theorem it satisfies following 

                                           𝐴𝑖𝑗𝑘 ;𝑠;𝑚𝑦𝑠𝑦𝑚 + 𝐾𝐹2𝐴𝑖𝑗𝑘 +
𝐹2

3
 ℎ𝑖𝑗 𝐾𝑘 + ℎ𝑗𝑘𝐾𝑗 + ℎ𝑘𝑖𝐾𝑗  = 0,                                     (3.13) 

where 𝐴𝑖𝑗𝑘 = 𝐹𝐶𝑖𝑗𝑘  is the Cartan torsion and 𝐾𝑖 =
𝜕𝐾

𝜕𝑦 𝑖
 2 . Contracting (3.13) with 𝑔𝑖𝑗  yields  

                                                              𝐽𝑖 ;𝑚𝑦𝑚  +  𝐾 𝐹2𝐼𝑖 +
𝑛+1

3
𝐹2𝐾𝑖 =  0.                                                          (3.14) 
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By (3.12) and (3.13), for an (𝛼, 𝛽) −metric  𝐹 =  𝛼𝜑(𝑠) of constant flag curvature 𝐾 , then 

                                            𝐽𝑖 ;𝑚𝑦𝑚 − 𝐽𝑙
𝜕 𝐺 𝑙−𝐺 𝑙 

𝜕𝑦 𝑖  −
2𝜕𝐽 𝑖

𝜕𝑦 𝑙
 𝐺 𝑙 − 𝐺 𝑙 + 𝐾𝛼2𝜑2𝐼𝑖 = 0.                                              (3.15) 

Contracting (3.15) with 𝑏𝑖  implies that 

                                  𝐽  |𝑚 − 𝐽𝑖𝑎
𝑖𝑘𝑏𝑘|𝑚𝑦𝑚 − 𝐽𝑙

𝜕 𝐺 𝑙−𝐺 𝑙 

𝜕𝑦 𝑖 𝑏𝑖 −
2𝜕𝐽  

𝜕𝑦 𝑙
 𝐺 𝑙 − 𝐺 𝑙 + 𝐾𝛼2𝜑2𝐼𝑖𝑏

𝑖 = 0.                               (3.16)          

There exists a relation between mean Berwald curvature 𝐸 and the 𝑆-curvature 𝑆. Indeed, taking twice vertical 

covariant derivatives of the 𝑆-curvature gives rise the 𝐸-curvature. It is easy to see that, every Finsler metric of 

isotropic 𝑆-curvature (1.2) is of isotropic mean Berwald curvature (2.1). Now, is the equation 𝑆 =  𝑛 +
1𝑐𝐹 equivalent to the equation 𝐸=𝑛+12𝑐𝐹−1ℎ? 

     Recently, Cheng-Shen prove that a Randers metric 𝐹 =  𝛼 +  𝛽 is of isotropic 𝑆-curvature if and only if it is of 

isotropic 𝐸-curvature [4]. Then, Chun-Huan-Cheng [3] extend this equivalency to the Finsler metric 𝐹 =
 𝛼−𝑚  𝛼 +  𝛽 𝑚 + 1 for every real constant m, including Randers metric .     

To prove Theorem 1.1, we need the following. 

Theorem 3.2. Let 𝐹 =
𝛼2

𝛼−𝛽
 +  𝛽 be a special metric on a manifold 𝑀 of dimention 𝑛. Then the following are 

equivalent 

(i)   𝐹 is of isotropic 𝑆-curvature, 𝑆 =  (𝑛 +  1)𝑐(𝑥)𝐹 ; 

(ii)   𝐹 is of isotropic mean Berwald curvature, 𝐸 =
𝑛+1

2
𝑐𝐹−1ℎ; 

; where 𝑐 =  𝑐(𝑥) is a scalar function on the manifold 𝑀. 

In this case, 𝑆 = 0. Then 𝛽 is a Killing 1-form with constant length with respect to 𝛼, that is, 𝑟00 =  0. 

