SCITECH RESEARCH ORGANISATION

Volume 12, Issue 1

Published online: June 01, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On McShane integrals of interval-valued functions and fuzzy-number-valued functions on Time Scales

Muawya Elsheikh Hamid ^{a,b*}, Luoshan Xu ^a, Alshaikh Hamed Elmuiz ^b ^a School of Mathematical Science, Yangzhou University, Yangzhou 225002, China ^b School of Management, Ahfad University for Women, Omdurman, Sudan

Abstract. In 2016, Hamid et al. [1] introduced the thought of the *AP*-Henstock integrals of intervalvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the McShane delta integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.

Keywords: Fuzzy numbers; McShane delta integral of interval-valued functions; McShane delta integral of fuzzy-number-valued functions.

1 Introduction

The calculus on time scales was introduced for the firrst time in 1988 by Hilger [2] to unify the theory of difference equations and the theory of differential equations. The Henstock delta integral on time scales was introduced by Allan Peterson and Bevan Thompson [3] in 2006. In 2016, Hamid and Elmuiz [4] introduced the concept of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discussed a number of their properties.

In this paper, we introduce the notion of the McShane delta integrals of interval-valued functions and fuzzynumber-valued functions and investigate some of their properties.

The paper is organized as follows, in Section 2 we have a tendency to provide the preliminary terminology used in this paper. Section 3 is dedicated to discussing the McShane delta integral of interval-valued functions. In Section 4, we present the McShane delta integral of fuzzy-number-valued functions. The last section provides Conclusions.

2 Preliminaries

A time scale **T** is a nonempty closed subset of real number \mathbb{R} with the subspace topology inherited from the standard topology of \mathbb{R} . For $t \in \mathbf{T}$ we define the forward jump operator $\sigma(t) = \inf\{s \in \mathbf{T} : s > t\}$ where $\inf \phi = \sup\{\mathbf{T}\}$, while the backward jump operator $\rho(t) = \sup\{s \in \mathbf{T} : s < t\}$ where $\sup \phi = \inf\{\mathbf{T}\}$. If $\sigma(t) > t$, we say that t is right-scattered, while if $\rho(t) < t$, we say that t is left-scattered. If $\sigma(t) = t$, we say that t is right-dense, while if $\rho(t) = t$, we say that t is left-dense. The forward graininess function $\mu(t)$ of $t \in \mathbf{T}$ is defined by $\mu(t) = \sigma(t) - t$, while the backward graininess function $\nu(t)$ of $t \in \mathbf{T}$ is defined by $\nu(t) = t - \rho(t)$. For $a, b \in \mathbf{T}$ we denote the closed interval $[a, b]_{\mathbf{T}} = \{t \in \mathbf{T} : a \le t \le b\}$.

Throughout this paper, all considered intervals will be intervals in **T**. A division P of $[a, b]_{\mathbf{T}}$ is a finite collection of interval-point pairs $\{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$, where $\{a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b\}$ and $\xi_i \in [a, b]_{\mathbf{T}}$ for $i = 1, 2, \cdots, n$. By $\Delta t_i = t_i - t_{i-1}$ we denote the length of *i*th subinterval in the division P. $\delta(\xi) = (\delta_L(\xi), \delta_R(\xi))$ is a Δ - gauge for $[a, b]_{\mathbf{T}}$ provided $\delta_L(\xi) > 0$ on $(a, b]_{\mathbf{T}}, \delta_R(\xi) > 0$ on $[a, b)_{\mathbf{T}}, \delta_L(a) \ge 0, \delta_R(b) \ge 0$ and $\delta_R(b) \ge \mu(\xi)$

Volume 12, Issue 1 available at <u>www.scitecresearch.com/journals/index.php/jprm</u>

^{*}Corresponding author. Tel.: +8613218977118. E-mail address: mowia-84@hotmail.com, muawya.ebrahim@gmail.com (M.E. Hamid), luoshanxu@hotmail.com (L.S Xu) and almoizalsheikh1@windowslive.com (A.H Elmuiz).

for all $\xi \in [a, b]_{\mathbf{T}}$. We say that $P = \{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$ is a δ -fine McShane division of $[a, b]_{\mathbf{T}}$ if $[t_{i-1}, t_i]_{\mathbf{T}} \subset (\xi_i - \delta_L(\xi_i), \xi_i + \delta_R(\xi_i))_{\mathbf{T}}$ and $\xi_i \in [a, b]_{\mathbf{T}}$ for all $i = 1, 2, \cdots, n$.

