Journal of Progressive Research in Mathematics
 www.scitecresearch.com/journals

On Weakly Berwald Finsler Special ($\boldsymbol{\alpha}, \boldsymbol{\beta}$) -metric

Thippeswamy K. R ${ }^{1}$, Narasimhamurthy S. K ${ }^{2}$.
${ }^{1}$ Department of Mathematics, Kuvempu University,
Shankaraghatta -577451, Shimoga, Karnataka, india.
${ }^{2}$ Department of Mathematics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, india.

Abstract: In this paper, we study the special (α, β)-metric $F=\frac{\alpha^{2}}{\alpha-\beta}+\beta$ on a manifold M. Then prove that F is of scalar flag curvature and isotropic S-Curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

Key Words: Isotropic Berwald curvature; S-curvature; Weak berwald metric; almost isotropic flag curvature.

1. Introduction

Curvatures are the central concept of Finsler geometry. For a Finsler manifold (M, F), the flag curvature is a function $K(P, y)$ to the tangent planes $P \subset T_{x} M$ and non zero $y \in P$. A Finsler metric F is of scalar flag curvature if for any non-zero vector $y \epsilon T_{x} M, K=K(x, y)$ is of independent P containing $y \epsilon T_{x} M$ (hence $K=\sigma(x)$ when F is Riemannian) It is of almost isotropic flag curvature if

$$
\begin{equation*}
K=\frac{3 c_{x} m y^{m}}{F}+\sigma, \tag{1.1}
\end{equation*}
$$

where $c=c(x)$ and $\sigma=\sigma(x)$ are scalar functions on M. It is one of the important problems in Finsler geometry is to study and characterize Finsler manifolds of almost isotropic flag curvature [11].
To study the geometric properties of a Finsler metric, one also considers non-Riemannian quantities. In Finsler geometry, there are several important non-Riemannian quantities: the Cartan torsion C, the Berwald curvature B, the mean Landsberg curvature J and S-curvature S, etc ([6] [9] [13] [20]). these are geometric quantities which vanish for Riemannian metrics.

Among the non-Riemannian quantities, the S-curvature $S=S(x, y)$ is closely related to the flag curvature which constructed by Z. Shen for given comparison theorems on Finsler manifolds. An n-dimentional Finsler metric F is said to have isotropic S-curvature if

$$
\begin{equation*}
S=(n+1) c F \tag{1.2}
\end{equation*}
$$

for some scalar function $c=c(x)$ on M. In [13], it is proved that if a Finsler metric F of scalar flag curvature is of isotropic S-curvature (1.2), then it has almost isotropic flag curvature (1.1).

The geodisc curves of a Finsler metric $F=F(x, y)$ on a smooth manifold M, are determined by $\ddot{c}^{i}+2 G^{i}(\ddot{c})=$ 0 , where the local functions $G^{i}=G^{i}(x, y)$ are called the spray coefficients. A Finsler metric F is called a Berwald metric, if G^{i} are quadratic in $y \epsilon T_{x} M$ for any $x \in M$.

A Finsler metric F is said to be isotropic Berwald metric if its Berwald curvature is in the following form

$$
\begin{equation*}
B_{j k l}^{i}=c\left\{F_{y^{j} y^{k}} \delta_{j}^{i}+F_{y^{k} y^{l}} \delta_{j}^{i}+F_{y^{l} y^{j}} \delta_{k}^{i}+F_{y^{j} y^{k} y^{l} y^{i}}\right\} \tag{1.3}
\end{equation*}
$$

where $c=c(x)$ is a scalar function on M [6].
As a generalization of Berwald curvature, Basco-Matsumato proposed the notion of Douglas curvature [1]. A Finsler metric is called a Douglas metric if $G^{i}=\frac{1}{2} \mathbb{T}_{j k}^{i}(x) y^{j} y^{k}+P(x, y) y^{i}$. In order to find explicit examples of Douglas metrics, i.e we considered some (α, β)-metrics. An (α, β)-metric is a Finsler metric of the form $F=\alpha \varphi\left(\frac{\beta}{\alpha}\right)$, where $\varphi=\varphi(s)$ is a C^{∞} on $\left(-b_{0}, b_{0}\right)$ with certain regularity, $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a R iemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M.

In this paper, we consider special metric $F=\frac{\alpha^{2}}{\alpha-\beta}+\beta$ with some non-Riemannian curvature properties and prove the following.

Theorem 1.1. Let $F=\frac{\alpha^{2}}{\alpha-\beta}+\beta$ be a non-Riemannian special metric on a manifold M of dimention n . Then F is of scalar flag curvature with isotropic S-curvature (1.2), if and only if it has isotropic Berwald curvature (1.3) with almost isotropic flag curvature (1.1). In this case, F must be locally Minkowskian.

2. Preliminaries

Let M be an n-dimensional C^{∞} manifold. Denote by $T x M$ the tangent space at $x \in M$, by $T M=\cup_{x \in M} T x M$ the tangent bundle of M and by $T M_{0}=T M \backslash\{0\}$ the slit tangent bundle on M is a function $F: T M \rightarrow[0, \infty)$ which has the following properties:
a) F is C^{∞} on $T M \backslash\{0\}$;
b) F is positively 1 -homogeneous on the fibers of tangent bundle $T M$;
c) For each $y \in T_{x} M$, the following quadratic form g_{y} on $T_{x} M$

$$
g_{y}(u, v):=\left.\frac{1}{2} \frac{\partial^{2}}{\partial s \partial t}\left[F^{2}(y+s u+t v)\right]\right|_{s}, t=0, u, v \in T_{x} M .
$$

