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Abstract: In this paper, we consider the following quasilinear fractional differential equation with resonance
boundary condition

°Df ¢, (CDEU(L) = f(t,u(t),°DE u(t),°DEu(t) )t <[0,4],
(¢,(°DEU(0))' =0, °D&u(n) =°Dgu(l),
w'©) =1, u)=u(),

where ¢D¢ CD(){ are Caputo fractional derivatives of order &, [, respectively, 1<a <2, 1< <2,

0+
3<a+B<4, ne(01), £(01) and p>1, 4,(s)=|s|**s is a p-Laplacian operator, f is a

continuous function. After translating the quasilinear equation into the linear fractional differential system, by
using coincidence degree theory, the existence result is established.
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1 Introduction

In this paper we will study the existence of solutions for the following quasilinear fractional differential equation
with resonance boundary condition

°D{.¢,(°Dgu(t)) = f(t,u(t),°Dg 'u(t),“Dy.u())t €[0,1],
(4, (°Dg,u(0)))' =0, “Ds.u(n) =°Dgu(1), (1.2)
u'(0)=1, u(g)=u(l),

where “DZ CDOﬂ+ are Caputo fractional derivatives of order o, [, respectively, 1<a <2, 1< <2,

0+
3<a+p<4,1ne(01), £(0,1) and p>1, ¢,(s)=[s |P?s is a p-Laplacian operator, f isa continuous
function.

In recent years, fractional differential equations have been of great of interest due to the intensive development of
fractional calculus itself and its various applications. Fractional differential equations appear naturally in a number of fields
such as physics, polymer rheology, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex
medium, viscoelasticity, analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry,
biology, control theory, fitting of experimental data, agriculture, etc. (see [4] [10] [11]).
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A broad range of scenarios of resonant problems were studied in the framework of ordinary differential and
difference equations, (see [8] [16]). For fractional boundary value problems at resonance, we refer the reader to [1] [18]
[19] and the references cited therein. Kosmatov (see [5]) studied the following boundary value problem of fractional order
with non-local conditions

Du(t) = f (t,u(t),u’t)), a.e.te(0,1),
D5 *u(0) = 0, 7u(&) = u(d),

where 1< <2, 0<&<1 and p&** =1. This problem is resonance boundary value problem. The author
obtained the existence result by the the coincidence degree theory of Mawhin.
p-Laplacian equations is very interesting because it has many applications. The turbulent flow in a porous problem

medium is a fundamental mechanics problem. For studying this type of problems, Leibenson(see [6]) first introduced the
p-Laplacian equation as follows

(4, (X®))" = T (&, x(t), X'(1)), (12)

where @, (S) =|s|’?s, p>1. Obviously, ¢ is invertible and its inverse operator is ¢ , where q>1 is a

p

1 1
constant such that — +— =1. From then on, many important results relative to (1.2) with certain boundary conditions
P q
had been obtained, (see [12] [13] [14] [15]). In [2], Chen studied the following boundary value problem for fractional
p-Laplacian equation

Dg.¢, (D5, x(1)) = f (¢, x(t), D, x(1)), t € [0,1],
D5, x(0) = D, x(1) = 0,

. . . . —_ p-2
where 0< o, <1, 1<a+pf<2, D¢, D/ isa Caputo fractional derivative, and p >1, $,(s)=|s|*"s
is a p-Laplacian operator. A new result on the existence of the solutions for above fractional boundary value problem is
obtained.
From the above references, we find that: for the resonance case, most of the BVPs considered are not more than
second-order, and higher-order are restricted to the case P =2 ; most of the BVPs considered are related to

Riemann-Liouville fractional derivative, the Caputo fractional derivative considered is less. Motivated by the works
mentioned above, we study the existence of solutions for higher-order fractional boundary value problem with a
p-Laplacian at resonance.

Because of the fact that the Mawhin's continuation theorem can't be used directly to discuss the BVP with a
quasilinear differential operator, we translate the problem (1.1) into a system with linear differential operator. By the
coincidence degree theorem of Mawhin, we obtain an existence result.

This paper is organized as follows: in section 2, we include some basic definitions and preliminary results that will
be used to prove our main results; in section 3, using the coincidence degree theory of Mawhin(see [7]), we establish a
theorem on existence of solutions for BVP (1.1); in section 4, an example is given to illustrate the main result.

2 Preliminaries and lemmas

For the convenience of the reader, we present here some necessary basic knowledge and definitions about fractional
calculus theory, which can be found, for instance in [4] [11].