Definition 2.1 [5] A real-valued function $f : [a, b] \to \mathbb{R}$ is said to be McShane (M) integrable to B on [a, b] if for every $\varepsilon > 0$, there is a function $\delta(t) > 0$ such that for any δ -fine McShane division $P = \{[u_i, v_i]; \xi_i\}_{i=1}^n$ of [a, b], we have

$$\left|\sum_{i=1}^{n} f(\xi_i)(v_i - u_i) - B\right| < \varepsilon,$$

$$(2.1)$$

we write $(M)\int\limits_a^b f(t)\mathrm{d}t=B$, and $f\in M[a,b].$

Definition 2.2 [6] A function $f : [a, b]_{\mathbf{T}} \to \mathbb{R}$ is McShane delta integrable (McShane Δ -integrable) on $[a, b]_{\mathbf{T}}$ if there exists a number $A \in \mathbb{R}$ such that for each $\varepsilon > 0$ there is a Δ -gauge, δ , on $[a, b]_{\mathbf{T}}$ such that

$$\left|\sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - A\right| < \varepsilon$$
(2.2)

for each δ -fine McShane division $P = \{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$ of $[a, b]_{\mathbf{T}}$. A is called McShane Δ -integral of f on $[a, b]_{\mathbf{T}}$, and we write $A = (M) \int_{-\infty}^{b} f(t) \Delta t$.

Theorem 2.1 If f(t) and g(t) are McShane Δ -integrable on $[a, b]_{\mathbf{T}}$ and $f(t) \leq g(t)$ almost everywhere on $[a, b]_{\mathbf{T}}$, then

$$(M)\int_{a}^{b} f(t)\Delta t \le (M)\int_{a}^{b} g(t)\Delta t.$$
(2.3)

Proof The proof follows easily from the same argument in Theorem 3.6 [5].

3 McShane delta integral of interval-valued functions on time scales

In this section, we introduce the notion of the McShane delta integral of interval-valued functions on time scales and investigate some of their properties.

Definition 3.1 [7] Let $I_{\mathbb{R}} = \{I = [I^-, I^+] : I \text{ is the closed bounded interval on the real line } \mathbb{R}\}.$

For $A, B \in I_{\mathbb{R}}$, we define $A \leq B$ iff $A^- \leq B^-$ and $A^+ \leq B^+$, A+B = C iff $C^- = A^- + B^-$ and $C^+ = A^+ + B^+$, and $A \cdot B = \{a \cdot b : a \in A, b \in B\}$, where

$$(A \cdot B)^{-} = \min\{A^{-} \cdot B^{-}, A^{-} \cdot B^{+}, A^{+} \cdot B^{-}, A^{+} \cdot B^{+}\}$$
(3.1)

 and

$$(A \cdot B)^{+} = \max\{A^{-} \cdot B^{-}, A^{-} \cdot B^{+}, A^{+} \cdot B^{-}, A^{+} \cdot B^{+}\}.$$
(3.2)

Define $d(A, B) = \max(|A^- - B^-|, |A^+ - B^+|)$ as the distance between intervals A and B.

Definition 3.2 [8] Let $F : [a, b] \to I_{\mathbb{R}}$ be an interval-valued function. $I_0 \in I_{\mathbb{R}}$, for every $\varepsilon > 0$ there is a $\delta(t) > 0$ such that for any δ -fine McShane division $P = \{([u_i, v_i], \xi_i)\}_{i=1}^n$, we have

$$d\Big(\sum_{i=1}^{n} F(\xi_i)(v_i - u_i), I_0\Big) < \varepsilon,$$
(3.3)

then F(t) is said to be McShane integrable over [a, b] and write $(IM) \int_{a}^{b} F(t) dt = I_0$. For brevity, we write $F(t) \in IM[a, b]$.

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Definition 3.3 A interval-valued function $F : [a, b]_{\mathbf{T}} \to I_{\mathbb{R}}$ is McShane delta integrable to $I_0 \in I_{\mathbb{R}}$ on $[a, b]_{\mathbf{T}}$ if for every $\varepsilon > 0$ there exists a Δ -gauge, δ , on $[a, b]_{\mathbf{T}}$ such that

$$d\big(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0\big) < \varepsilon,$$
(3.4)

whenever $P = \{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$ is a δ -fine McShane division of $[a, b]_{\mathbf{T}}$. We write $(IM) \int_a^o F(t) \Delta t = I_0$ and $F \in IM[a, b]_{\mathbf{T}}$.

Remark 3.1 If $F(t) \in IM[a, b]_{\mathbf{T}}$, then the integral value is unique.

Theorem 3.1 An interval-valued function $F : [a, b]_{\mathbf{T}} \to I_{\mathbb{R}}$ is McShane delta integrable on $[a, b]_{\mathbf{T}}$ if and only if $F^-, F^+ \in M[a, b]_{\mathbf{T}}$ and

$$(IM)\int_{a}^{b}F(t)\Delta t = \left[(M)\int_{a}^{b}F^{-}(t)\Delta t, (M)\int_{a}^{b}F^{+}(t)\Delta t\right].$$
(3.5)

Proof Let $F \in IM[a, b]_{\mathbf{T}}$, then there exists an interval $I_0 = [I_0^-, I_0^+]$ with the property that for any $\varepsilon > 0$ there exists a Δ -gauge, δ , on $[a, b]_{\mathbf{T}}$ such that

$$d\Big(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0\Big) < \varepsilon,$$
(3.6)

whenever $P = \{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$ is a δ -fine McShane division of $[a, b]_{\mathbf{T}}$.

