

Volume 12, Issue 2

Published online: July 10, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

The Banach Fixed Point Theorem for mappings in general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -spaces

Andrzej Mach

Abstract.

The paper includes theorem giving the sufficient condition to the existence of a fixed point for mappings in arbitrary set equipped with the family of binary reflexive and symmetric relations satisfying some conditions. The result obtained is a generalization of the main theorem from [7].

Introduction

Let (X,d) be a complete metric space. The contraction ([1], [2]) is a mapping $F: X \to X$ such that there exists $L \in]0,1[$ for which $d(Fx,Fy) \leq L \cdot d(x,y),$ for all $x,y \in X$. The well known Banach Fixed Point Theorem formulated for (X,d) ([1], [2]) reads as follows. If $F: X \to X$ is a contraction, then there exists exactly one fixed point, i.e. the solution of Fx = x. The Banach Fixed Point Theorem is an important tool in mathematical analysis and has been investigated under various conditions and developed in different directions ([3], [4], [5], [6], [8], [9], [10]). In the paper [7] it was defined the notion of (\mathcal{R}, φ) -space with Banach Fixed Point Theorem in it. In the presented paper is given a generalization of definitions and the main theorem from [7].

1 Notations, definitions, lemma

Let X, T be the arbitrary sets, $\varphi : T \to T$ be a fixed bijection and R_0 be an equivalence relation in X, so $R_0 \supseteq I := \{(x,x) : x \in X\}$. Moreover, let $\mathcal{R} = \{R_t\}_{t \in T}$ be a family of binary reflexive and symmetric relations in X forming a chain such that $\bigcup_{t \in T} R_t = X \times X$, $\bigcap_{t \in T} R_t = R_0$. Additionally we suppose that the family \mathcal{R} satisfies the following condition of φ -transitivity

$$\forall t \in T \ \forall x, y, z \in X : \ \left[(x, y) \in R_t, (y, z) \in R_t \Rightarrow \ (x, z) \in R_{\varphi(t)} \right].$$

The examples of such families are given in the next part of the paper.

¹2000 Mathematics Subject Classification: Primary 47H10; Secondary 54H25, 55M20. Key words and phrases: fixed point, binary relation, φ -transitivity, contraction, Banach fixed point theorem, (\mathcal{R}, φ) -space, general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space, $\langle \mathcal{R}, R_0 \rangle$ -contraction.

Definition 1.1. A set X with the family of relations described above will be called in the sequel by general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space.

Below is defined the notion of convergent sequence in $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space X.

Definition 1.2. We say that a sequence $(x_n)_{n\in\mathbb{N}}$ of elements of general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ space X is \mathcal{R} -convergent to $x_0 \in X$ in X, which is denoted by $\lim_{n\to\infty} x_n \stackrel{\mathcal{R}}{=} x_0$ (or $x_n \stackrel{\mathcal{R}}{\to} x_0$), if and only if

$$\forall t \in T \ \exists N(t) \in \mathbb{N} \ \forall n \ge N(t) : \ (x_n, x_0) \in R_t.$$

In this case x_0 will be called \mathcal{R} -limit.

Lemma 1.3. Each sequence in general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space X has at most one \mathcal{R} -limit with respect to R_0 , i.e. for every such limits x_0, x'_0 we have $(x_0, x'_0) \in R_0$.

Proof. Let us suppose "ad absurdum" that a sequence $(x_n)_{n\in\mathbb{N}}$ has two distinct \mathcal{R} -limits $x_0 \neq x_0'$ and $(x_0, x_0') \notin R_0$. Since $\bigcap_{t\in T} R_t = R_0$ then there exists $\bar{t} \in T$ for which $(x_0, x_0') \notin R_{\bar{t}}$. Let us take $t_0 \in T$ such that $\varphi(t_0) = \bar{t}$. By \mathcal{R} -convergence of the sequence $(x_n)_{n\in\mathbb{N}}$ to x_0 and to x_0' we have $(x_n, x_0) \in R_{t_0}$ and $(x_n, x_0') \in R_{t_0}$, for sufficiently large $n \in \mathbb{N}$. Hence, by supposition of φ -transitivity, we get the contradiction $(x_0, x_0') \in R_{\varphi(t_0)} = R_{\bar{t}}$.

