

Volume 12, Issue 2

Published online: July 08, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On Weakly Berwald Finsler Special (α, β) –metric

Thippeswamy K. R¹, Narasimhamurthy S. K².

¹Department of Mathematics, Kuvempu University,

Shankaraghatta -577451, Shimoga, Karnataka, india.

²Department of Mathematics, Kuvempu University,

Shankaraghatta - 577451, Shimoga, Karnataka, india.

Abstract: In this paper, we study the special (α,β) -metric $F = \frac{\alpha^2}{\alpha-\beta} + \beta$ on a manifold M. Then prove that F is of scalar flag curvature and isotropic S-Curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

Key Words: Isotropic Berwald curvature; S-curvature; Weak berwald metric; almost isotropic flag curvature.

1. Introduction

Curvatures are the central concept of Finsler geometry. For a Finsler manifold (M, F), the flag curvature is a function K(P, y) to the tangent planes $P \subset T_x M$ and non zero $y \in P$. A Finsler metric F is of scalar flag curvature if for any non-zero vector $y \in T_x M$, K = K(x, y) is of independent P containing $y \in T_x M$ (hence $K = \sigma(x)$) when F is Riemannian) It is of almost isotropic flag curvature if

$$K = \frac{3c_{\chi^m}y^m}{F} + \sigma, \tag{1.1}$$

where c = c(x) and $\sigma = \sigma(x)$ are scalar functions on M. It is one of the important problems in Finsler geometry is to study and characterize Finsler manifolds of almost isotropic flag curvature [11].

To study the geometric properties of a Finsler metric, one also considers non-Riemannian quantities. In Finsler geometry, there are several important non-Riemannian quantities: the Cartan torsion \mathcal{C} , the Berwald curvature \mathcal{B} , the mean Landsberg curvature \mathcal{J} and S-curvature \mathcal{S} , etc ([6] [9] [13] [20]). these are geometric quantities which vanish for Riemannian metrics.

Among the non-Riemannian quantities, the S-curvature S = S(x, y) is closely related to the flag curvature which constructed by Z. Shen for given comparison theorems on Finsler manifolds. An n-dimentional Finsler metric F is said to have isotropic S-curvature if

$$S = (n+1)cF, (1.2)$$

for some scalar function c = c(x) on M. In [13], it is proved that if a Finsler metric F of scalar flag curvature is of isotropic S-curvature (1.2), then it has almost isotropic flag curvature (1.1).

The geodisc curves of a Finsler metric F = F(x, y) on a smooth manifold M, are determined by $\ddot{c}^i + 2G^i(\ddot{c}) = 0$, where the local functions $G^i = G^i(x, y)$ are called the spray coefficients. A Finsler metric F is called a Berwald metric, if G^i are quadratic in $y \in T_x M$ for any $x \in M$.

A Finsler metric F is said to be isotropic Berwald metric if its Berwald curvature is in the following form

$$B_{jkl}^{i} = c \{ F_{\nu^{j}\nu^{k}} \delta_{j}^{i} + F_{\nu^{k}\nu^{l}} \delta_{j}^{i} + F_{\nu^{l}\nu^{j}} \delta_{k}^{i} + F_{\nu^{j}\nu^{k}\nu^{l}\nu^{i}} \}, \tag{1.3}$$

where c = c(x) is a scalar function on M [6].

As a generalization of Berwald curvature, Basco-Matsumato proposed the notion of Douglas curvature [1]. A Finsler metric is called a Douglas metric if $G^i = \frac{1}{2} \Gamma^i_{jk}(x) y^j y^k + P(x,y) y^i$. In order to find explicit examples of Douglas metrics, i.e we considered some (α,β) -metrics. An (α,β) -metric is a Finsler metric of the form $F = \alpha \varphi\left(\frac{\beta}{\alpha}\right)$, where $\varphi = \varphi(s)$ is a C^∞ on $(-b_0,b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a R iemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M.

In this paper, we consider special metric $F = \frac{\alpha^2}{\alpha - \beta} + \beta$ with some non-Riemannian curvature properties and prove the following.

Theorem 1.1. Let $F = \frac{\alpha^2}{\alpha - \beta} + \beta$ be a non-Riemannian special metric on a manifold M of dimention n. Then F is of scalar flag curvature with isotropic S-curvature (1.2), if and only if it has isotropic Berwald curvature (1.3) with almost isotropic flag curvature (1.1). In this case, F must be locally Minkowskian.