Since
$$t_i - t_{i-1} \ge 0$$
 for $1 \le i \le n$, we have

$$d\left(\sum_{i=1}^n F(\xi_i)(t_i - t_{i-1}), I_0\right)$$

$$= \max\left(\left|\left[\sum_{i=1}^n F(\xi_i)(t_i - t_{i-1})\right]^- - I_0^-\right|, \left|\left[\sum_{i=1}^n F(\xi_i)(t_i - t_{i-1})\right]^+ - I_0^+\right|\right) < \varepsilon.$$

$$= \max\left(\left|\sum_{i=1}^n F^-(\xi_i)(t_i - t_{i-1}) - I_0^-\right|, \left|\sum_{i=1}^n F^+(\xi_i)(t_i - t_{i-1}) - I_0^+\right|\right) < \varepsilon.$$
(3.7)

Hence $\left|\sum_{i=1}^{n} F^{-}(\xi_{i})(t_{i}-t_{i-1})-I_{0}^{-}\right| < \varepsilon, \quad \left|\sum_{i=1}^{n} F^{+}(\xi_{i})(t_{i}-t_{i-1})-I_{0}^{+}\right| < \varepsilon$ whenever $P = \{([t_{i-1},t_{i}]_{\mathbf{T}};\xi_{i})\}_{i=1}^{n}$ is a δ -fine McShane division of $[a,b]_{\mathbf{T}}$. Thus $F^{-}, F^{+} \in M[a,b]_{\mathbf{T}}$ and

$$(IM) \int_{a}^{b} F(t)\Delta t = \left[(M) \int_{a}^{b} F^{-}(t)\Delta t, (M) \int_{a}^{b} F^{+}(t)\Delta t \right].$$
(3.8)

Conversely, let $F^-, F^+ \in M[a, b]_{\mathbf{T}}$. Then there exists $M_1, M_2 \in \mathbb{R}$ with the property that given $\varepsilon > 0$ there exists a Δ -gauge, δ , on $[a, b]_{\mathbf{T}}$ such that

$$\left|\sum_{i=1}^{n} F^{-}(\xi_{i})(t_{i}-t_{i-1}) - M_{1}\right| < \varepsilon, \quad \left|\sum_{i=1}^{n} F^{+}(\xi_{i})(t_{i}-t_{i-1}) - M_{2}\right| < \varepsilon$$

whenever $P = \{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$ is a δ -fine McShane division of $[a, b]_{\mathbf{T}}$. We define $I_0 = [M_1, M_2]$, then if $P = \{([t_{i-1}, t_i]_{\mathbf{T}}; \xi_i)\}_{i=1}^n$ is a δ -fine McShane division of $[a, b]_{\mathbf{T}}$, we have

$$d(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0) < \varepsilon.$$
(3.9)

Hence $F : [a, b]_{\mathbf{T}} \to I_{\mathbb{R}}$ is McShane delta integrable on $[a, b]_{\mathbf{T}}$.

Theorem 3.2 If $F(t), G(t) \in IM[a, b]_{\mathbf{T}}$ and $\beta, \gamma \in \mathbb{R}$. Then $[\beta F(t) + \gamma G(t)] \in IM[a, b]_{\mathbf{T}}$ and

$$(IM)\int_{a}^{b}(\beta F(t) + \gamma G(t))\Delta(t) = \beta(IM)\int_{a}^{b}F(t)\Delta(t) + \gamma(IM)\int_{a}^{b}G(t)\Delta(t).$$
(3.10)

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Proof If $F(t), G(t) \in IM[a, b]_{\mathbf{T}}$, then $F^{-}(t), F^{+}(t), G^{-}(t), G^{+}(t) \in M[a, b]_{\mathbf{T}}$ by Theorem 3.1. Hence $\beta F^{-}(t) + \gamma G^{-}(t), \beta F^{-}(t) + \gamma G^{+}(t), \beta F^{+}(t) + \gamma G^{-}(t), \beta F^{+}(t) + \gamma G^{+}(t) \in M[a, b]_{\mathbf{T}}$.

(1) If $\beta > 0$ and $\gamma > 0$, then

$$\begin{split} (M) \int_{a}^{b} (\beta F(t) + \gamma G(t))^{-} \Delta t &= (M) \int_{a}^{b} (\beta F^{-}(t) + \gamma G^{-}(t)) \Delta t \\ &= \beta (M) \int_{a}^{b} F^{-}(t) \Delta t + \gamma (M) \int_{a}^{b} G^{-}(t) \Delta t \\ &= \beta \left((IM) \int_{a}^{b} F(t) \Delta t \right)^{-} + \gamma \left((IM) \int_{a}^{b} G(t) \Delta t \right)^{-} \\ &= \left(\beta (IM) \int_{a}^{b} F(t) \Delta t + \gamma (IM) \int_{a}^{b} G(t) \Delta t \right)^{-}. \end{split}$$