Definition 1.4. A sequence $(x_n)_{n\in\mathbb{N}}$ of elements of general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space X is \mathcal{R} -Cauchy sequence if and only if

$$\forall t \in T \ \exists N(t) \in \mathbb{N} \ \forall n, m \ge N(t) : \ (x_n, x_m) \in R_t.$$

Definition 1.5. A general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space X is called *complete* if and only if every \mathcal{R} -Cauchy sequence is \mathcal{R} -convergent in X.

The next definition are the generalization of definitions from [7].

Definition 1.6. For general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space X, a mapping $f: X \to X$ is called $\langle \mathcal{R}, R_0 \rangle$ -contraction if the following condition is satisfied for all $x, y \in X$

$$\forall t \in T : \left[(x, y) \in R_t \Rightarrow \left(\exists \bar{t} \in T : (f(x), f(y)) \in R_{\bar{t}} \text{ and } R_{\bar{t}} \subsetneq R_t \right) \right].$$

and

if
$$(x, y) \in R_0$$
 then $(f(x), f(y)) \in R_0$.

Definition 1.7. A general $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space X is called *strong* if and only if the intersection of every sequence $(R_{t_n})_{n \in \mathbb{N}}$ of shrinking relations equals R_0 and

$$\forall t_1, t_2 \in T: R_{t_1} \subsetneq R_{t_2} \Rightarrow R_{\varphi(t_1)} \subsetneq R_{\varphi(t_2)}$$

$$\tag{1.1}$$

and for every $n \in \mathbb{N}, n \geq 3$, for all $t_1, t_2, ..., t_{n-1} \in T$ if $R_{t_{n-1}} \subsetneq R_{t_{n-2}} \subsetneq ... \subsetneq R_{t_1}$ then

$$(x_1, x_2) \in R_{t_1}, (x_2, x_3) \in R_{t_2}, ..., (x_{n-1}, x_n) \in R_{t_{n-1}} \implies (x_1, x_n) \in R_{\varphi(t_1)}$$
 (1.2)

for all $x_1, ..., x_n \in X$.

Definition 1.8. A point x^* is called R_0 -fixed point of f if $(x^*, f(x^*)) \in R_0$ (Evidently if $R_0 = I$ then I-fixed point is the classical fixed point of f).

2 Main theorem

Theorem 2.1. Let X be a general, strong and complete $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space and let the mapping $f: X \to X$ be an $\langle \mathcal{R}, R_0 \rangle$ -contraction. The above suppositions imply the existing of exactly one (with respect to R_0) R_0 -fixed point x^* of f, so $(x^*, f(x^*)) \in R_0$.

Proof. Choose $x_0 \in X$. Define the iterative sequence

$$x_n = f(x_{n-1}), \text{ for } n \in \mathbb{N},$$

so $x_1 = f(x_0), x_2 = f(x_1) = f^2(x_0), \dots, x_{n-1} = f(x_{n-2}) = f^{n-1}(x_0), x_n = f(x_{n-1}) = f^n(x_0), \dots$. Let $n, m \in \mathbb{N}, n < m$. We have

$$(x_n, x_m) = (f^n(x_0), f^m(x_0)).$$

Let us assume that $(x_0, x_1) \in R_{t_0}$. Since the mapping f is $\langle \mathcal{R}, R_0 \rangle$ -contraction then we have

$$(x_1, x_2) = (f(x_0), f(x_1)) \in R_{t_1} \text{ and } R_{t_1} \subsetneq R_{t_0},$$

$$(x_2, x_3) = (f(x_1), f(x_2)) \in R_{t_2}$$
 and $R_{t_2} \subsetneq R_{t_1}$.