2. Preliminaries

Let M be an n-dimensional C^{∞} manifold. Denote by TxM the tangent space at $x \in M$, by $TM = \bigcup_{x \in M} TxM$ the tangent bundle of M and by $TM_0 = TM \setminus \{0\}$ the slit tangent bundle on M is a function $F: TM \to [0, \infty)$ which has the following properties:

- a) F is C^{∞} on $TM \setminus \{0\}$;
- b) F is positively 1-homogeneous on the fibers of tangent bundle TM;
- c) For each $y \in T_x M$, the following quadratic form g_y on $T_x M$

$$g_y(u,v) := \frac{1}{2} \frac{\partial^2}{\partial s \partial t} [F^2(y + su + tv)]|_s, t = 0, u, v \in T_x M.$$

Let $x \in M$ and $F_x := F |_T M$. To measure the non-Euclidean feature of F_x , define $C_y : T_x M \otimes T_x M \otimes T_x M \to R$ by

$$C_y(u, v, w) := \frac{1}{2} \frac{d}{dt} [g_y + tw(u, v)]|_t = 0, u, v, w \in T_x M.$$

The family $C := \{C_y\}_{y \in TM_0}$ is called the cartan torsion. It is well known that C = 0 if and only if F is Riemannian [17]. For $y \in T_x M_0$, mean cartan torsion I_y by $I_y(u) := I_i(y)u^i$, where $I_i := g^{jk}C_{ijk}$, By Diecke theorem, F is Riemannian if and only if $I_y = 0$.

The horizantal covariant derivatives of I along geodiscs give rise to the mean Landsberg cur-vature $J_y(u) := J_i(y)u^i$, where $J_i := I_i|_s y^s$. A Finsler metric is said to be weakly Landsbergian if J = 0.

Given a Finsler manifold (M, F), then a global vector field G is induced by F on TM_o , which in a standard coordinate (x_i, y_i) for TM_0 is given by $G = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$, where

$$G^{i} := g^{il} \left[\frac{\partial^{2}(F^{2})}{\partial x^{k} \partial y^{l}} y^{k} - \frac{\partial(F^{2})}{\partial \partial x^{l}} \right], y \in T_{x} M.$$

Let G is called the spray assosiated to (M, F). In local coordinates, a curve c(t) is geodesic if and only if its coordinates $c^i(t)$ satisfy $\ddot{c}^i + 2G^i(\ddot{c}) = 0$,

For a tangent vector $y \in T_x M_0$, define $B_y : T_x M \otimes T_x M \otimes T_x M \to T_x M$ and $E_y : T_x M \otimes T_x M \to R$ by $B_y(u, v, w) := B^i_{jkl}(y) u^j v^k w^l \frac{\partial}{\partial x^i}|_x$ and $E_y(u, v) := E_{jk}(y) u^j v^k$, where

$$B^i_{jkl} = \frac{\partial^3 G^i}{\partial \gamma^j \partial \gamma^k \partial \gamma^l}, \ E_{jk} = \frac{1}{2} B^m_{ijm}.$$

Let B and E are called the Berwald curvature and mean Berwald curvature, respectively. Then F is called a Berwald metric and weakly Berwald metric if B = 0 and E = 0, respectively.

A Finsler metric F is said to be isotropic mean Berwald metric if its mean Berwald curvature is in the following form

$$E_{ij} = \frac{n+1}{2F}ch_{ij},$$

where c = c(x) is a scalar function on M and hij is the angular metric [6].

Define $D_y: T_xM \otimes T_xM \otimes T_xM \to T_xM$ by $D_y(u, v, w) := D_{jkl}^i(y)u^iv^jw^k\frac{\partial}{\partial x^i}|_x$ where

$$D_{jkl}^{i} := B_{jkl}^{i} - \frac{2}{n+1} \{ E_{jk} \delta_{l}^{i} + E_{jl} \delta_{k}^{i} + E_{kl} \delta_{j}^{i} + E_{jk}, ly^{i} \}.$$

We call D:={ $D_y \coloneqq \{D_y\}_{y \in TM_0}$ the Douglas curvature. A Finsler metric with D=0 is called a Douglas metric. The notion of Douglas metrics was proposed by Basco-Matsumato as a generalization of Berwald metrics [1]. For a Finsler metric F on an n-dimentional manifold M, the Busemann-Hausdorff volume form $dV_F = \sigma_F(x)dx^1 \dots dx^n$ is defined by

$$\sigma F(x) = \frac{Vol(B^n(1))}{Vol\{(y^i) \in R^n | F(x, y) < 1\}}$$

In general, the local scalar function $\sigma_F(x)$ can not be expressed in terms of elementary functions, even F is locally expressed by elementary functions. Let G^i denote the geodisc coefficients of F in the same local coordinate system. The S-curvature can be defined by

$$S(Y) := \frac{\partial G^i}{\partial y^i}(x, y) - y^i \frac{\partial}{\partial x^i} [In\sigma_F(x)],$$

where $Y = y^i \frac{\partial}{\partial x^i}|_{x} \epsilon T_x M$. It is proved that S = 0 if F is a Berwald metric. There are many non-Berwald metrics satisfying S = 0. S said to be isotropic, if there is a scalar functions c(x) on M such that S = (n+1)c(x)F.