(2) If $\beta < 0$ and $\gamma < 0$, then

$$(M) \int_{a}^{b} (\beta F(t) + \gamma G(t))^{-} \Delta t = (M) \int_{a}^{b} (\beta F^{+}(t) + \gamma G^{+}(t)) \Delta t$$
$$= \beta(M) \int_{a}^{b} F^{+}(t) \Delta t + \gamma(M) \int_{a}^{b} G^{+}(t) \Delta t$$
$$= \beta \left((IM) \int_{a}^{b} F(t) \Delta t \right)^{+} + \gamma \left((IM) \int_{a}^{b} G(t) \Delta t \right)^{+}$$
$$= \left(\beta(IM) \int_{a}^{b} F(t) \Delta t + \gamma(IM) \int_{a}^{b} G(t) \Delta t \right)^{-}.$$

(3) If $\beta > 0$ and $\gamma < 0$, (or $\beta < 0$ and $\gamma > 0$), then

$$(M) \int_{a}^{b} (\beta F(t) + \gamma G(t))^{-} \Delta t = (M) \int_{a}^{b} (\beta F^{-}(t) + \gamma G^{+}(t)) \Delta t$$
$$= \beta(M) \int_{a}^{b} F^{-}(t) \Delta t + \gamma(M) \int_{a}^{b} G^{+}(t) \Delta t$$
$$= \beta \left((IM) \int_{a}^{b} F(t) \Delta t \right)^{-} + \gamma \left((IM) \int_{a}^{b} G(t) \Delta t \right)^{+}$$
$$= \left(\beta(IM) \int_{a}^{b} F(t) \Delta t + \gamma(IM) \int_{a}^{b} G(t) \Delta t \right)^{-}.$$

Similarly, for four cases above we have

$$(M)\int_{a}^{b}(\beta F(t) + \gamma G(t))^{+}\Delta t = \left(\beta(IM)\int_{a}^{b}F(t)\Delta t + \gamma(IM)\int_{a}^{b}G(t)\Delta t\right)^{+}.$$
(3.11)

Hence by Theorem 3.1 $\beta F(t) + \gamma G(t) \in IM[a,b]_{\mathbf{T}}$ and

$$(IM)\int_{a}^{b}(\beta F(t) + \gamma G(t))\Delta t = \beta(IM)\int_{a}^{b}F(t)\Delta t + \gamma(IM)\int_{a}^{b}G(t)\Delta t.$$
(3.12)

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Theorem 3.3 If $F(t) \in IM[a, c]_{\mathbf{T}}$ and $F(t) \in IM[c, b]_{\mathbf{T}}$, then $F(t) \in IM[a, b]_{\mathbf{T}}$ and

$$(IM)\int_{a}^{b}F(t)\Delta t = (IM)\int_{a}^{c}F(t)\Delta t + (IM)\int_{c}^{b}F(t)\Delta t.$$
(3.13)

Proof If $F(t) \in IM[a, c]_{\mathbf{T}}$ and $F(t) \in IM[c, b]_{\mathbf{T}}$, then by Theorem 3.1 $F^{-}(t)$, $F^{+}(t) \in M[a, c]_{\mathbf{T}}$ and $F^{-}(t)$, $F^{+}(t) \in M[c, b]_{\mathbf{T}}$. Hence $F^{-}(t)$, $F^{+}(t) \in M[a, b]_{\mathbf{T}}$ and

$$(M)\int_{a}^{b}F^{-}(t)\Delta t = (M)\int_{a}^{c}F^{-}(t)\Delta t + (M)\int_{c}^{b}F^{-}(t)\Delta t$$
$$= \left((IM)\int_{a}^{c}F(t)\Delta t + (IM)\int_{c}^{b}F(t)\Delta t\right)^{-}.$$

Similarly, $(M) \int_{a}^{b} F^{+}(t)\Delta t = \left((IM) \int_{a}^{c} F(t)\Delta t + (IM) \int_{c}^{b} F(t)\Delta t \right)^{+}$. Hence by Theorem 3.1 $F(t) \in IM[a,b]_{\mathbf{T}}$ and

$$(IM)\int_{a}^{b}F(t)\Delta t = (IM)\int_{a}^{c}F(t)\Delta t + (IM)\int_{c}^{b}F(t)\Delta t.$$
(3.14)

Theorem 3.4 If $F(t) \leq G(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $F(t), G(t) \in IM[a, b]_{\mathbf{T}}$, then

$$(IM)\int_{a}^{b}F(t)\Delta t \leq (IM)\int_{a}^{b}G(t)\Delta t.$$
(3.15)

Proof Let $F(t) \leq G(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $F(t), G(t) \in IM[a, b]_{\mathbf{T}}$. Then $F^-(t), F^+(t), G^-(t), G^+(t) \in M[a, b]_{\mathbf{T}}$ and $F^-(t) \leq G^-(t), F^+(t) \leq G^+(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$. By Theorem 2.1 $(M) \int_a^b F^-(t) \Delta t \leq (M) \int_a^b G^-(t) \Delta t$ and $(M) \int_a^b F^+(t) \Delta t \leq (M) \int_a^b G^+(t) \Delta t$. Hence

$$(IM)\int_{a}^{b}F(t)\Delta t \le (IM)\int_{a}^{b}G(t)\Delta t,$$
(3.16)

by Theorem 3.1.