Continuing

$$(x_{n-1}, x_n) = (f(x_{n-2}), f(x_{n-1})) \in R_{t_{n-1}} \text{ and } R_{t_{n-1}} \subsetneq R_{t_{n-2}},$$

$$(x_n,x_{n+1})=(f(x_{n-1}),f(x_n))\in R_{t_n}\text{ and }R_{t_n}\subsetneq R_{t_{n-1}},$$

...

$$(x_{m-1}, x_m) = (f(x_{m-2}), f(x_{m-1})) \in R_{t_{m-1}}$$
 and $R_{t_{m-1}} \subsetneq R_{t_{m-2}}$,

From the above by (1.2)

$$(x_n, x_m) \in R_{\varphi(t_n)},$$

which means -by (1.1)- that $(x_n)_{n\in\mathbb{N}}$ is an \mathcal{R} -Cauchy sequence. Let x^* be its \mathcal{R} -limit. We have

$$\forall t \in T : (x_n, x^*) = (f(x_{n-1}), x^*) \in R_t$$
, for all sufficiently large $n \in \mathbb{N}$.

Similarly,

$$\forall t \in T : (x_{n-1}, x^*) \in R_t$$
, for all sufficiently large $n \in \mathbb{N}$

and since f is a $\langle \mathcal{R}, R_0 \rangle$ -contraction then we have also

$$\forall t \in T : (f(x_{n-1}), f(x^*)) \in R_t$$
, for all sufficiently large $n \in \mathbb{N}$.

From the above, by φ -transitivity

$$\forall t \in T: \ (x^*, f(x^*)) \in R_{\varphi(t)},$$

and considering that $\bigcap_{t\in T} R_{\varphi(t)} = R_0$ we get $f(x^*)R_0x^*$. Now, we will prove that this is the only one (with respect to R_0) R_0 -fixed point. Let us suppose that $f(x_1^*)R_0x_1^*$, $f(x_2^*)R_0x_2^*$. By definition 1.6, we get easily

$$(x_1^*, f^n(x_1^*)) \in R_0$$
, for all $n \in \mathbb{N}$

and

$$(x_2^*, f^n(x_2^*)) \in R_0$$
, for all $n \in \mathbb{N}$.

Let $t_{s_1} \in T$ be such as $(x_1^*, x_2^*) \in R_{t_{s_1}}$. By the same definition 1.6 we get $(f(x_1^*), f(x_2^*)) \in R_{t_{s_2}}$ and $R_{t_{s_2}} \subsetneq R_{t_{s_1}}$, so

$$\forall n \in \mathbb{N} \ (f^n(x_1^*), f^n(x_2^*)) \in R_{t_{s_n}} \subsetneq R_{t_{s_{n-1}}}.$$

From the above $\forall n \in \mathbb{N} \ (x_2^*, f^n(x_1^*)) \in R_{\varphi(t_{s_n})}$ and

$$\forall n \in \mathbb{N} \ (x_1^*, x_2^*) \in R_{\varphi^2(t_{s_n})} \ \Rightarrow \ (x_1^*, x_2^*) \in R_0,$$

and the proof of theorem is finished.

3 Examples, Remark, Problem

Example 3.1. Let $X := \mathbb{R}$. Define $T := \mathbb{R}_+$ and $\varphi : T \to T$, $\varphi(t) := 2t$. Let $A := \{(2z, 2z + 1), (2z + 1, 2z) : z \in \mathbb{Z}\}, R_0 := I \cup A$ and

$$\forall t \in T: \ R_t := \{(x, y) \in X^2: \ |x - y| \le t\} \cup A.$$
 (3.1)

Then \mathbb{R} forms the complete $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -space.

Example 3.2. Let $X := \mathbb{R}$, $T := \{..., 2^n, ..., 64, 32, 16, 8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ..., \frac{1}{2^n}, ...\}$. We put $\varphi : T \to T$ as $\varphi(t) := 2t$. The set A and the relation R_0 are the same as in example 3.1. Let us define the family $\mathcal{R} = \{R_t\}_{t \in T}$ of reflexive and symmetric binary relations in X as in (3.1). The set X forms the complete and strong ($\langle \mathcal{R}, R_0 \rangle, \varphi$)-space.