The Riemann curvature $R_v = R_k^i dx^k \otimes \partial x^i|_x : T_x M \to T_x M$ is a family of linear maps on tangent spaces, defined by

$$R_k^i = \frac{2\partial G^i}{\partial x^k} - \frac{\partial^2 G^i}{\partial x^j \partial y^k} y^j + 2G^i \frac{\partial^2 G^i}{\partial y^j \partial y^k} - \frac{\partial G^i}{\partial y^j} \frac{\partial G^j}{\partial y^k}.$$

For a flag $P = span\{y, u\} \subset T_x M$ with flagpole y, the flag curvature K = K(p, y) is defined by

$$K(P,y) := \frac{g_y(u,R_y(u))}{g_y(y,y)g_y(u,u) - g_y(y,u)^2}.$$

We say that a Finsler metric F is of scalar curvature if for any $y \in T_x M$, the flag curvature K = K(x, y) is a scalar function on the slit tangent bundle $T M_0$. In this case, for some scalar function K on $T M_0$ the Riemann curvature is in the following form

$$R_k^i = KF^2 \{ \delta_k^i - F^{-1} F_{v^k} y^i \}.$$

If K=constant, then F is said to be of constant flag curvature. A Finsler metric F is called isotropic flag curvature, if K = K(x).

3. Proof of theorem 1.1

Let $F = \alpha \, \varphi(s)$, $s = \frac{\beta}{\alpha}$ be an $(\alpha, \beta) - metric$, where $\varphi = \varphi(s)$ is a C^{∞} on $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on a manifold M. Let

$$r_{ij} = \frac{1}{2} (b_{i|j} + b_{j|i}), \quad s_{ij} = \frac{1}{2} (b_{i|j} - b_{j|i}),$$

 $s_j = b^i s_{ij}, \quad r_j = b^i r_{ij}.$

where $b_{i|j}$ denote the coefficients of the covariant derivative of β with respect to α . Let

$$r_{i0} \coloneqq r_{ij} y^j$$
, $s_{i0} \coloneqq s_{ij} y^j$, $r_0 \coloneqq r_j y^j$, $s_0 \coloneqq s_j y^j$.

Put

$$Q = \frac{\varphi'}{\varphi - s\varphi'}, \qquad \Theta = \frac{(\varphi - s\varphi')\varphi'' - s\varphi\varphi''}{2\varphi((\varphi - s\varphi') + (b^2 - s^2)\varphi'')}, \qquad \Psi = \frac{\varphi''}{2((\varphi - s\varphi') + (b^2 - s^2)\varphi'')}.$$

Then the S-curvature is given by

$$\mathbf{S} = \left[\mathbf{Q}' - 2\Psi \mathbf{Q}_{s} - 2(\Psi \mathbf{Q})' \left(\mathbf{b}^{2} - \mathbf{s}^{2} \right) - 2(\mathbf{n} + 1)\mathbf{Q}\Theta + 2\lambda \right] \mathbf{s}_{0}$$

$$+2(\Psi + \lambda)r_{0} + \alpha^{-1} \left[(b^{2} - \mathbf{s}^{2})\Psi' + (\mathbf{n} + 1)\Theta \right] r_{00}. \tag{3.2}$$

Let us put

$$\Delta = 1 + sQ + (b^2 - s^2)Q'$$

$$\Phi = -\{n\Delta + 1 + sQ\}(Q - sQ') - (b^2 - s^2)(1 + sQ)Q''.$$

In [5], Cheng- Shen characterize (α, β) -metrics with isotropic S -curvature.

Lemma 3.1. ([5]) Let $F = \alpha \varphi(\frac{\beta}{\alpha})$ be an (α, β) -metric on an n-manifold. Then, F is of isotropic S-curvature S = (n + 1)cF, if and only if one of the following holds

(i) β satisfies

$$r_{ij} = \epsilon \{b^2 a_{ij} - b_i b_j\}, \ s_j = 0,$$
 (3.3)

Where $\epsilon = \epsilon(x)$ is a scalar function and $\varphi = \varphi(s)$ satisfies

$$\Phi = -2(n+1)k\frac{\varphi\Delta^2}{b^2 - s^2}$$

where k is a constant. In this case, $c = k\epsilon$.

(i) β satisfies

$$r_{ij} = 0, \ s_j = 0. ag{3.4}$$

In this case, c = 0.