Let $x \in M$ and $F_{x}:=\left.F\right|_{-} T_{x} M$. To measure the non-Euclidean feature of F_{x}, define $C_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow R$ by

$$
\mathrm{C}_{\mathrm{y}}(\mathrm{u}, \mathrm{v}, \mathrm{w}):=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{~g}_{\mathrm{y}}+\mathrm{tw}(\mathrm{u}, \mathrm{v})\right] \mathrm{l}_{\mathrm{t}}=0, \mathrm{u}, \mathrm{v}, \mathrm{w} \in T_{x} M .
$$

The family $C:=\left\{C_{y}\right\}_{y \epsilon T M_{0}}$ is called the cartan torsion. It is well known that $C=0$ if and only if F is Riemannian [17]. For $y \epsilon T_{x} M_{0}$, mean cartan torsion I_{y} by $I_{y}(u):=I_{i}(y) u^{i}$, where $I_{i}:=g^{j k} C_{i j k}$, By Diecke theorem, F is Riemannian if and only if $I_{y}=0$.

The horizantal covariant derivatives of I along geodiscs give rise to the mean Landsberg cur-vature $J_{y}(u):=$ $J_{i}(y) u^{i}$, where $J_{i}:=\left.I_{i}\right|_{s} y^{s}$. A Finsler metric is said to be weakly Landsbergian if $J=0$.
Given a Finsler manifold (M, F), then a global vector field G is induced by F on $T M_{o}$, which in a standard coordinate $\left(x_{i}, y_{i}\right)$ for $T M_{0}$ is given by $G=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i}(x, y) \frac{\partial}{\partial y^{i}}$, where

$$
G^{i}:=g^{i l}\left[\frac{\partial^{2}\left(F^{2}\right)}{\partial x^{k} \partial y^{l}} y^{k}-\frac{\partial\left(F^{2}\right)}{\partial \partial x^{l}}\right], y \epsilon T_{x} M .
$$

Let G is called the spray assosiated to (M, F). In local coordinates, a curve $c(t)$ is geodesic if and only if its coordinates $c^{i}(t)$ satisfy $\ddot{c}^{i}+2 G^{i}(\ddot{c})=0$,

For a tangent vector $y \in T_{x} M_{0}$, define $B_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow T_{x} M$ and $E_{y}: T_{x} M \otimes T_{x} M \rightarrow R$ by $B_{y}(u, v, w):=\left.B_{j k l}^{i}(y) u^{j} v^{k} w^{l} \frac{\partial}{\partial x^{i}}\right|_{x}$ and $E_{y}(u, v):=E_{j k}(y) u^{j} v^{k}$, where

$$
B_{j k l}^{i}=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}, \quad E_{j k}=\frac{1}{2} B_{i j m}^{m} .
$$

Let B and E are called the Berwald curvature and mean Berwald curvature, respectively. Then F is called a Berwald metric and weakly Berwald metric if $B=0$ and $E=0$, respectively.
A Finsler metric F is said to be isotropic mean Berwald metric if its mean Berwald curvature is in the following form

$$
E_{i j}=\frac{n+1}{2 F} c h_{i j}
$$

where $c=c(x)$ is a scalar function on M and hij is the angular metric [6].
Define $D_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow T_{x} M$ by $D_{y}(u, v, w):=\left.D_{j k l}^{i}(y) u^{i} v^{j} w^{k} \frac{\partial}{\partial x^{i}}\right|_{x}$ where

$$
D_{j k l}^{i}:=B_{j k l}^{i}-\frac{2}{n+1}\left\{E_{j k} \delta_{l}^{i}+E_{j l} \delta_{k}^{i}+E_{k l} \delta_{j}^{i}+E_{j k}, l y^{i}\right\}
$$

We call D: $=\left\{D_{y}:=\left\{D_{y}\right\}_{y \in T M_{0}}\right.$ the Douglas curvature. A Finsler metric with $D=0$ is called a Douglas metric. The notion of Douglas metrics was proposed by Basco-Matsumato as a generalization of Berwald metrics [1]. For a Finsler metric F on an n -dimentional manifold M , the Busemann-Hausdorff volume form $d V_{F}=\sigma_{F}(x) d x^{1} \ldots . d x^{n}$ is defined by

$$
\sigma F(x)=\frac{\operatorname{Vol}\left(B^{n}(1)\right)}{\operatorname{Vol}\left\{\left(y^{i}\right) \varepsilon R^{n} \mid F(x, y)<1\right\}}
$$

In general, the local scalar function $\sigma_{F}(x)$ can not be expressed in terms of elementary func-tions, even F is locally expressed by elementary functions. Let G^{i} denote the geodisc coeffi-cients of F in the same local coordinate system. The S-curvature can be defined by

$$
S(Y):=\frac{\partial G^{i}}{\partial y^{i}}(x, y)-y^{i} \frac{\partial}{\partial x^{i}}\left[\operatorname{In} \sigma_{F}(x)\right]
$$

where $Y=\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x} \in T_{x} M$. . It is proved that $S=0$ if F is a Berwald metric. There are many non-Berwald metrics satisfying $S=0$. S said to be isotropic, if there is a scalar functions $c(x)$ on M such that $S=(n+1) c(x) F$.