Example 3.3. Let $X := \{f : \mathbb{R} \to \mathbb{R}\}$ be the set of functions such that f(x) = 0 for $x \in U$, where U is a neighborhood of zero. Let

$$T:=\bigg\{2^{10},2^{9},...,64,32,16,8,4,2,1,\frac{1}{2},\frac{1}{4},\frac{1}{8},...,\frac{1}{2^{9}},\frac{1}{2^{10}},\frac{1}{2^{11}},...\bigg\}.$$

We put $\varphi: T \to T$ as $\varphi(t) := t$. Let us define the family $\mathcal{R} = \{R_t\}_{t \in T}$ of binary reflexive and symmetric relations in X as follows

$$\forall t \in T : R_t := \{ (f, g) \in X^2 : \forall x \in [-t, t] \ f(x) = g(x) \}.$$

Moreover

$$R_0 := R_{2^{10}} = \left\{ (f, g) \in X^2 : \ \forall x \in \left[-2^{10}, 2^{10} \right] \ f(x) = g(x) \right\}.$$

The set X forms complete and strong ($\langle \mathcal{R}, R_0 \rangle, \varphi$)-space. One can observe that the mapping $\Phi: X \to X$ defined as follows

$$\Phi(f)(x) := \begin{cases} f\left(\frac{1}{2}x\right), & \text{for } x \in [-2^{10}, 2^{10}], \\ f(x), & \text{for } x \notin [-2^{10}, 2^{10}]. \end{cases}$$

is an $\langle \mathcal{R}, R_0 \rangle$ -contraction. One can observe easily that every function of the form

$$f(x) = \begin{cases} 0, & \text{for } x \in [-2^{10}, 2^{10}], \\ g(x), & \text{for } x \notin [-2^{10}, 2^{10}]. \end{cases}$$

where g(x) is an arbitrary function, is the fixed point of Φ . Evidently, for arbitrary two such functions f_1, f_2 we have $(f_1, f_2) \in R_0$.

Remark 3.4. One can observe easily that if we put $R_0 := I$ in theorem 2.1 we get the main theorem from [7].

Problem 3.5. Let me suggest to the readers as the problem. Find interesting examples of $(\langle \mathcal{R}, R_0 \rangle, \varphi)$ -spaces, $\langle \mathcal{R}, R_0 \rangle$ -contractions and other applications of the proved theorem.

References

- [1] S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math. 3 (1922), 133-181.
- [2] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Matematy-czne, Tom 61 vol. I, PWN- Polish Scientific Publishers (1982).
- [3] S. K. Chatterjea, Fixed-points theorems, C. R. Acad. Bulgare Sci., 25(1972), 727-730.
- [4] J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math., 25 (1994), 925-937.
- [5] K. Jha, R. P. Pant, S. L. Singh, Common fixed points for comapatible mappings in metric spaces, Radovi Matematički, vol. 12 (2003), 107-114.
- [6] R. Kannan, Some results on fixed points II, Am. Math. Mon., 76(4) (1969), 405-408.
- [7] A. Mach, A generalization of Banach Fixed Point Theorem for mappings in (R, φ)-spaces, International Mathematical Forum, Vol. 10, 2015, no. 12, 579-585.

- [8] A. Mach, Some theorem on common fixed points and points of coincidence for mappings in metric space, Journal of Progressive Research in Mathematics, Vol.7 No 1, (2016), 892-898.
- [9] A. Mach, Chaterjea type condition for existence of common fixed point for 2n + 1 mappings in metric space, Journal of Progressive Research in Mathematics, Vol.7 No 4, (2016), 1102-1108.
- [10] R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type fixed point theorem, Indian J. Pure Appl. Math., 32(6) (2001), 779-787.

Faculty of Engineering and Economics
Department of Informatics
The State Higher School of Vocat. Education
Narutowicza 9
06-400 Ciechanów, POLAND
e-mail: andrzej.mach@pwszciechanow.edu.pl