Theorem 3.5 Let $F(t), G(t) \in IM[a, b]_{\mathbb{T}}$ and d(F(t), G(t)) is Lebesgue integrable on $[a, b]_{\mathbb{T}}$. Then

$$d((IM)\int_{a}^{b}F(t)\Delta t,(IM)\int_{a}^{b}G(t)\Delta t) \leq (L)\int_{a}^{b}d(F(t),G(t))\Delta t.$$
(3.17)

Proof By definition of distance,

$$\begin{split} &d\big((IM)\int_{a}^{b}F(t)\Delta t,(IM)\int_{a}^{b}G(t)\Delta t\big)\\ &=\max\Big(\Big|\Big((IM)\int_{a}^{b}F(t)\Delta t\Big)^{-}-\Big((IM)\int_{a}^{b}G(t)\Delta t\Big)^{-}\Big|,\Big|\Big((IM)\int_{a}^{b}F(t)\Delta t\Big)^{+}-\Big((IM)\int_{a}^{b}G(t)\Delta t\Big)^{+}\Big|\Big)\\ &=\max\Big(\Big|(M)\int_{a}^{b}\big(F^{-}(t)-G^{-}(t)\big)\Delta t\Big|,\Big|(M)\int_{a}^{b}\big(F^{+}(t)-G^{+}(t)\big)\Delta t\Big|\Big)\\ &\leq \max\Big((L)\int_{a}^{b}\Big|F^{-}(t)-G^{-}(t)\Big|\Delta t,(L)\int_{a}^{b}\Big|F^{+}(t)-G^{+}(t)\Big|\Delta t\Big) \end{split}$$

$$\leq (L) \int_{a}^{b} \max\left(\left|F^{-}(t) - G^{-}(t)\right| \Delta t, \left|F^{+}(t) - G^{+}(t)\right| \Delta t\right)$$
$$= (L) \int_{a}^{b} d\left(F(t), G(t)\right). \tag{3.18}$$

4 McShane delta integral of fuzzy-number-valued functions on time scales

This section introduces the notion of the McShane delta integral of fuzzy-number-valued functions and discusses some of their properties.

Definition 4.1 [9, 10, 11] Let $\tilde{A} \in F(\mathbb{R})$ be a fuzzy subset on \mathbb{R} . If for any $\lambda \in [0, 1]$, $A_{\lambda} = [A_{\lambda}^{-}, A_{\lambda}^{+}]$ and $A_{1} \neq \phi$, where $A_{\lambda} = \{t : \tilde{A}(t) \geq \lambda\}$, then \tilde{A} is called a fuzzy number. If \tilde{A} is (1) convex, (2) normal, (3) upper semi-continuous, (4) has the compact support, we say that \tilde{A} is a compact fuzzy number.

Let $\tilde{\mathbb{R}}$ denote the set of all fuzzy numbers.

Definition 4.2 [9] Let $\tilde{A}, \tilde{B} \in \mathbb{R}$, we define (1) $\tilde{A} \leq \tilde{B}$ iff $A_{\lambda} \leq B_{\lambda}$ for all $\lambda \in (0, 1]$, (2) $\tilde{A} + \tilde{B} = \tilde{C}$ iff $A_{\lambda} + B_{\lambda} = C_{\lambda}$ for any $\lambda \in (0, 1]$, (3) $\tilde{A} \cdot \tilde{B} = \tilde{D}$ iff $A_{\lambda} \cdot B_{\lambda} = D_{\lambda}$ for any $\lambda \in (0, 1]$.

For $\tilde{A}, \tilde{B} \in \mathbb{R}^C$, then

Ь

$$D(\tilde{A}, \tilde{B}) = \sup_{\lambda \in [0,1]} d(A_{\lambda}, B_{\lambda}),$$
(4.1)

is called the distance between \tilde{A} and \tilde{B} .

Lemma 4.1 [12] If a mapping $H : [0,1] \to I_{\mathbb{R}}, \lambda \to H(\lambda) = [m_{\lambda}, n_{\lambda}]$, satisfies $[m_{\lambda_1}, n_{\lambda_1}] \supset [m_{\lambda_2}, n_{\lambda_2}]$ when $\lambda_1 < \lambda_2$, then

$$\tilde{A} := \bigcup_{\lambda \in (0,1]} \lambda H(\lambda) \in \tilde{\mathbb{R}}$$

$$(4.2)$$

 and

$$A_{\lambda} = \bigcap_{n=1}^{\infty} H(\lambda_n), \tag{4.3}$$

where $\lambda_n = \left[1 - \frac{1}{(n+1)}\right]\lambda$.