The Riemann curvature $R_{y}=\left.R_{k}^{i} d x^{k} \otimes \partial x^{i}\right|_{x}: T_{x} M \rightarrow T_{x} M$ is a family of linear maps on tangent spaces, defined by

$$
R_{k}^{i}=\frac{2 \partial G^{i}}{\partial x^{k}}-\frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}} y^{j}+2 G^{i} \frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}}-\frac{\partial G^{i}}{\partial y^{j}} \frac{\partial G^{j}}{\partial y^{k}} .
$$

For a flag $P=\operatorname{span}\{y, u\} \subset T_{x} M$ with flagpole y , the flag curvature $K=K(p, y)$ is defined by

$$
K(P, y):=\frac{g_{y}\left(u, R_{y}(u)\right)}{g_{y}(y, y) g_{y}(u, u)-g_{y}(y, u)^{2}} .
$$

We say that a Finsler metric F is of scalar curvature if for any $y \in T_{x} M$, the flag curvature $K=K(x, y)$ is a scalar function on the slit tangent bundle $T M_{0}$. In this case, for some scalar function K on $T M_{0}$ the Riemann curvature is in the following form

$$
R_{k}^{i}=K F^{2}\left\{\delta_{k}^{i}-F^{-1} F_{y^{k}} y^{i}\right\} .
$$

If $K=$ constant, then F is said to be of constant flag curvature. A Finsler metric F is called isotropic flag curvature, if $K=K(x)$.

3. Proof of theorem 1.1

Let $F=\alpha \varphi(s), s=\frac{\beta}{\alpha}$ be an $(\alpha, \beta)-$ metric, where $\varphi=\varphi(s)$ is a C^{∞} on $\left(-b_{0}, b_{0}\right)$ with certain regularity, $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on a manifold M. Let

$$
\begin{gathered}
r_{i j}=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
s_{j}=b^{i} s_{i j}, \quad r_{j}=b^{i} r_{i j} .
\end{gathered}
$$

where $b_{i \mid j}$ denote the coefficients of the covariant derivative of β with respect to α. Let

$$
r_{i 0}:=r_{i j} y^{j}, \quad s_{i 0}:=s_{i j} y^{j}, \quad r_{0}:=r_{j} y^{j}, \quad s_{0}:=s_{j} y^{j} .
$$

Put

$$
Q=\frac{\varphi^{\prime}}{\varphi-s \varphi^{\prime}}, \quad \Theta=\frac{\left(\varphi-s \varphi^{\prime}\right)^{\prime \prime \prime \prime} \varphi^{\prime}-s \varphi \varphi^{\prime \prime}}{2 \varphi\left(\left(\varphi-s \varphi^{\prime}\right)+\left(b^{2}-s^{2}\right) \varphi^{\prime \prime}\right)}, \quad \Psi=\frac{\varphi^{\prime \prime \prime}}{2\left(\left(\varphi-s \varphi^{\prime}\right)+\left(b^{2}-s^{2}\right) \varphi^{\prime \prime}\right) .}
$$

Then the S-curvature is given by

$$
\begin{align*}
\boldsymbol{S}= & {\left[\mathrm{Q}^{\prime}-2 \Psi \mathrm{Q}_{\mathrm{s}}-2(\Psi \mathrm{Q})^{\prime}\left(\mathrm{b}^{2}-\mathrm{s}^{2}\right)-2(\mathrm{n}+1) \mathrm{Q} \Theta+2 \lambda\right] \mathrm{s}_{0} } \\
& +2(\Psi+\lambda) r_{0}+\alpha^{-1}\left[\left(b^{2}-s^{2}\right) \Psi^{\prime}+(\mathrm{n}+1) \Theta\right] r_{00} . \tag{3.2}
\end{align*}
$$

Let us put

$$
\begin{gathered}
\Delta=1+s Q+\left(b^{2}-s^{2}\right) Q^{\prime} \\
\Phi=-\{n \Delta+1+s Q\}\left(Q-s Q^{\prime}\right)-\left(b^{2}-s^{2}\right)(1+s Q) Q^{\prime \prime},
\end{gathered}
$$

In [5], Cheng- Shen characterize (α, β)-metrics with isotropic S-curvature.
Lemma 3.1. ([5]) Let $F=\alpha \varphi\left(\frac{\beta}{\alpha}\right)$ be an (α, β)-metric on an n-manifold.Then, F is of isotropic S-curvature $S=(n+1) c F$, if and only if one of the following holds
(i) $\quad \boldsymbol{\beta}$ satisfies

$$
\begin{equation*}
r_{i j}=\epsilon\left\{b^{2} a_{i j}-b_{i} b_{j}\right\}, s_{j}=0 \tag{3.3}
\end{equation*}
$$

Where $\epsilon=\epsilon(x)$ is a scalar function and $\varphi=\varphi(s)$ satisfies

$$
\Phi=-2(\mathrm{n}+1) \mathrm{k} \frac{\varphi \Delta^{2}}{b^{2}-s^{2}}
$$

where k is a constant. In this case, $c=k \epsilon$.
(i) $\quad \boldsymbol{\beta}$ satisfies

$$
\begin{equation*}
r_{i j}=0, s_{j}=0 \tag{3.4}
\end{equation*}
$$

In this case, $c=0$.
Let

$$
\begin{align*}
\Psi_{1} & =\sqrt{\mathrm{b}^{2}-\mathrm{s}^{2} \Delta^{\frac{1}{2}}\left[\frac{\sqrt{b^{2}-s^{2}}}{\Delta^{\frac{3}{2}}} \Phi\right]^{\prime^{\prime}}}, \\
\Psi_{2}= & 2(n+1)\left(Q-s Q^{\prime}\right)+3 \frac{\Phi}{\Delta} . \\
& \theta:=\frac{Q-s Q^{\prime}}{2 \Delta} . \tag{3.6}
\end{align*}
$$

Then the formula for the mean Cartan torsion of an $(\alpha, \beta)-$ metric is given by following

$$
\begin{gather*}
I_{i}=\frac{1}{2} \frac{\partial}{\partial y^{i}}\left[\frac{(n+1) \varphi^{\prime}}{\varphi}-\frac{(n-2) s \varphi^{\prime \prime}}{\varphi-s \varphi^{\prime}}-\frac{3 s \varphi^{\prime \prime}-\left(b^{2}-s^{2}\right) \varphi^{\prime \prime \prime}}{\varphi-s \varphi^{\prime}+\left(b^{2}-s^{2}\right) \varphi^{\prime \prime}}\right] \\
I_{i}=-\frac{\Phi\left(\varphi-s \varphi^{\prime}\right)}{2 \Delta \varphi \alpha^{2}}\left(\alpha b_{i}-s y_{i}\right) \tag{3.7}
\end{gather*}
$$

In [7], it is proved that the condition $\Phi=0$ characterizes the Riemannian metrics among (α, β)-metrics. Hence, in the continue, we suppose that $\Phi \neq 0$.