Let

$$\Psi_{1} = \sqrt{b^{2} - s^{2} \Delta^{\frac{1}{2}} \left[\frac{\sqrt{b^{2} - s^{2}}}{\Delta^{\frac{3}{2}}} \Phi \right]^{r'}},$$

$$\Psi_{2} = 2(n+1)(Q - sQ') + 3\frac{\Phi}{\Delta}.$$

$$\theta := \frac{Q - sQ'}{2\Delta}.$$
(3.6)

Then the formula for the mean Cartan torsion of an (α, β) -metric is given by following

$$I_{i} = \frac{1}{2} \frac{\partial}{\partial y^{i}} \left[\frac{(n+1)\varphi'}{\varphi} - \frac{(n-2)s\varphi''}{\varphi - s\varphi'} - \frac{3s\varphi'' - (b^{2} - s^{2})\varphi'''}{\varphi - s\varphi' + (b^{2} - s^{2})\varphi''} \right]$$

$$I_{i} = -\frac{\varphi(\varphi - s\varphi')}{2\Delta\varphi\alpha^{2}} (\alpha b_{i} - sy_{i}). \tag{3.7}$$

In [7], it is proved that the condition $\Phi = 0$ characterizes the Riemannian metrics among (α, β) -metrics. Hence, in the continue, we suppose that $\Phi \neq 0$.

Let $G^i = G^i(x, y)$ and $\bar{G}^i_\alpha = \bar{G}^i_\alpha(x, y)$ denote the coefficients of F and α respectively in the same coordinate system. By definition, we have

$$G^i = \bar{G}^i_\alpha + P y^i + Q^i,$$

where

$$P \coloneqq \alpha^{-1}\Theta[-2Q\alpha s_0 + r_{00}]$$

$$Q^i \coloneqq \alpha Q s_0^i + \Psi[-2Q\alpha s_0 + r_{00}]b^i.$$

Simplifying (3.8) yields the following

$$G^{i} = \bar{G}_{\alpha}^{i} + \alpha Q s_{0}^{i} + \Theta\{-2\alpha Q s_{0} + r_{00}\} \left\{ \frac{y^{i}}{\alpha} + \frac{Q'}{Q - sQ'} b^{i} \right\}, \tag{3.9}$$

Clearly, if β is parallel with respect to α ($r_{ij} = 0$ and $s_{ij} = 0$), then P = 0 and $Q^i = 0$. In this case, $G^i = \bar{G}^i_\alpha$ are quadratic in γ , and F is a Berwald metric.

For an (α, β) -metric $F = \alpha \varphi(s)$, the mean Landsberg curvature is given by

$$J_{i} = -\frac{1}{2\Delta\alpha^{4}} \left\{ \frac{2\alpha^{2}}{b^{2} - s^{2}} \left[\frac{\Phi}{\Delta} + (n+1)(Q - sQ') \right] (s_{0} + r_{0}) h_{i} \right.$$

$$\left. + \frac{\alpha}{b^{2} - s^{2}} \left[\Psi_{1} + s \frac{\Phi}{\Delta} \right] (r_{00} - 2Q\alpha s_{0}) h_{i} + \alpha \left[-\alpha Q' s_{0} h_{i} \right.$$

$$\left. + \alpha Q(\alpha^{2} s_{i} - y_{i} s_{0}) + \alpha^{2} \Delta s_{i0} \right] + \left[\alpha^{2} (r_{i0} - 2\alpha Q s_{i}) - r_{00} - 2\alpha Q s_{0}) y_{i} \right] \frac{\Phi}{\Delta}.$$
(3.10)

Besides, they also obtained

$$\bar{J} = J_i b^i = -\frac{1}{2\Delta\alpha^2} \{ \Psi_1(r_{00} - 2\alpha Q s_0) + \alpha \Psi_2(r_0 + s_0) \}.$$
 (3.11)

The horizontal covariant derivatives $J_{i;m}$ and $J_{i|m}$ of J_i with respect to F and α respectively are given by

$$J_{i;m} = \frac{\partial J_i}{\partial x^m} - J_l \Gamma_{im}^l - \frac{\partial J_i}{\partial v^l} N_m^l, J_{i|m} = \frac{\partial J_i}{\partial x^m} - J_l \bar{\Gamma}_{im}^l - \frac{\partial J_i}{\partial v^l} \bar{N}_m^l,$$

Where
$$\Gamma_{ij}^{i} = \frac{\partial G^{l}}{\partial y^{i}\partial y^{j}}$$
, $N_{j}^{l} = \frac{\partial G^{l}}{\partial y^{j}}$ and $\bar{\Gamma}_{ij}^{l} = \frac{\partial G^{i}}{\partial y^{i}\partial y^{j}}$, $\bar{N}_{j}^{l} = \frac{\partial G^{l}}{\partial y^{j}}$.