Proof: (i) → (ii) is obvious. Conversely, suppose that 𝐹 has isotropic mean Berwald curvature, 𝐸 =
𝑛+1

2
𝑐𝐹−1ℎ. Then 

we have 

                                                               𝑆 =   𝑛 +  1 [𝑐 𝑥 𝐹 + 𝜂],                                                                      (3.17) 

where 𝜂 = 𝜂𝑖 𝑥 𝑦𝑖  is a 1-form on M. For the special metric 

                                                         𝑄 =
𝑠2+1

𝑠 𝑠−2 
 , Θ = − 1

2

𝑠(𝑠3+3𝑠−4)

 𝑠+𝑠2−1 (−𝑠3+2𝑏2)
,   Ψ =

1

−s3+2b2.                                (3.18) 

By substituting (3.17) and (3.18) in (3.2), we have 

𝑆 = [−
2(−3𝑠4 + 2𝑠𝑏2 + 2𝑠3 − 2𝑏2 + 2𝑠2𝑏2 − 2𝑠2)

𝑠2 𝑠 − 2 2(−𝑠3 + 2𝑏2)
+

2(−3𝑠6 + 4𝑠5 + 4𝑠2𝑏2 − 5𝑠4 + 8𝑠3 + 4𝑠𝑏2 − 4𝑏2)

𝑠2 −𝑠3 + 2𝑏2 2 𝑠 − 2 2
× 

 𝑏2 − 𝑠2   –
 𝑛 + 1  𝑠2 + 1 (−4 + 𝑠3 + 3𝑠)

 𝑠 − 2  −1 + 𝑠 + 𝑠2 (−𝑠3 + 2𝑏2)
+ 2𝜆]𝑠0 + 2  

1

−𝑠3 + 2𝑏2
+ λ 𝑟0 

− 
3𝑠2 𝑏2 − 𝑠2 

𝛼 −𝑠3 + 2𝑏2 2
 𝑟00 −  

 𝑛 + 1 𝑠 𝑠3 + 3𝑠 − 4 

2𝛼 −1 + 𝑠 + 𝑠2  −𝑠3 + 2𝑏2 
 𝑟00 . 

                                                               𝑛 + 1  𝑐𝛼  1 + 𝑠 +
1

𝑠
 + 𝜂 .                                                                   (3.19) 

Multiplying (3.19) with 𝑠 1 + 𝑠 + 𝑠2  𝑠3 + 2𝑏2 2 𝑠 + 2 𝛼5 implies that  

𝑀1 + 𝑀2𝛼
2 + 𝑀3𝛼

4 + 𝑀4𝛼
4 + 𝑀5𝛼

8 + 𝑀6𝛼
10𝛼 𝑀7 + 𝑀8𝛼

2 + 𝑀9𝛼
4 + 𝑀10𝛼

6 + 𝑀11𝛼
8 + 𝑀12𝛼

10 = 0,     (3.20) 

where  

𝑀1 =  −𝛽2𝑐 𝑛 + 1 + 2𝛽λ s0 + r0 −β𝜂 𝑛 + 1 +
𝑟00

2
 𝑛 + 1  𝛽9, 
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𝑀2 = −
1

2
 10𝛽2𝑐 𝑛 + 1 − 12𝛽λ s0 + r0 + 12𝛽𝑠0 + 6𝛽𝜂 𝑛 + 1 + 3𝑟00 𝑛 + 3  𝛽7, 

𝑀3 = −[−5𝛽2𝑐 𝑛 + 1 + 2𝛽𝑏2𝑠0 𝑛 + 2 − 4𝛽𝑏2𝜂 𝑛 + 1 + 8𝛽λb
2
 𝑠0 + 𝑟0 + 2𝛽 𝑠0 2𝑛 + 3 + 𝑟0  

         +𝑟00 2𝑛 − 1  𝑏2 + 2 𝛽5, 

𝑀4 = −2[−2𝛽2𝑏4𝑐 𝑛 + 1 − 2𝛽𝑏4𝜂 𝑛 + 1 + 4𝛽𝑏4λ 𝑠0 + 𝑟0 − 𝛽  −𝑛𝑠0 + 2𝑟0 + 3𝑠0 + 4𝛽𝑏4λ 𝑠0 + 𝑟0  

         +4𝛽𝑏2𝜂 𝑛 + 1 − 8𝛽𝑏2λ 𝑠0 + 𝑟0 + 2𝛽𝑏2  2𝑛 + 3 𝑠0 + 𝑟0 + 𝑟00𝑏
2(5𝑛 + 8)]𝛽3, 

𝑀5 = −2𝑏2 −4𝛽𝑐 𝑛 + 1 + 10𝛽𝑏2𝑐 𝑛 + 1 − 12𝑏2λ 𝑠0 + 𝑟0 + 3 𝑛𝑠0 − 2𝑟0 + 6𝑏2𝜂 𝑛 + 1  𝛽2, 