Let $G^{i}=G^{i}(x, y)$ and $\bar{G}_{\alpha}^{i}=\bar{G}_{\alpha}^{i}(x, y)$ denote the coefficients of F and α respectively in the same coordinate system. By definition, we have

$$
G^{i}=\bar{G}_{\alpha}^{i}+P y^{i}+Q^{i},
$$

where

$$
\begin{gathered}
P:=\alpha^{-1} \Theta\left[-2 \mathrm{Q} \alpha \mathrm{~s}_{0}+\mathrm{r}_{00}\right] \\
Q^{i}:=\alpha Q s_{0}^{i}+\Psi\left[-2 \mathrm{Q} \alpha \mathrm{~s}_{0}+\mathrm{r}_{00}\right] \mathrm{b}^{\mathrm{i}}
\end{gathered}
$$

Simplifying (3.8) yields the following

$$
\begin{equation*}
G^{i}=\bar{G}_{\alpha}^{i}+\alpha Q s_{0}^{i}+\Theta\left\{-2 \alpha Q s_{0}+\mathrm{r}_{00}\right\}\left\{\frac{\mathrm{y}^{\mathrm{i}}}{\alpha}+\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}-\mathrm{s} \mathrm{Q}^{\prime}} \mathrm{b}^{\mathrm{i}}\right\} \tag{3.9}
\end{equation*}
$$

Clearly, if β is parallel with respect to $\alpha\left(r_{i j}=0\right.$ and $\left.s_{i j}=0\right)$, then $P=0$ and $Q^{i}=0$. In this case, $G^{i}=\bar{G}_{\alpha}^{i}$ are quadratic in y, and F is a Berwald metric.
For an $(\alpha, \beta)-$ metric $F=\alpha \varphi(s)$, the mean Landsberg curvature is given by

$$
\begin{align*}
J_{i} & =-\frac{1}{2 \Delta \alpha^{4}}\left\{\frac{2 \alpha^{2}}{b^{2}-s^{2}}\left[\frac{\Phi}{\Delta}+(n+1)\left(Q-s Q^{\prime}\right)\right]\left(s_{0}+r_{0}\right) h_{i}\right. \\
& +\frac{\alpha}{b^{2}-s^{2}}\left[\Psi_{1}+s \frac{\Phi}{\Delta}\right]\left(r_{00}-2 Q \alpha s_{0}\right) h_{i}+\alpha\left[-\alpha Q^{\prime} s_{0} h_{i}\right. \\
& \left.\left.\left.+\alpha Q\left(\alpha^{2} s_{i}-y_{i} s_{0}\right)+\alpha^{2} \Delta s_{i 0}\right]+\left[\alpha^{2}\left(r_{i 0}-2 \alpha Q s_{i}\right)-r_{00}-2 \alpha Q s_{0}\right) y_{i}\right] \frac{\Phi}{}\right\} \tag{3.10}
\end{align*}
$$

Besides, they also obtained

$$
\begin{equation*}
\bar{J}=J_{i} b^{i}=-\frac{1}{2 \Delta \alpha^{2}}\left\{\Psi_{1}\left(r_{00}-2 \alpha Q s_{0}\right)+\alpha \Psi_{2}\left(r_{0}+s_{0}\right)\right\} \tag{3.11}
\end{equation*}
$$

The horizontal covariant derivatives $J_{i ; m}$ and $J_{i \mid m}$ of J_{i} with respect to F and α respectively are given by

$$
J_{i ; m}=\frac{\partial J_{i}}{\partial x^{m}}-J_{l} \Gamma_{i m}^{l}-\frac{\partial J_{i}}{\partial y^{l}} N_{m}^{l}, J_{i \mid m}=\frac{\partial J_{i}}{\partial x^{m}}-J_{l} \bar{\Gamma}_{i m}^{l}-\frac{\partial J_{i}}{\partial y^{l}} \bar{N}_{m}^{l}
$$

Where $\Gamma_{i j}^{i}=\frac{\partial G^{l}}{\partial y^{i} \partial y^{j}}, N_{j}^{l}=\frac{\partial G^{l}}{\partial y^{j}}$ and $\bar{\Gamma}_{i j}^{l}=\frac{\partial \bar{G}^{i}}{\partial y^{i} \partial y^{j}}, \bar{N}_{j}^{l}=\frac{\partial G^{l}}{\partial y^{j}}$.
Then we have,

$$
\begin{align*}
& J_{i ; m} y^{m}=\left\{J_{i \mid m}-J_{l}\left(\Gamma_{i m}^{l}-\bar{\Gamma}_{i m}^{l}\right)-\frac{\partial J_{i}}{\partial y^{l}}\left(N_{m}^{l}-\bar{N}_{m}^{l}\right) y^{m}\right\} \\
& \quad=J_{i \mid m} y^{m}-J_{l}\left(N_{i}^{l}-\bar{N}_{i}^{l}\right)-2 \frac{\partial J_{i}}{\partial y^{l}}\left(G^{l}-\bar{G}^{l}\right) \tag{3.12}
\end{align*}
$$