Then we have,

$$J_{i;m}y^{m} = \left\{ J_{i|m} - J_{l} \left(\Gamma_{im}^{l} - \bar{\Gamma}_{im}^{l} \right) - \frac{\partial J_{i}}{\partial y^{l}} \left(N_{m}^{l} - \bar{N}_{m}^{l} \right) y^{m} \right\}$$

$$= J_{i|m}y^{m} - J_{l} \left(N_{i}^{l} - \bar{N}_{i}^{l} \right) - 2 \frac{\partial J_{i}}{\partial y^{l}} \left(G^{l} - \bar{G}^{l} \right). \tag{3.12}$$

Let F be a Finsler metric of scalar flag curvature K. By Akbar-Zadeh's theorem it satisfies following

$$A_{ijk;s;m}y^{s}y^{m} + KF^{2}A_{ijk} + \frac{F^{2}}{3}\left[h_{ij}K_{k} + h_{jk}K_{j} + h_{ki}K_{j}\right] = 0,$$
(3.13)

where $A_{ijk} = FC_{ijk}$ is the Cartan torsion and $K_i = \frac{\partial K}{\partial x^i}$ [2]. Contracting (3.13) with g^{ij} yields

$$J_{i;m}y^m + KF^2I_i + \frac{n+1}{3}F^2K_i = 0. (3.14)$$

By (3.12) and (3.13), for an (α, β) -metric $F = \alpha \varphi(s)$ of constant flag curvature K, then

$$J_{l;m}y^m - J_l \frac{\partial (G^l - G^l)}{\partial y^l} - \frac{2\partial J_i}{\partial y^l} (G^l - \bar{G}^l) + K\alpha^2 \varphi^2 I_i = 0.$$

$$(3.15)$$

Contracting (3.15) with b^i implies that

$$\bar{J}_{|m} - J_i \alpha^{ik} b_{k|m} \gamma^m - J_l \frac{\partial (G^l - \bar{G}^l)}{\partial \gamma^i} b^i - \frac{2\partial J}{\partial \gamma^l} (G^l - \bar{G}^l) + K\alpha^2 \varphi^2 I_i b^i = 0.$$
(3.16)

There exists a relation between mean Berwald curvature E and the S-curvature S. Indeed, taking twice vertical covariant derivatives of the S-curvature gives rise the E-curvature. It is easy to see that, every Finsler metric of isotropic S-curvature (1.2) is of isotropic mean Berwald curvature (2.1). Now, is the equation S = (n + 1cF) equivalent to the equation E = n + 12cF - 1h?

Recently, Cheng-Shen prove that a Randers metric $F = \alpha + \beta$ is of isotropic S-curvature if and only if it is of isotropic E-curvature [4]. Then, Chun-Huan-Cheng [3] extend this equivalency to the Finsler metric $F = \alpha^{-m}(\alpha + \beta)^m + 1$ for every real constant m, including Randers metric.

To prove Theorem 1.1, we need the following.

Theorem 3.2. Let $F = \frac{\alpha^2}{\alpha - \beta} + \beta$ be a special metric on a manifold M of dimention n. Then the following are equivalent

- (i) F is of isotropic S-curvature, S = (n + 1)c(x)F;
- (ii) *F* is of isotropic mean Berwald curvature, $E = \frac{n+1}{2}cF^{-1}h$;

; where c = c(x) is a scalar function on the manifold M.

In this case, S = 0. Then β is a Killing 1-form with constant length with respect to α , that is, $r_{00} = 0$.

Proof: (i) \rightarrow (ii) is obvious. Conversely, suppose that F has isotropic mean Berwald curvature, $E = \frac{n+1}{2}cF^{-1}h$. Then we have

$$S = (n+1)[c(x)F + \eta], \tag{3.17}$$

where $\eta = \eta_i(x)y^i$ is a 1-form on M. For the special metric

$$Q = \frac{s^2 + 1}{s(s - 2)}, \ \Theta = -\frac{1}{2} \frac{s(s^3 + 3s - 4)}{(s + s^2 - 1)(-s^3 + 2b^2)}, \ \Psi = \frac{1}{-s^3 + 2b^2}.$$
 (3.18)

By substituting (3.17) and (3.18) in (3.2), we have

$$S = \left[-\frac{2(-3s^4 + 2sb^2 + 2s^3 - 2b^2 + 2s^2b^2 - 2s^2)}{s^2(s-2)^2(-s^3 + 2b^2)} + \frac{2(-3s^6 + 4s^5 + 4s^2b^2 - 5s^4 + 8s^3 + 4sb^2 - 4b^2)}{s^2(-s^3 + 2b^2)^2(s-2)^2} \times \right]$$

$$(b^2 - s^2) - \frac{(n+1)(s^2+1)(-4+s^3+3s)}{(s-2)(-1+s+s^2)(-s^3+2b^2)} + 2\lambda \right] s_0 + 2\left[\frac{1}{-s^3 + 2b^2} + \lambda \right] r_0$$

$$-\left[\frac{3s^2(b^2 - s^2)}{\alpha(-s^3 + 2b^2)^2} \right] r_{00} - \left[\frac{(n+1)s(s^3 + 3s - 4)}{2\alpha(-1+s+s^2)(-s^3 + 2b^2)} \right] r_{00}.$$