𝑀6 = 20𝑏4𝑐 𝑛 + 1 𝛽,  

𝑀7 =  2𝛽λ 𝑠0 + 𝑟0 + 𝛽𝑠0 𝑛 + 1 − 𝛽𝜂 𝑛 + 1 + 𝑟00 𝑛 + 4  𝛽8, 

𝑀8 = [−4𝛽2𝑏2𝑐 𝑛 + 1 − 4𝛽λ 𝑠0 + 𝑟0 − 2𝛽𝜂 𝑛 + 1 + 8𝛽𝑏2λ 𝑠0 + 𝑟0 + 2𝛽(𝑟0 − 2𝑛(𝜂𝑏2 + 𝑠0)) 

       +𝑟00𝑛( 𝑏2 + 5 − 2𝑟00(𝑏2 + 2))] 𝛽6, 

𝑀9 = [20𝛽2𝑏2𝑐 𝑛 + 1 − 2𝛽2𝑐 𝑛 + 1 + 12𝛽𝜂𝑏2 𝑛 + 1 − 24𝛽𝑏2λ 𝑠0 + 𝑟0 + 3𝛽(𝑛𝑠0 + 2𝑟0) 

        3𝛽𝑠0 2𝑏2 − 3 + 3𝑟00𝑏
2(4 + 𝑛)]𝛽4, 

𝑀10 = 2𝑏2 −10𝛽2𝑐 𝑛 + 1 − 2𝛽𝜂𝑏2 𝑛 + 1 + 4𝛽𝑏2λ 𝑠0 + 𝑟0 + 𝛽 4𝑠0𝑛 + 2𝑟0 + 9𝑠0 + 4𝑟00 𝑛 + 1  𝛽2, 

𝑀11 = 8𝑏2 𝑏2𝜂 𝑛 + 1 − 2𝑏2λ 𝑠0 + 𝑟0 − 𝑟0 + 𝑛𝑠0 𝛽, 

𝑀12 = −8𝑏4𝑐 𝑛 + 1 . 

The term of (3.20) which is seemingly does not contain 𝛼2 is 𝑀1. Since 𝛽9 is not divisible by 𝛼2, then 𝑐 =  0 which 

implies that 

𝑀1 = 𝑀7 = 0. 

Therefore (3.20) reduces to following 

                                         𝑀2 + 𝑀3𝛼
2 + 𝑀4𝛼

4 + 𝑀5𝛼
6 + 𝑀6𝛼

8 = 0,                                                                   (3.21) 

                                    𝑀8 + 𝑀9𝛼
2 + 𝑀10𝛼

4 + 𝑀11𝛼
6 + 𝑀12𝛼

8 = 0.                                                                   (3.22) 

By plugging 𝑐 =  0 in 𝑀2 and 𝑀8, the only equations that don’t contain 𝛼2 are the following 

                                                             −𝛽 2λ 𝑠0 + 𝑟0 −  𝑛 + 1 𝜂 + 3𝑟00 𝑛 + 3  = 𝜏1𝛼
2,                              (3.23) 

                                            4𝛽𝑏2 2λ 𝑠0 + 𝑟0 −  𝑛 + 1 𝜂 + 𝑟00 2𝑛 − 1  𝑏2 + 2 = 𝜏2𝛼
2,                              (3.24) 

where 𝜏1 = 𝜏1𝛼
2 and 𝜏2 = 𝜏2𝛼

2 are scalar functions on M. By eliminating  2λ 𝑠0 + 𝑟0 −  𝑛 + 1 𝜂 , we get 

                                                                                𝑟00 = 𝜏𝛼2,                                                                                (3.25)   

where 𝜏 =
𝜏2−4𝑏2𝜏1

 𝑏2+2  4𝑏2 2𝑛−1  −3 𝑛+3 
. 