Let F be a Finsler metric of scalar flag curvature K. By Akbar-Zadeh's theorem it satisfies following

$$
\begin{equation*}
A_{i j k ; s ; m} y^{s} y^{m}+K F^{2} A_{i j k}+\frac{F^{2}}{3}\left[h_{i j} K_{k}+h_{j k} K_{j}+h_{k i} K_{j}\right]=0 \tag{3.13}
\end{equation*}
$$

where $A_{i j k}=F C_{i j k}$ is the Cartan torsion and $K_{i}=\frac{\partial K}{\partial y^{i}}$ [2]. Contracting (3.13) with $g^{i j}$ yields

$$
\begin{equation*}
J_{i ; m} y^{m}+K F^{2} I_{i}+\frac{n+1}{3} F^{2} K_{i}=0 \tag{3.14}
\end{equation*}
$$

By (3.12) and (3.13), for an (α, β)-metric $F=\alpha \varphi(s)$ of constant flag curvature K, then

$$
\begin{equation*}
J_{i ; m} y^{m}-J_{l} \frac{\partial\left(G^{l}-\bar{G}^{l}\right)}{\partial y^{i}}-\frac{2 \partial J_{i}}{\partial y^{l}}\left(G^{l}-\bar{G}^{l}\right)+K \alpha^{2} \varphi^{2} I_{i}=0 . \tag{3.15}
\end{equation*}
$$

Contracting (3.15) with b^{i} implies that

$$
\begin{equation*}
\bar{J}_{\mid m}-J_{i} a^{i k} b_{k \mid m} y^{m}-J_{l} \frac{\partial\left(G^{l}-\bar{G}^{l}\right)}{\partial y^{i}} b^{i}-\frac{2 \partial J}{\partial y^{l}}\left(G^{l}-\bar{G}^{l}\right)+K \alpha^{2} \varphi^{2} I_{i} b^{i}=0 . \tag{3.16}
\end{equation*}
$$

There exists a relation between mean Berwald curvature E and the S-curvature S. Indeed, taking twice vertical covariant derivatives of the S-curvature gives rise the E-curvature. It is easy to see that, every Finsler metric of isotropic S-curvature (1.2) is of isotropic mean Berwald curvature (2.1). Now, is the equation $S=(n+$ $1 c F$ equivalent to the equation $E=n+12 c F-1 h$?

Recently, Cheng-Shen prove that a Randers metric $F=\alpha+\beta$ is of isotropic S-curvature if and only if it is of isotropic E-curvature [4]. Then, Chun-Huan-Cheng [3] extend this equivalency to the Finsler metric $F=$ $\alpha^{-m}(\alpha+\beta)^{m}+1$ for every real constant m , including Randers metric .

To prove Theorem 1.1, we need the following.
Theorem 3.2. Let $F=\frac{\alpha^{2}}{\alpha-\beta}+\beta$ be a special metric on a manifold M of dimention n. Then the following are equivalent
(i) F is of isotropic S-curvature, $S=(n+1) c(x) F$;
(ii) F is of isotropic mean Berwald curvature, $E=\frac{n+1}{2} c F^{-1} h$;
; where $c=c(x)$ is a scalar function on the manifold M.
In this case, $S=0$. Then β is a Killing 1 -form with constant length with respect to α, that is, $r_{00}=0$.
Proof: (i) \rightarrow (ii) is obvious. Conversely, suppose that F has isotropic mean Berwald curvature, $E=\frac{n+1}{2} c F^{-1} h$. Then we have

$$
\begin{equation*}
S=(n+1)[c(x) F+\eta], \tag{3.17}
\end{equation*}
$$

where $\eta=\eta_{i}(x) y^{i}$ is a 1 -form on M . For the special metric

$$
\begin{equation*}
Q=\frac{s^{2}+1}{s(s-2)}, \Theta=-\frac{1}{2} \frac{s\left(s^{3}+3 s-4\right)}{\left(s+s^{2}-1\right)\left(-s^{3}+2 b^{2}\right)}, \Psi=\frac{1}{-s^{3}+2 b^{2}} . \tag{3.18}
\end{equation*}
$$

By substituting (3.17) and (3.18) in (3.2), we have

$$
\begin{gather*}
S=\left[-\frac{2\left(-3 s^{4}+2 s b^{2}+2 s^{3}-2 b^{2}+2 s^{2} b^{2}-2 s^{2}\right)}{s^{2}(s-2)^{2}\left(-s^{3}+2 b^{2}\right)}+\frac{2\left(-3 s^{6}+4 s^{5}+4 s^{2} b^{2}-5 s^{4}+8 s^{3}+4 s b^{2}-4 b^{2}\right)}{s^{2}\left(-s^{3}+2 b^{2}\right)^{2}(s-2)^{2}} \times\right. \\
\left.\left(b^{2}-s^{2}\right)-\frac{(n+1)\left(s^{2}+1\right)\left(-4+s^{3}+3 s\right)}{(s-2)\left(-1+s+s^{2}\right)\left(-s^{3}+2 b^{2}\right)}+2 \lambda\right] s_{0}+2\left[\frac{1}{-s^{3}+2 b^{2}}+\lambda\right] r_{0} \\
-\left[\frac{3 s^{2}\left(b^{2}-s^{2}\right)}{\alpha\left(-s^{3}+2 b^{2}\right)^{2}}\right] r_{00}-\left[\frac{(n+1) s\left(s^{3}+3 s-4\right)}{2 \alpha\left(-1+s+s^{2}\right)\left(-s^{3}+2 b^{2}\right)}\right] r_{00} . \\
(n+1)\left[c \alpha\left(1+s+\frac{1}{s}\right)+\eta\right] . \tag{3.19}
\end{gather*}
$$