$$(n+1)\left[c\alpha\left(1+s+\frac{1}{s}\right) + \eta \right]. \tag{3.19}$$

Multiplying (3.19) with $s(1+s+s^2)(s^3+2b^2)^2(s+2)\alpha^5$ implies that

$$M_1 + M_2\alpha^2 + M_3\alpha^4 + M_4\alpha^4 + M_5\alpha^8 + M_6\alpha^{10}\alpha[M_7 + M_8\alpha^2 + M_9\alpha^4 + M_{10}\alpha^6 + M_{11}\alpha^8 + M_{12}\alpha^{10}] = 0, \quad (3.20)$$
where

$$M_1 = \left[-\beta^2 c(n+1) + 2\beta \lambda (s_0 + r_0) - \beta \eta (n+1) + \frac{r_{00}}{2} (n+1) \right] \beta^9,$$

$$M_2 = -\frac{1}{2}[10\beta^2c(n+1) - 12\beta\lambda(s_0 + r_0) + 12\beta s_0 + 6\beta\eta(n+1) + 3r_{00}(n+3)]\beta^7,$$

$$\begin{split} M_3 &= -[-5\beta^2c(n+1) + 2\beta b^2s_0(n+2) - 4\beta b^2\eta(n+1) + 8\beta\lambda \mathbf{b}^2(s_0 + r_0) + 2\beta(s_0(2n+3) + r_0) \\ &+ r_{00}(2n-1)(b^2+2)\beta^5, \end{split}$$

$$\begin{split} M_4 &= -2[-2\beta^2b^4c(n+1) - 2\beta b^4\eta(n+1) + 4\beta b^4\lambda(s_0+r_0) - \beta\big((-ns_0+2r_0) + 3s_0\big) + 4\beta b^4\lambda(s_0+r_0) \\ &+ 4\beta b^2\eta(n+1) - 8\beta b^2\lambda(s_0+r_0) + 2\beta b^2\big((2n+3)s_0+r_0\big) + r_{00}b^2(5n+8)]\beta^3, \end{split}$$

$$M_5 = -2b^2 \left[-4\beta c(n+1) + 10\beta b^2 c(n+1) - 12b^2 \lambda (s_0 + r_0) + 3(ns_0 - 2r_0) + 6b^2 \eta (n+1) \right] \beta^2,$$

$$M_6 = 20b^4c(n+1)\beta,$$

$$M_7 = [2\beta\lambda(s_0 + r_0) + \beta s_0(n+1) - \beta\eta(n+1) + r_{00}(n+4)]\beta^8$$

$$M_8 = \left[-4\beta^2 b^2 c(n+1) - 4\beta \lambda (s_0 + r_0) - 2\beta \eta (n+1) + 8\beta b^2 \lambda (s_0 + r_0) + 2\beta (r_0 - 2n(\eta b^2 + s_0)) + r_{00} n((b^2 + 5) - 2r_{00}(b^2 + 2)) \right] \beta^6,$$

$$M_9 = [20\beta^2 b^2 c(n+1) - 2\beta^2 c(n+1) + 12\beta\eta b^2 (n+1) - 24\beta b^2 \lambda (s_0 + r_0) + 3\beta (ns_0 + 2r_0) 3\beta s_0 (2b^2 - 3) + 3r_{00}b^2 (4+n)]\beta^4,$$

$$M_{10} = 2b^2 \left[-10\beta^2 c(n+1) - 2\beta\eta b^2(n+1) + 4\beta b^2 \lambda (s_0 + r_0) + \beta (4s_0 n + 2r_0 + 9s_0) + 4r_{00}(n+1) \right] \beta^2,$$

$$M_{11} = 8b^2[b^2\eta(n+1) - 2b^2\lambda(s_0 + r_0) - r_0 + ns_0]\beta,$$

$$M_{12} = -8b^4c(n+1).$$

The term of (3.20) which is seemingly does not contain α^2 is M_1 . Since β^9 is not divisible by α^2 , then c=0 which implies that

$$M_1 = M_7 = 0.$$

Therefore (3.20) reduces to following

$$M_2 + M_3 \alpha^2 + M_4 \alpha^4 + M_5 \alpha^6 + M_6 \alpha^8 = 0, (3.21)$$

$$M_8 + M_9 \alpha^2 + M_{10} \alpha^4 + M_{11} \alpha^6 + M_{12} \alpha^8 = 0. (3.22)$$