By (3.23) or (3.24), it follows that 

                                                                  2λ 𝑠0 + 𝑟0 −  𝑛 + 1 𝜂 = 0.                                                                (3.26) 

By (3.25), we have 𝑟0  =  𝜏 𝛽. Putting (3.25) and (3.26) in 𝑀8 and 𝑀9 yields 

                                                             𝑀8 =  𝑛 𝑏2 + 5 − 2 𝑏2 + 2  𝜏𝛼2𝛽6,                                                      (3.27) 

                                          𝑀9 =    6𝑏2 + 3𝑛 − 9 𝑠0 − 6𝑟0 𝛽 − 3𝑏2 𝑛 + 4 𝑟00𝜏𝛼
2 𝛽4.                                     (3.28) 

 

By putting (3.27) and (3.28) into (3.22), we have           

  6𝑏2 + 3𝑛 − 9 𝑠0 − 6𝑟0 𝛽
5 − 3𝑏2 𝑛 + 4 𝑟00𝜏𝛼

2𝛽4 + 𝑛 𝑏2 + 5 − 2(𝑏2 + 2)𝜏𝛼2𝛽6 



    

Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                                   

ISSN: 2395-0218     

 
Volume 12, Issue 2  available at www.scitecresearch.com/journals/index.php/jprm                                                                1818|       

 

                                            −𝑀10𝛼
2 + 𝑀11𝛼

4 + 𝑀12𝛼
6 = 0.                                                                                (3.29) 

The only equations of (3.29) that do not contain 𝛼2 is  𝑛 𝑏2 + 5 − 2 𝑏2 + 2 𝜏𝛽 +  6𝑏2 + 3𝑛 − 9 𝑠0 − 6𝑟0 𝛽
5.              

Since 𝛽6 is not divisible by 𝛼2, then we have       

                                       𝑛 𝑏2 + 5 − 2 𝑏2 + 2 𝜏𝛽6 +  6𝑏2 + 3𝑛 − 9 𝑠0 − 6𝑟0 = 0.                                       (3.30) 

By lemma 3.1, we always have 𝑠𝑗  =  0. Then (3.30), reduces to following 

                                                             𝑛 𝑏2 + 5 − 2 𝑏2 + 2  𝜏𝛽 − 6𝑟0 = 0.                                                     (3.31) 

Thus  

                               𝑛 𝑏2 + 5 − 2 𝑏2 + 2  𝜏𝑏𝑖 − 6𝜏𝑏𝑖 = 0.                                                     (3.32) 

By multiplying (3.32) with 𝑏𝑖 , we have 

𝜏 = 0. 

Thus by (3.28), we get 𝜂 =  0 and then 𝑆 =  (𝑛 +  1)𝑐𝐹 . By (3.25), we get 𝑟𝑖𝑗 =  0. Therefore lemma 3.1, implies 

that 𝑆 =  0. This completes the proof. 

Proof of Theorem 1.1: Let F be an isotropic Berwald metric (1.3) with almost isotropic flag curvature (1.1). In [22], 

it is proved that every isotropic Berwald metric (1.3) has isotropic S-curvature (1.2). 

Conversely, suppose that F is of isotropic 𝑆-curvature (1.2) with scalar flag curvature 𝐾 . In [13], it is showed that 

every Finsler metric of isotropic 𝑆-curvature (1.2) has almost isotropic flag curvature (1.1). Now, we are going to 

prove that 𝐹 is a isotropic Berwald metric. In [6], it is proved that 𝐹 is an isotropic Berwald metric (1.3) if and only 

if it is a Douglas metric with isotropic mean Berwald curvature (2.1). On the other hand, every Finsler metric of 

isotropic 𝑆-curvature (1.2) has isotropic mean Berwald curvature (2.1). Thus for completing the proof, we must 

show that 𝐹 is a Douglas metric. By proposition 3.2, we have 𝑆 =  0. Therefore by theorem 1.1 in [13], 𝐹 must be 

of isotropic flag curvature 𝐾 =  𝜎(𝑥). By proposition 3.2, 𝛽 is a Killing 1-form with constant length with respect to 

𝛼, that is, 𝑟𝑖𝑗 = 𝑠𝑗  =  0. Then (3.9), (3.10) and (3.11) reduce to 

𝐺 𝑖 − 𝐺 𝑖 = 𝛼𝑄𝑠0
𝑖 , 𝐽𝑖 = −

𝛷𝑠𝑖0

2𝛼∆
 ,   𝐽  = 0. 

 By (3.8), we get  

𝐼𝑖𝑏
𝑖 ≔ −

𝛷 𝜑 –  𝑠𝜑′ 

2∆𝐹
 𝑏2 − 𝑠2 . 