Multiplying (3.19) with $s\left(1+s+s^{2}\right)\left(s^{3}+2 b^{2}\right)^{2}(s+2) \alpha^{5}$ implies that
$M_{1}+M_{2} \alpha^{2}+M_{3} \alpha^{4}+M_{4} \alpha^{4}+M_{5} \alpha^{8}+M_{6} \alpha^{10} \alpha\left[M_{7}+M_{8} \alpha^{2}+M_{9} \alpha^{4}+M_{10} \alpha^{6}+M_{11} \alpha^{8}+M_{12} \alpha^{10}\right]=0$,
where
$M_{1}=\left[-\beta^{2} c(n+1)+2 \beta \lambda\left(\mathrm{~s}_{0}+\mathrm{r}_{0}\right)-\beta \eta(n+1)+\frac{r_{00}}{2}(n+1)\right] \beta^{9}$,

$$
\begin{aligned}
& M_{2}=-\frac{1}{2}\left[10 \beta^{2} c(n+1)-12 \beta \lambda\left(\mathrm{~s}_{0}+\mathrm{r}_{0}\right)+12 \beta s_{0}+6 \beta \eta(n+1)+3 r_{00}(n+3)\right] \beta^{7}, \\
& M_{3}=-\left[-5 \beta^{2} c(n+1)+2 \beta b^{2} s_{0}(n+2)-4 \beta b^{2} \eta(n+1)+8 \beta \lambda \mathrm{~b}^{2}\left(s_{0}+r_{0}\right)+2 \beta\left(s_{0}(2 n+3)+r_{0}\right)\right. \\
&+r_{00}(2 n-1)\left(b^{2}+2\right) \beta^{5}, \\
& M_{4}=-2\left[-2 \beta^{2} b^{4} c(n+1)-2 \beta b^{4} \eta(n+1)+4 \beta b^{4} \lambda\left(s_{0}+r_{0}\right)-\beta\left(\left(-n s_{0}+2 r_{0}\right)+3 s_{0}\right)+4 \beta b^{4} \lambda\left(s_{0}+r_{0}\right)\right. \\
&\left.+4 \beta b^{2} \eta(n+1)-8 \beta b^{2} \lambda\left(s_{0}+r_{0}\right)+2 \beta b^{2}\left((2 n+3) s_{0}+r_{0}\right)+r_{00} b^{2}(5 n+8)\right] \beta^{3}, \\
& M_{5}=-2 b^{2}\left[-4 \beta c(n+1)+10 \beta b^{2} c(n+1)-12 b^{2} \lambda\left(s_{0}+r_{0}\right)+3\left(n s_{0}-2 r_{0}\right)+6 b^{2} \eta(n+1)\right] \beta^{2}, \\
& M_{6}= 20 b^{4} c(n+1) \beta, \\
& M_{7}= {\left[2 \beta \lambda\left(s_{0}+r_{0}\right)+\beta s_{0}(n+1)-\beta \eta(n+1)+r_{00}(n+4)\right] \beta^{8}, } \\
& M_{8}= {\left[-4 \beta^{2} b^{2} c(n+1)-4 \beta \lambda\left(s_{0}+r_{0}\right)-2 \beta \eta(n+1)+8 \beta b^{2} \lambda\left(s_{0}+r_{0}\right)+2 \beta\left(r_{0}-2 n\left(\eta b^{2}+s_{0}\right)\right)\right.} \\
&+\left.r_{00} n\left(\left(b^{2}+5\right)-2 r_{00}\left(b^{2}+2\right)\right)\right] \beta^{6}, \\
& M_{9}= {\left[20 \beta^{2} b^{2} c(n+1)-2 \beta^{2} c(n+1)+12 \beta \eta b^{2}(n+1)-24 \beta b^{2} \lambda\left(s_{0}+r_{0}\right)+3 \beta\left(n s_{0}+2 r_{0}\right)\right.} \\
&\left.3 \beta s_{0}\left(2 b^{2}-3\right)+3 r_{00} b^{2}(4+n)\right] \beta^{4}, \\
& M_{10}= 2 b^{2}\left[-10 \beta^{2} c(n+1)-2 \beta \eta b^{2}(n+1)+4 \beta b^{2} \lambda\left(s_{0}+r_{0}\right)+\beta\left(4 s_{0} n+2 r_{0}+9 s_{0}\right)+4 r_{00}(n+1)\right] \beta^{2}, \\
& M_{11}= 8 b^{2}\left[b^{2} \eta(n+1)-2 b^{2} \lambda\left(s_{0}+r_{0}\right)-r_{0}+n s_{0}\right] \beta, \\
& M_{12}=-8 b^{4} c(n+1) .
\end{aligned}
$$

The term of (3.20) which is seemingly does not contain α^{2} is M_{1}. Since β^{9} is not divisible by α^{2}, then $c=0$ which implies that

$$
M_{1}=M_{7}=0
$$

Therefore (3.20) reduces to following

$$
\begin{align*}
M_{2}+M_{3} \alpha^{2}+M_{4} \alpha^{4}+M_{5} \alpha^{6}+M_{6} \alpha^{8} & =0 \tag{3.21}\\
M_{8}+M_{9} \alpha^{2}+M_{10} \alpha^{4}+M_{11} \alpha^{6}+M_{12} \alpha^{8} & =0 \tag{3.22}
\end{align*}
$$