By plugging c = 0 in M_2 and M_8 , the only equations that don't contain α^2 are the following

$$-\beta[2\lambda(s_0 + r_0) - (n+1)\eta + 3r_{00}(n+3)] = \tau_1 \alpha^2, \tag{3.23}$$

$$4\beta b^{2} [2\lambda(s_{0} + r_{0}) - (n+1)\eta] + r_{00}(2n-1)(b^{2}+2) = \tau_{2}\alpha^{2}, \tag{3.24}$$

where $\tau_1 = \tau_1 \alpha^2$ and $\tau_2 = \tau_2 \alpha^2$ are scalar functions on M. By eliminating $[2\lambda(s_0 + r_0) - (n+1)\eta]$, we get

$$r_{00} = \tau \alpha^2, \tag{3.25}$$

where $\tau = \frac{\tau_2 - 4b^2 \tau_1}{(b^2 + 2)(4b^2(2n-1)) - 3(n+3)}$

By (3.23) or (3.24), it follows that

$$2\lambda(s_0 + r_0) - (n+1)\eta = 0. \tag{3.26}$$

By (3.25), we have $r_0 = \tau \beta$. Putting (3.25) and (3.26) in M_8 and M_9 yields

$$M_8 = [n(b^2 + 5) - 2(b^2 + 2)]\tau\alpha^2\beta^6, \tag{3.27}$$

$$M_9 = \left[\left[(6b^2 + 3n - 9)s_0 - 6r_0 \right] \beta - 3b^2(n + 4)r_{00}\tau \alpha^2 \right] \beta^4. \tag{3.28}$$

By putting (3.27) and (3.28) into (3.22), we have

$$[(6b^2+3n-9)s_0-6r_0]\beta^5-3b^2(n+4)r_{00}\tau\alpha^2\beta^4+n(b^2+5)-2(b^2+2)\tau\alpha^2\beta^6$$

$$-M_{10}\alpha^2 + M_{11}\alpha^4 + M_{12}\alpha^6 = 0. (3.29)$$

The only equations of (3.29) that do not contain α^2 is $[n(b^2 + 5) - 2(b^2 + 2)\tau\beta + (6b^2 + 3n - 9)s_0 - 6r_0]\beta^5$.

Since β^6 is not divisible by α^2 , then we have

$$[n(b^2+5)-2(b^2+2)\tau\beta^6+(6b^2+3n-9)s_0-6r_0]=0. (3.30)$$

By lemma 3.1, we always have $s_i = 0$. Then (3.30), reduces to following

$$[n(b^2+5)-2(b^2+2)]\tau\beta-6r_0=0. (3.31)$$

Thus

$$[n(b^2+5)-2(b^2+2)]\tau b_i - 6\tau b_i = 0. (3.32)$$

By multiplying (3.32) with b^i , we have

$$\tau = 0$$
.

Thus by (3.28), we get $\eta=0$ and then S=(n+1)cF. By (3.25), we get $r_{ij}=0$. Therefore lemma 3.1, implies that S=0. This completes the proof.

Proof of Theorem 1.1: Let F be an isotropic Berwald metric (1.3) with almost isotropic flag curvature (1.1). In [22], it is proved that every isotropic Berwald metric (1.3) has isotropic S-curvature (1.2).

Conversely, suppose that F is of isotropic S-curvature (1.2) with scalar flag curvature K. In [13], it is showed that every Finsler metric of isotropic S-curvature (1.2) has almost isotropic flag curvature (1.1). Now, we are going to prove that F is a isotropic Berwald metric. In [6], it is proved that F is an isotropic Berwald metric (1.3) if and only if it is a Douglas metric with isotropic mean Berwald curvature (2.1). On the other hand, every Finsler metric of isotropic S-curvature (1.2) has isotropic mean Berwald curvature (2.1). Thus for completing the proof, we must show that F is a Douglas metric. By proposition 3.2, we have S = 0. Therefore by theorem 1.1 in [13], F must be of isotropic flag curvature $K = \sigma(x)$. By proposition 3.2, β is a Killing 1-form with constant length with respect to α , that is, $r_{ij} = s_i = 0$. Then (3.9), (3.10) and (3.11) reduce to

$$G^i - \bar{G}^i = \alpha Q s_0^i, \qquad J_i = -\frac{\Phi s_{i0}}{2\alpha\Lambda}, \quad \bar{J} = 0.$$

By (3.8), we get

$$I_i b^i \coloneqq -\frac{\Phi(\varphi - s\varphi')}{2\Delta F}(b^2 - s^2).$$

Now we consider two cases:

Case I: $dimM \ge 3$. In this case, by Schur lemma F has constant flag curvature and (3.6) holds, the equation (3.16) reduces to following

$$\frac{\phi s_{l0}}{2\Delta\alpha} a^{ik} s_{k0} + \frac{\phi s_{l0}}{2\Delta\alpha} \left(sQ s_0^l + Q' s_0^l (b^2 - s^2) \right) - KF \frac{\phi}{2\Delta} \left(\varphi - s\varphi' \right) (b^2 - s^2) = 0.$$
 (3.33)