Definition 4.3 Let $\tilde{F} : [a, b]_{\mathbf{T}} \to \mathbb{R}$. If the interval-valued function $F_{\lambda}(t) = [F_{\lambda}^{-}(t), F_{\lambda}^{+}(t)]$ is McShane delta integrable on $[a, b]_{\mathbf{T}}$ for any $\lambda \in (0, 1]$, then $\tilde{F}(t)$ is called McShane delta integrable on $[a, b]_{\mathbf{T}}$ and the integral is defined by McShane delta integral is defined by

$$\begin{split} (FM) \int_{a}^{b} \tilde{F}(t) \Delta t &:= \bigcup_{\lambda \in \{0,1\}} \lambda (IM) \int_{a}^{b} F_{\lambda}(t) \Delta t \\ &= \bigcup_{\lambda \in \{0,1\}} \lambda \Big[(M) \int_{a}^{b} F_{\lambda}^{-}(t) \Delta t, (M) \int_{a}^{b} F_{\lambda}^{+}(t) \Delta t \Big]. \end{split}$$

We write $\tilde{F}(t) \in FM[a, b]_{\mathbf{T}}$.

Theorem 4.1 $\tilde{F}(t) \in FM[a,b]_{\mathbf{T}}$, then $(FM) \int_{a}^{b} \tilde{F}(t) \Delta t \in \mathbb{\tilde{R}}$ and

$$\left[(FM) \int_{a}^{b} \tilde{F}(t) \Delta t \right]_{\lambda} = \bigcap_{n=1}^{\infty} (IM) \int_{a}^{b} F_{\lambda_{n}}(t) \Delta t, \qquad (4.4)$$

where $\lambda_n = \left[1 - \frac{1}{(n+1)}\right]\lambda$.

Proof Let $H: (0,1] \to I_{\mathbb{R}}$, be defined by $H(\lambda) = [(M) \int_{a} F_{\lambda}^{-}(t) \Delta t, (M) \int_{a} F_{\lambda}^{+}(t) \Delta t].$

Since $F_{\lambda}^{-}(t)$ and $F_{\lambda}^{+}(t)$ are increasing and decreasing on λ respectively, therefore, when $0 < \lambda_1 \leq \lambda_2 \leq 1$, we have $F_{\lambda_1}^{-}(t) \leq F_{\lambda_2}^{-}(t)$, $F_{\lambda_1}^{+}(t) \geq F_{\lambda_2}^{+}(t)$, on $[a, b]_{\mathbf{T}}$. From Theorem 3.4 we have

$$\left[(M) \int_{a}^{b} F_{\lambda_{1}}^{-}(t) \Delta t, (M) \int_{a}^{b} F_{\lambda_{1}}^{+}(t) \Delta t \right] \supset \left[(M) \int_{a}^{b} F_{\lambda_{2}}^{-}(t) \Delta t, (M) \int_{a}^{b} F_{\lambda_{2}}^{+}(t) \Delta t \right].$$

$$(4.5)$$

Using Theorem 3.1 and Lemma 4.1 we obtain

$$(FM)\int_{a}^{b}\tilde{F}(t)\Delta t := \bigcup_{\lambda \in \{0,1\}} \lambda \left[(M)\int_{a}^{b} F_{\lambda}^{-}(t)\Delta t, (M)\int_{a}^{b} F_{\lambda}^{+}(t)\Delta t \right] \in \tilde{\mathbb{R}}$$
(4.6)

and for all $\lambda \in (0, 1]$,

$$\left[(FM) \int_{a}^{b} \tilde{F}(t) \Delta t \right]_{\lambda} = \bigcap_{n=1}^{\infty} (IM) \int_{a}^{b} F_{\lambda_{n}}(t) \Delta t, \qquad (4.7)$$

where $\lambda_n = \left[1 - \frac{1}{(n+1)}\right]\lambda$.

Theorem 4.2 If $\tilde{F}(t), \tilde{G}(t) \in FM[a, b]_{\mathbf{T}}$ and $\beta, \gamma \in \mathbb{R}$. Then $\beta \tilde{F}(t) + \gamma \tilde{G}(t) \in FM[a, b]_{\mathbf{T}}$ and

$$(FM)\int_{a}^{b} \left(\beta \tilde{F}(t) + \gamma \tilde{G}(t)\right) \Delta t = \beta (FM)\int_{a}^{b} \tilde{F}(t) \Delta t + \gamma (FM)\int_{a}^{b} \tilde{G}(t) \Delta t.$$