By plugging $c=0$ in M_{2} and M_{8}, the only equations that don't contain α^{2} are the following

$$
\begin{align*}
-\beta\left[2 \lambda\left(s_{0}+r_{0}\right)-(n+1) \eta+3 r_{00}(n+3)\right] & =\tau_{1} \alpha^{2} \tag{3.23}\\
4 \beta b^{2}\left[2 \lambda\left(s_{0}+r_{0}\right)-(n+1) \eta\right]+r_{00}(2 n-1)\left(b^{2}+2\right) & =\tau_{2} \alpha^{2} \tag{3.24}
\end{align*}
$$

where $\tau_{1}=\tau_{1} \alpha^{2}$ and $\tau_{2}=\tau_{2} \alpha^{2}$ are scalar functions on M. By eliminating [$2 \lambda\left(s_{0}+r_{0}\right)-(n+1) \eta$], we get

$$
\begin{equation*}
r_{00}=\tau \alpha^{2} \tag{3.25}
\end{equation*}
$$

where $\tau=\frac{\tau_{2}-4 b^{2} \tau_{1}}{\left(b^{2}+2\right)\left(4 b^{2}(2 n-1)\right)-3(n+3)}$.
By (3.23) or (3.24), it follows that

$$
\begin{equation*}
2 \lambda\left(s_{0}+r_{0}\right)-(n+1) \eta=0 \tag{3.26}
\end{equation*}
$$

By (3.25), we have $r_{0}=\tau \beta$. Putting (3.25) and (3.26) in M_{8} and M_{9} yields

$$
\begin{gather*}
M_{8}=\left[n\left(b^{2}+5\right)-2\left(b^{2}+2\right)\right] \tau \alpha^{2} \beta^{6} \tag{3.27}\\
M_{9}=\left[\left[\left(6 b^{2}+3 n-9\right) s_{0}-6 r_{0}\right] \beta-3 b^{2}(n+4) r_{00} \tau \alpha^{2}\right] \beta^{4} . \tag{3.28}
\end{gather*}
$$

By putting (3.27) and (3.28) into (3.22), we have

$$
\left[\left(6 b^{2}+3 n-9\right) s_{0}-6 r_{0}\right] \beta^{5}-3 b^{2}(n+4) r_{00} \tau \alpha^{2} \beta^{4}+n\left(b^{2}+5\right)-2\left(b^{2}+2\right) \tau \alpha^{2} \beta^{6}
$$

$$
\begin{equation*}
-M_{10} \alpha^{2}+M_{11} \alpha^{4}+M_{12} \alpha^{6}=0 \tag{3.29}
\end{equation*}
$$

The only equations of (3.29) that do not contain α^{2} is $\left[n\left(b^{2}+5\right)-2\left(b^{2}+2\right) \tau \beta+\left(6 b^{2}+3 n-9\right) s_{0}-6 r_{0}\right] \beta^{5}$. Since β^{6} is not divisible by α^{2}, then we have

$$
\begin{equation*}
\left[n\left(b^{2}+5\right)-2\left(b^{2}+2\right) \tau \beta^{6}+\left(6 b^{2}+3 n-9\right) s_{0}-6 r_{0}\right]=0 \tag{3.30}
\end{equation*}
$$

By lemma 3.1, we always have $s_{j}=0$. Then (3.30), reduces to following

$$
\begin{equation*}
\left[n\left(b^{2}+5\right)-2\left(b^{2}+2\right)\right] \tau \beta-6 r_{0}=0 \tag{3.31}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left[n\left(b^{2}+5\right)-2\left(b^{2}+2\right)\right] \tau b_{i}-6 \tau b_{i}=0 \tag{3.32}
\end{equation*}
$$

By multiplying (3.32) with b^{i}, we have

$$
\tau=0
$$

Thus by (3.28), we get $\eta=0$ and then $S=(n+1) c F$. By (3.25), we get $r_{i j}=0$. Therefore lemma 3.1, implies that $S=0$. This completes the proof.

Proof of Theorem 1.1: Let F be an isotropic Berwald metric (1.3) with almost isotropic flag curvature (1.1). In [22], it is proved that every isotropic Berwald metric (1.3) has isotropic S-curvature (1.2).
Conversely, suppose that F is of isotropic S-curvature (1.2) with scalar flag curvature K. In [13], it is showed that every Finsler metric of isotropic S-curvature (1.2) has almost isotropic flag curvature (1.1). Now, we are going to prove that F is a isotropic Berwald metric. In [6], it is proved that F is an isotropic Berwald metric (1.3) if and only if it is a Douglas metric with isotropic mean Berwald curvature (2.1). On the other hand, every Finsler metric of isotropic S-curvature (1.2) has isotropic mean Berwald curvature (2.1). Thus for completing the proof, we must show that F is a Douglas metric. By proposition 3.2, we have $S=0$. Therefore by theorem 1.1 in [13], F must be of isotropic flag curvature $K=\sigma(x)$. By proposition 3.2, β is a Killing 1-form with constant length with respect to α, that is, $r_{i j}=s_{j}=0$. Then (3.9), (3.10) and (3.11) reduce to

$$
G^{i}-\bar{G}^{i}=\alpha Q s_{0}^{i}, \quad J_{i}=-\frac{\Phi s_{i 0}}{2 \alpha \Delta}, \quad \bar{J}=0
$$

By (3.8), we get

$$
I_{i} b^{i}:=-\frac{\Phi\left(\varphi-s \varphi^{\prime}\right)}{2 \Delta F}\left(b^{2}-s^{2}\right)
$$

Now we consider two cases:
Case I: $\operatorname{dim} M \geq 3$. In this case, by Schur lemma F has constant flag curvature and (3.6) holds, the equation (3.16) reduces to following

$$
\begin{equation*}
\frac{\Phi s_{i 0}}{2 \Delta \alpha} a^{i k} s_{k 0}+\frac{\Phi s_{l 0}}{2 \Delta \alpha}\left(s Q s_{0}^{l}+Q^{\prime} s_{0}^{l}\left(b^{2}-s^{2}\right)\right)-K F \frac{\Phi}{2 \Delta}\left(\varphi-s \varphi^{\prime}\right)\left(b^{2}-s^{2}\right)=0 \tag{3.33}
\end{equation*}
$$