Definition 2.1 ([4] [11], section 2.1) The Riemann-Liouville fractional integral operator of order ¢ >0 of a function
u:(0,490) — R is given by

LU = ﬁ [t-9us)as,

provided that the right side integral is pointwise defined on (0,+0).

Definition 2.2 ([4] [11], section 2.4) The Caputo fractional derivative of order « >0 of a function u:(0,+o0) — R
is given by
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Cdum 1
IO+ -

°Du(t) =
ru(®) dt" T(h-a

t
_[ (t—s)"*u™(s)ds,
) o
where N is the smallest integer greater than or equal to « , provided that the right side integral is pointwise defined on
(0,+x).

Lemma2.1 ([4]) Let & >0.Assumethat u,°Dg u e L[0,1]. Then the following equality holds

C _
12 " Dgut) =u(t)+c, +ct+---+c, ,t"*,
where C; € R,i=0,1,---,n—1; here N is the smallest integer greater than or equal to ¢ .

Proposition 2.2 ([3]) ¢, satisfies the following properties

(B1) ¢, iscontinuous, monotonically increasing and invertible. Moreover, ¢;1 = ¢, with q>1 satisfying

£+1:1;

P q
(B2) for Yu,v=0,

B, (U+V) <P (U)+¢,(v), if 1< p<2;
¢, (U+V) <272 (g (U) +¢,(v)), if p=2.

Definition 2.3 ([7]) Let X and Y be areal normed spaces. A linear mapping L:domL < X —Y iscalleda
Fredholm mapping if the following two conditions holds:

(C1) kerL has a finite dimension, and
(C2) ImL isclosed and has a finite codimension.
If L isaFredholm mapping, its Fredholm index is the integer IndL = dim ker L —codimImL.

Now, we briefly recall some notations, which can be found in [7]. Let X and Y be real Banach spaces,
L:domL < X —Y be aFredholm operator with index zero,and P: X — X, Q:Y —Y be projectors such that

ImP =kerL, kerQ=ImL,
X =kerL®kerP, Y =ImL® ImQ.
It follows that L|jomkerp:-dOMLkerP —ImL is invertible. We denote the inverse by
K, :ImL —domLkerP.
If €2 isan open bounded subsetof X such that domL Q= 3, then the map N: X —Y will be called
L-compacton Q if QN(£_2) is bounded and K, (1 —Q)N :Q —> X is compact.

Theorem 2.3 ([7], Theorem 1V.13) Let X and Y be two Banach spaces with norms ||-|ly and ||-]|, .
respectively, and QQ < X an open and bounded set. Suppose L: X mdomL —Y is a Fredholm operator of index

zeroand N, QY , A €[0,1] is L-compact. In addition, if
(D1) Lx## ANx for A €(0,1), x e (domL\ker L) noQ2;
(D2) Nx¢ImL for xeker LMmoQ;

(D3) deg{JON | QnkerL,0}=0, where Q:Y —Y s a projection such that ImL = ker Q

QnkerL’
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and J:ImQ — ker L is a homeomorphism.

Then the abstract equation LX = NX has at least one solution in Q.

Let x (1) =u(t), x,(t)=4, (“DZ.u(t)) . Rewrite the differential equation in BVP (1.1) into

(CDg, w1 (t) = dglzalt)). (2.1)
“Df wa(t) = f(t.o1(t). “DET 1 (t), dalaa(t)). (2.2)
4
xy(0) =0, x({) = x1(1), (2.3)
Lah(0) =0, xa(n) = xa2(1). (2.4)

In this paper, we take Z, ={z,|z,,°D¢'z,,°D¢ z, €C[0,1]} with norm ||Zl||Zl =max{]|z,|,,
PO 2L FDEZLY © Z, =421 2,°D8 2, DLz, cCOAT} with nom |2, = max{z,]..
I°Dg. "zl " D5, zg]|.}-

Now we set X ={x=(x,X,)" €Z,xZ,} with the norm |[|X]l :max{}|xl||zl,||x2||zz}, let
Y ={y=(Y,)" €C[01]xC[01]} with norm Y]}, = mex{|Yill.. [[Y[l.}. Clearly, X and Y are

Banach spaces.
Define L:domL —Y by
Lx=L(x,%,)" = (°Dg,%,"Dg%,)", (2.5)
where
domL ={x = (¥, %,)" € X :%'(0) = 0,%,(¢) = %, (1), %,"(0) = 0, %, (7) = %, (1)} (2.6)
Obviously, if X = (X, Xz)T edomL isasolution of (2)-(2), then X, is a solution of BVP (1.1).
3 Main results
In this section, a theorem on existence of solution for BVP (1.1) will be given.