$$(4.8)$$

Proof If $\tilde{F}(t), \tilde{G}(t) \in FM[a, b]_{\mathbf{T}}$, then the interval-valued function $F_{\lambda}(t) = [F_{\lambda}^{-}(t), F_{\lambda}^{+}(t)]$ and $G_{\lambda}(t) = [G_{\lambda}^{-}(t), G_{\lambda}^{+}(t)]$ are McShane delta integrable on $[a, b]_{\mathbf{T}}$ for any $\lambda \in (0, 1]$ and $(FM) \int_{a}^{b} \tilde{F}(t)\Delta t = \bigcup_{\lambda \in (0, 1]} \lambda(IM) \int_{a}^{b} F_{\lambda}(t)\Delta t$ and $(FM) \int_{a}^{b} \tilde{G}(t)\Delta t = \bigcup_{\lambda \in (0, 1]} \lambda(IM) \int_{a}^{b} G_{\lambda}(t)\Delta t$. From Theorem 3.2 we have $\beta F_{\lambda}(t) + \gamma G_{\lambda}(t) \in IM[a, b]_{\mathbf{T}}$ and $(IM) \int_{a}^{b} (\beta F_{\lambda}(t) + \gamma G_{\lambda}(t))\Delta t = \beta(IM) \int_{a}^{b} F_{\lambda}(t)\Delta t + \gamma(IM) \int_{a}^{b} G_{\lambda}(t)\Delta t$ for any $\lambda \in (0, 1]$. Hence $\beta \tilde{F}(t) + \gamma \tilde{G}(t) \in FM[a, b]_{\mathbf{T}}$ and

$$\begin{split} (FM) \int_{a}^{b} \left(\beta \tilde{F}(t) + \gamma \tilde{G}(t)\right) \Delta t &= \bigcup_{\lambda \in (0,1]} \lambda (IM) \int_{a}^{b} \left(\beta F_{\lambda}(t) + \gamma G_{\lambda}(t)\right) \Delta t \\ &= \bigcup_{\lambda \in (0,1]} \lambda \left(\beta (IM) \int_{a}^{b} F_{\lambda}(t) \Delta t + \gamma (IM) \int_{a}^{b} G_{\lambda}(t) \Delta t\right) \\ &= \beta \bigcup_{\lambda \in (0,1]} \lambda (IM) \int_{a}^{b} F_{\lambda}(t) \Delta t + \gamma \bigcup_{\lambda \in (0,1]} \lambda (IM) \int_{a}^{b} G_{\lambda}(t) \Delta t \\ &= \beta (FM) \int_{a}^{b} \tilde{F}(t) \Delta t + \gamma (FM) \int_{a}^{b} \tilde{G}(t) \Delta t. \end{split}$$

Theorem 4.3 If $\tilde{F}(t) \in FM[a, c]_{\mathbf{T}}$ and $\tilde{F}(t) \in FM[c, b]_{\mathbf{T}}$, then $\tilde{F}(t) \in FM[a, b]_{\mathbf{T}}$ and

$$(FM)\int_{a}^{b}\tilde{F}(t)\Delta t = (FM)\int_{a}^{c}\tilde{F}(t)\Delta t + (FM)\int_{c}^{b}\tilde{F}(t)\Delta t.$$
(4.9)

Proof If $\tilde{F}(t) \in FM[a,c]_{\mathbf{T}}$ and $\tilde{F}(t) \in FM[c,b]_{\mathbf{T}}$, then the interval-valued function $F_{\lambda}(t) = [F_{\lambda}^{-}(t), F_{\lambda}^{+}(t)]$ is McShane delta integrable on $[a,c]_{\mathbf{T}}$ and $[c,b]_{\mathbf{T}}$ for any $\lambda \in (0,1]$ and $(FM) \int_{a}^{c} \tilde{F}(t)\Delta t = \bigcup_{\lambda \in (0,1]} \lambda(IM) \int_{a}^{c} F_{\lambda}(t)\Delta t$ and

 $(FM)\int_{c}^{b} \tilde{F}(t)\Delta t = \bigcup_{\lambda \in (0,1]} \lambda(IM)\int_{c}^{b} F_{\lambda}(t)\Delta t. \text{ From Theorem 3.3 we have } F_{\lambda}(t) \in IM[a,b]_{\mathbf{T}} \text{ and } (IM)\int_{a}^{b} F_{\lambda}(t)\Delta t = (IM)\int_{a}^{c} F_{\lambda}(t)\Delta t + (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t \text{ for any } \lambda \in (0,1]. \text{ Hence } \tilde{F}(t) \in FM[a,b]_{\mathbf{T}} \text{ and } (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t + (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t \text{ for any } \lambda \in (0,1]. \text{ Hence } \tilde{F}(t) \in FM[a,b]_{\mathbf{T}} \text{ and } (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t + (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t \text{ for any } \lambda \in (0,1]. \text{ Hence } \tilde{F}(t) \in FM[a,b]_{\mathbf{T}} \text{ and } (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t + (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t \text{ for any } \lambda \in (0,1]. \text{ Hence } \tilde{F}(t) \in FM[a,b]_{\mathbf{T}} \text{ and } (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t + (IM)\int_{c}^{b} F_{\lambda}(t)\Delta t \text{ for any } \lambda \in (0,1]. \text{ Hence } \tilde{F}(t) \in FM[a,b]_{\mathbf{T}} \text{ and } (IM)$