By assumption $\Phi \neq 0$. Thus by (3.32), we get

$$
\begin{equation*}
s_{i 0} s_{0}^{i}+s_{l 0}\left(\alpha Q s_{0}^{l}\right)_{i} b^{i}-K F \alpha\left(\varphi-s \varphi^{\prime}\right)\left(b^{2}-s^{2}\right)=0 \tag{3.34}
\end{equation*}
$$

The following holds

$$
\left(\alpha Q s_{0}^{l}\right)_{i} b^{i}=s Q s_{0}^{i}+Q^{\prime} s_{0}^{i}\left(b^{2}-s^{2}\right)=0
$$

Then (3.34) can be rewritten as follows

$$
\begin{equation*}
s_{i 0} s_{0}^{i} \Delta-K \alpha^{2} \varphi\left(\varphi-s \varphi^{\prime}\right)\left(b^{2}-s^{2}\right)=0 \tag{3.35}
\end{equation*}
$$

By (3.6), (3.18) and (3.35), we obtain

$$
\begin{equation*}
\left[1+\frac{s^{2}+1}{s-2}-\frac{2\left(b^{2}-s^{2}\right)\left(-1+s+s^{2}\right)}{s^{2}(s-2)^{2}}\right] s_{i 0} s_{0}^{i}-K \alpha^{2}\left[\frac{\left(-1+s+s^{2}\right)(s-2)}{s^{2}}\left(b^{2}-s^{2}\right)\right]=0 . \tag{3.36}
\end{equation*}
$$

Multiplying (3.36) with $-s^{2}(s-2)^{2} \alpha^{5}$ yields

$$
A+\alpha B=0
$$

where

$$
\begin{aligned}
A= & -K 20 b^{2} \beta \alpha^{6}+\left(5 K \beta^{3} b^{2}+2 b^{2} \beta s_{i 0} s_{0}^{i}+20 K \beta^{3}\right) \alpha^{4}+\left(\beta^{3} s_{i 0} s_{0}^{i}-5 K \beta^{5}+K \beta^{5} b^{2}\right) \alpha^{2} \\
& -K \beta^{7}-s_{i 0} s_{0}^{i} \beta^{5} \\
B= & 8 K b^{2} \alpha^{6}+\left(10 K b^{2} \beta^{2}-8 K \beta^{2}-2 s_{i 0} s_{0}^{i} b^{2}\right) \alpha^{4}+\left(-5 K b^{2} \beta^{4}+2 s_{i 0} S_{0}^{i} b^{2} \beta^{2}-10 K \beta^{4}\right) \alpha^{2} \\
& +\left(5 K \beta^{6}-s_{i 0} s_{0}^{i} \beta^{4}\right) .
\end{aligned}
$$

Obviously, we have $A=0$ and $B=0$.
If $A=0$ and the fact that β^{7} is not divisible by α^{2}, we get $K=0$. Therefore (3.36) reduces to following

$$
s_{i 0} s_{0}^{i}=a_{i j} s_{0}^{j} s_{0}^{i}=0
$$

Because of positive-definiteness of the Riemannian metric α, we have $s_{i 0}=0$, i.e., β is closed. By $r_{00}=0$ and $s_{0}=0$, it follows that β is parallel with respect to α. Then $F=\frac{\alpha^{2}}{\alpha-\beta}+\beta$ is a Berwald metric. Hence F must be locally Minkowskian.

Case II: Let $\operatorname{dim} M=2$. Suppose that F has isotropic Berwald curvature (1.3). In [6], it is proved that every isotropic Berwald metric [3] has isotropic S-curvature, $S=(n+1) c F$.

By proposition 3.2, $c=0$. Then by [3], F reduces to a Berwald metric. Since F is non-Riemannian, then by Szabo's rigidity theorem for Berwald surface (see [2] page 278), F must be locally Minkowskian.

References

[1] S. Basco and M. Matsumoto, On Finsler spaces of Douglas type, A gen- eralization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
[2] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
[3] X. Chun-Huan and X. Cheng, On a class of weakly-Berwald (α, β)- metrics, J. Math. Res. Expos. 29(2009), 227-236.
[4] X. Cheng and Z. Shen, Randers metric with special curvature properties, Osaka. J. Math. 40(2003), 87101.
[5] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S- curvature, Israel. J. Math. 169(2009), 317-340.
[6] X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512.
[7] X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen. 72(2008), 475-485.
[8] N. Cui, On the S-curvature of some (α, β)-metrics, Acta. Math. Scien- tia, Series: A. 26(7) (2006), 10471056.
[9] I.Y. Lee and M.H. Lee, On weakly-Berwald spaces of special (α, β)- metrics, Bull. Korean Math. Soc. 43(2) (2006), 425-441.
[10] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992), 43-84.
[11] S. K. Narasimhamurthy, A.R. Kavyashree and Y. Mallikarjun, Curvature properties of homogeneous matsumato metric, in press.
[12] B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag cur- vature with special non-Riemannian curvature properties, Geom. Dedi- cata. 131(2008), 87-97.
[13] H. S. Park and E. S. Choi, On a Finsler spaces with a special (α, β) - metric, Tensor, N. S. 56(1995), 142148.
[14] H. S. Park and E. S. Choi, Finsler spaces with an approximate Mat- sumoto metric of Douglas type, Comm. Korean. Math. Soc. 14(1999), 535-544.
[15] H. S. Park and E. S. Choi, Finsler spaces with the second approximate Matsumoto metric, Bull. Korean. Math. Soc. 39(1) (2002), 153-163.