By assumption $\Phi \neq 0$. Thus by (3.32), we get

$$s_{i0}s_0^i + s_{l0}(\alpha Q s_0^l)_i b^i - KF\alpha (\varphi - s\varphi')(b^2 - s^2) = 0.$$
 (3.34)

The following holds

$$(\alpha Q s_0^l)_i b^i = s Q s_0^i + Q' s_0^i (b^2 - s^2) = 0.$$

Then (3.34) can be rewritten as follows

$$s_{i0}s_0^i \Delta - K\alpha^2 \varphi(\varphi - s\varphi')(b^2 - s^2) = 0.$$
 (3.35)

By (3.6), (3.18) and (3.35), we obtain

$$\left[1 + \frac{s^2 + 1}{s - 2} - \frac{2(b^2 - s^2)(-1 + s + s^2)}{s^2(s - 2)^2}\right] s_{i0} s_0^i - K\alpha^2 \left[\frac{(-1 + s + s^2)(s - 2)}{s^2}(b^2 - s^2)\right] = 0.$$
 (3.36)

Multiplying (3.36) with $-s^2(s-2)^2\alpha^5$ yields

$$A + \alpha B = 0$$

where

$$\begin{split} A &= -K20b^2\beta\alpha^6 + \left(5K\beta^3b^2 + 2b^2\beta s_{i0}s_0^i + 20K\beta^3\right)\alpha^4 + \left(\beta^3 s_{i0}s_0^i - 5K\beta^5 + K\beta^5b^2\right)\alpha^2 \\ &- K\beta^7 - s_{i0}s_0^i\beta^5 \\ B &= 8Kb^2\alpha^6 + \left(10Kb^2\beta^2 - 8K\beta^2 - 2s_{i0}s_0^ib^2\right)\alpha^4 + \left(-5Kb^2\beta^4 + 2s_{i0}s_0^ib^2\beta^2 - 10K\beta^4\right)\alpha^2 \\ &+ \left(5K\beta^6 - s_{i0}s_0^i\beta^4\right). \end{split}$$

Obviously, we have A = 0 and B = 0.

If A = 0 and the fact that β^7 is not divisible by α^2 , we get K = 0. Therefore (3.36) reduces to following

$$s_{i0}s_0^i = a_{ii}s_0^j s_0^i = 0.$$

Because of positive-definiteness of the Riemannian metric α , we have $s_{i0}=0$, i.e., β is closed. By $r_{00}=0$ and $s_0=0$, it follows that β is parallel with respect to α . Then $F=\frac{\alpha^2}{\alpha-\beta}+\beta$ is a Berwald metric. Hence F must be locally Minkowskian.

Case II: Let $\dim M = 2$. Suppose that F has isotropic Berwald curvature (1.3). In [6], it is proved that every isotropic Berwald metric [3] has isotropic S-curvature, S = (n + 1)cF.

By proposition 3.2, c = 0. Then by [3], F reduces to a Berwald metric. Since F is non-Riemannian, then by Szabo's rigidity theorem for Berwald surface (see [2] page 278), F must be locally Minkowskian.

References

- [1] S. Basco and M. Matsumoto, On Finsler spaces of Douglas type, A gen- eralization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
- [2] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
- [3] X. Chun-Huan and X. Cheng, On a class of weakly-Berwald (α , β)- metrics, J. Math. Res. Expos. 29(2009), 227-236.
- [4] X. Cheng and Z. Shen, Randers metric with special curvature properties, Osaka. J. Math. 40(2003), 87-101.
- [5] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S- curvature, Israel. J. Math. 169(2009), 317-340.
- [6] X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512.
- [7] X. Cheng, H. Wang and M. Wang, (α, β) -metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen. 72(2008), 475-485.
- [8] N. Cui, On the S-curvature of some (α, β)-metrics, Acta. Math. Scien- tia, Series: A. 26(7) (2006), 1047-1056.
- [9] I.Y. Lee and M.H. Lee, On weakly-Berwald spaces of special (α, β) metrics, Bull. Korean Math. Soc. 43(2) (2006), 425-441.
- [10] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992), 43-84.
- [11] S. K. Narasimhamurthy, A.R. Kavyashree and Y. Mallikarjun, Curvature properties of homogeneous matsumato metric, in press.
- [12] B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag cur-vature with special non-Riemannian curvature properties, Geom. Dedi-cata. 131(2008), 87-97.

- [13] H. S. Park and E. S. Choi, On a Finsler spaces with a special (α, β) metric, Tensor, N. S. 56(1995), 142-148.
- [14] H. S. Park and E. S. Choi, Finsler spaces with an approximate Mat- sumoto metric of Douglas type, Comm. Korean. Math. Soc. 14(1999), 535-544.
- [15] H. S. Park and E. S. Choi, Finsler spaces with the second approximate Matsumoto metric, Bull. Korean. Math. Soc. 39(1) (2002), 153-163.