Now we consider two cases: 

Case I: 𝑑𝑖𝑚𝑀 ≥  3. In this case, by Schur lemma 𝐹 has constant flag curvature and (3.6) 

holds, the equation (3.16) reduces to following   

                                                
𝛷𝑠𝑖0

2∆𝛼
𝑎𝑖𝑘𝑠𝑘0 +

𝛷𝑠𝑙0

2∆𝛼
 𝑠𝑄𝑠0

𝑙 + 𝑄′𝑠0
𝑙 𝑏2 − 𝑠2  − 𝐾𝐹

𝛷

2∆
 𝜑 –  𝑠𝜑′  𝑏2 − 𝑠2 = 0.     (3.33) 

By assumption Φ ≠ 0. Thus by  (3.32), we get 

                                             𝑠𝑖0𝑠0
𝑖 + 𝑠𝑙0 𝛼𝑄𝑠0

𝑙 
.𝑖
𝑏𝑖 − 𝐾𝐹𝛼  𝜑 –  𝑠𝜑′  𝑏2 − 𝑠2 = 0.                                          (3.34) 

The following holds 

 𝛼𝑄𝑠0
𝑙  𝑖𝑏

𝑖 = 𝑠𝑄𝑠0
𝑖 + 𝑄′𝑠0

𝑖  𝑏2 − 𝑠2 = 0. 

Then (3.34) can be rewritten as follows 

                                             𝑠𝑖0𝑠0
𝑖∆ − 𝐾𝛼2 𝜑 𝜑 –  𝑠𝜑′  𝑏2 − 𝑠2 = 0.                                                                (3.35) 

By (3.6), (3.18) and (3.35), we obtain 

                                1 +
𝑠2+1

𝑠−2
−

2 𝑏2−𝑠2 (−1+𝑠+𝑠2)

𝑠2 𝑠−2 2  𝑠𝑖0𝑠0
𝑖 − 𝐾𝛼2  

 −1+𝑠+𝑠2  𝑠−2 

𝑠2
 𝑏2 − 𝑠2  = 0.                        (3.36) 
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Multiplying (3.36) with – 𝑠2 𝑠 − 2 2𝛼5 yields 

𝐴 + 𝛼𝐵 = 0, 

where  

𝐴 = −𝐾20𝑏2𝛽𝛼6 +  5𝐾𝛽3𝑏2 + 2𝑏2𝛽𝑠𝑖0𝑠0
𝑖 + 20𝐾𝛽3 𝛼4 +  𝛽3𝑠𝑖0𝑠0

𝑖 − 5𝐾𝛽5 + 𝐾𝛽5𝑏2 𝛼2 

          −𝐾𝛽7 − 𝑠𝑖0𝑠0
𝑖𝛽5 

𝐵 = 8𝐾𝑏2𝛼6 +  10𝐾𝑏2𝛽2 − 8𝐾𝛽2 − 2𝑠𝑖0𝑠0
𝑖𝑏2 𝛼4 +  −5𝐾𝑏2𝛽4 + 2𝑠𝑖0𝑠0

𝑖 𝑏2𝛽2 − 10𝐾𝛽4 𝛼2 

             + 5𝐾𝛽6 − 𝑠𝑖0𝑠0
𝑖𝛽4 . 

Obviously, we have 𝐴 =  0 and 𝐵 =  0. 

If 𝐴 =  0 and the fact that 𝛽7 is not divisible by 𝛼2, we get 𝐾 =  0. Therefore (3.36) reduces to following  

𝑠𝑖0𝑠0
𝑖 = 𝑎𝑖𝑗 𝑠0

𝑗
𝑠0
𝑖 = 0. 

Because of positive-definiteness of the Riemannian metric 𝛼, we have 𝑠𝑖0  =  0, i.e., 𝛽 is closed. By 𝑟00 =  0 and 

𝑠0 =  0, it follows that 𝛽 is parallel with respect to α. Then 𝐹 =
𝛼2

𝛼−𝛽
+  𝛽 is a Berwald metric. Hence 𝐹 must be 

locally Minkowskian. 

Case II: Let 𝑑𝑖𝑚 𝑀 =  2. Suppose that 𝐹 has isotropic Berwald curvature (1.3). In [6], it is proved that every 

isotropic Berwald metric [3] has isotropic 𝑆-curvature, 𝑆 =  (𝑛 +  1)𝑐𝐹 . 

By proposition 3.2, 𝑐 =  0. Then by [3], 𝐹 reduces to a Berwald metric. Since 𝐹 is non-Riemannian, then by 

Szabo’s rigidity theorem for Berwald surface (see [2] page 278), 𝐹 must be locally Minkowskian. 
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