$$\begin{split} (FM) \int_{a}^{b} \tilde{F}(t) \Delta t &= \bigcup_{\lambda \in (0,1]} \lambda(IM) \int_{a}^{b} F_{\lambda}(t) \Delta t \\ &= \bigcup_{\lambda \in (0,1]} \lambda \Big((IM) \int_{a}^{c} F_{\lambda}(t) \Delta t + (IM) \int_{c}^{b} F_{\lambda}(t) \Delta t \Big) \\ &= \bigcup_{\lambda \in (0,1]} \lambda(IM) \int_{a}^{c} F_{\lambda}(t) \Delta t + \bigcup_{\lambda \in (0,1]} \lambda(IM) \int_{c}^{b} F_{\lambda}(t) \Delta t \\ &= (FM) \int_{a}^{c} \tilde{F}(t) \Delta t + (FM) \int_{c}^{b} \tilde{F}(t) \Delta t. \end{split}$$

Theorem 4.4 If $\tilde{F}(t) \leq \tilde{G}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $\tilde{F}(t), \tilde{G}(t) \in FM[a, b]_{\mathbf{T}}$, then

$$(FM)\int_{a}^{b}\tilde{F}(t)\Delta t \le (FM)\int_{a}^{b}\tilde{G}(t)\Delta t.$$
(4.10)

Proof If $\tilde{F}(t) \leq \tilde{G}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $\tilde{F}(t), \tilde{G}(t) \in FM[a, b]_{\mathbf{T}}$, then $F_{\lambda}(t) \leq G_{\lambda}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ for any $\lambda \in (0, 1]$ and $F_{\lambda}(t)$ and $G_{\lambda}(t)$ are McShane delta integrable on $[a, b]_{\mathbf{T}}$ for any $\lambda \in (0, 1]$ and $(FM) \int_{a}^{b} \tilde{F}(t) \Delta t = \bigcup_{\lambda \in (0, 1]} \lambda(IM) \int_{a}^{b} F_{\lambda}(t) \Delta t$ and $(FM) \int_{a}^{b} \tilde{G}(t) \Delta t = \bigcup_{\lambda \in (0, 1]} \lambda(IM) \int_{a}^{b} G_{\lambda}(t) \Delta t$. From Theorem 3.4 we have $(IM) \int_{a}^{b} F_{\lambda}(t) \Delta t \leq (IM) \int_{a}^{b} G_{\lambda}(t) \Delta t$ for any $\lambda \in (0, 1]$. Hence

$$(FM) \int_{a}^{b} \tilde{F}(t) \Delta t = \bigcup_{\lambda \in (0,1]} \lambda(IM) \int_{a}^{b} F_{\lambda}(t) \Delta t$$
$$\leq \bigcup_{\lambda \in (0,1]} \lambda(IM) \int_{a}^{b} G_{\lambda}(t) \Delta t$$
$$= (FM) \int_{a}^{b} \tilde{G}(t) \Delta t.$$

5 conclusions

In this paper, we have a tendency to introduced the concept of the McShane delta integrals of interval-valued functions and fuzzy number- valued functions and discussed some properties of those integrals.

References

- Hamid, M.E, A.H. Elmuiz, M.E, Sheima. (2016) On AP-Henstock integrals of interval-valued functions and fuzzy-number-valued functions. Applied Mathematics, 7, 2285-2295.
- [2] Hilger, S. (1988) Ein Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. Thesis, Universtat Wurzburg.
- [3] A. Peterson and B.Thompson. (2006) Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl, 323, 162-178.

- [4] Hamid, M.E. and A.H. Elmuiz. (2016) On Henstock-Stieljes integrals of interval-valued functions and fuzzynumber-valued functions. Journal of Applied Mathematics and Physics, 4, 779-786.
- [5] Peng-Yee, L. (1989) Lanzhou lectures on Henstock integration. World Scientific, Singapore.
- [6] You, X.X. and Zhao, D.F. (2012) On Convergence Theorems for the McShane Inegral on Time Scales. Journal of the Chungcheong Mathematical Society, 25(3), 393-400.
- [7] Wu, C.X. and Gong, Z. (2000) On Henstock integrals of interval-valued functions and fuzzy-valued functions. Fuzzy Sets and Systems, 115, 377-391.
- [8] Park, C.K. (2004) On McShane-Stieljes integrals of interval-valued functions and fuzzy-number-valued functions. Bull. Korean Math. Soc, 41(2), 221-233.
- [9] Nanda, S. (1989) On integration of fuzzy mappings. Fuzzy Sets and Systems, 32, 95-101.
- [10] Wu, C.X. and Ma, Ming. (1991) Embedding problem of fuzzy number spaces: Part I. Fuzzy Sets and Systems, 44, 33-38.
- [11] Wu, C.X. and Ma, Ming. (1992) Embedding problem of fuzzy number spaces: Part II. Fuzzy Sets and Systems, 45, 189-202.
- [12] Cheng, Z.L. and Demou, W. (1983) Extension of the integral of interval-valued function and the integral of fuzzy-valued function. Fuzzy Math, 3, 45-52.