Theorem 3.1 Suppose
(H21) there exists a constant A> 0 such that

[(a)

F((Hl)(r( -9 (s ——— [ (4“—s)“¢q(x2(s»ds}0, S8

for xedomL\ker L with | X,(t)[> A on te[0,1];

(H2) there exists a constant B >0 such that

r(B+1) p-1 a-1 1 CRe _
- (F(ﬁ) [a-9 f(s %(8).°D %,(5).— ( D0+x1(s))st
Tk j (n—s)* 1f(s x(s),.° D&%, (), (CDg;xl(s))}dsj;to. (3.2)

for X edomL\Kker L with | X (t)[> B on t€[0,1], where 4 €(0,1);
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(H3) there exists function z¢,v, 7, p,€ C([0,1],R") such that for V(X,y,z) € R® and t[0,1],
| %Y, 2) 2@ X"+ @1y P+ @) 127" +o(0), (33)

we denote that 14y = | ], vo =[[VIL. 7o =1 AL, 2o =1l Al
Then BVP (1.1) has at least one solution provided

1

r(ﬂ)(r( )H“"W"”‘)Jq tesz oo
1 2°2

r(ﬂ)[r(a)plﬂ°+V°+%j<l p=t o9

Now, we begin with some lemmas below.

Lemma 3.2 Let L be defined by (2.1); then
ker L={x=(c,c,)" edomL:c,c, eR}, (3.6)

ImL={y=(y,,¥,)" €Y :I5y,(1)—15.y,(£)=0,12y,(1)— 12, y,(;7) = O}. 3.7)

Proof. First we show (3.6). By Lemma 2.1, “DZ x,(t) =0 has a solution

x(t) =c +ct, ¢y, eR,

Combining with boundary value condition X,'(0) =0, one has X, (t) =c, € R. Similarly from “DZ x,(t) =0, we
have X, (t) =C, € R. One has that (3.6) holds.

For X = (X, X,)" edomL, consider the system
CDE, 21(1) = n(t), (3.8)

FDJ Laalt) = yz(t). (3.9)

It holds that 'y = (Y,, Y,)" €Y . From (3) and (2.2), using Lemma 2.1, we can get

lo. Y. (1) =15 y:(6) =0, (3.10)
Also, in view of (3) and (2.2), we have
18y, =1Ly, () =0. (3.12)
Thus
ImLc{y = (v, ¥.)" €Y 115y (D)= 16.y2(£) = 0,15, y, (1) — 15y, () = O} (3.12)

Conversely, we can show that {y = (y,,¥,)" €Y 1&y,(D)—18y,(&)=0,12y,(1) - 12 y,(n) =0} ImL.
Hence

ImL={y= (yl’yz) eYilgy,(D-15y ()= OI Y, (1) - y2(77):0}- (3.13)

Lemma 3.3 Let L be defined by (2.1); then L is a Fredholm operator of index zero, and the linear continuous
projector operators P: X —kerL and Q:Y — ImQ can be defined as

Px = (x,(0), x,(0)) ", (3.14)
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F(n +1)

(15,2 (1) = 15, ¥, (),

I'a+1)
Q=[]

Let Ly = L|jomwerp @nd Kp :ImL —domLker P denote the inverse of L. Set

(1y,(1)- Io’iyz(n))j - (3.15)

KeY() = Ko (V1) Y, () = (12, (), 12y, (1)) (3.16)

Proof. Forany y €Y , we have

Q*y=Q(Qy) = Q(r(“;”(l O 1RO 08y,0- w»}
—Q (F(a+1) (F( )J"( )a 1ds_mj‘ (é/_s)alds}
F(,B+l) p1g J
i’ (rw)“ r(ﬁ)“" Sy )
=Qy(L1)" =Qy.
Moreover, (3.7) and (3.13) imply that ImL=kerQ , then Y =ImML®IMmQ

codimImL =dimImQ = 2 =dimker L. Hence, L isa Fredholm operator of index zero.

From the definitions of P, K, it is easy to see that the generalized inverse of L is K, . In fact, for
y € ImL, we have

LK, y() = L(£ Y, (0,12 y,()T = CDg1E (0.5 DEILy,0)

= (Y, (1), Y, ()" = y(v), (3.17)
Moreover, for X € domL ~ker P, we get X = (X,(t),X,(t))" =(0,0)". By Lemma 2.1, we obtain that

Ko LX(t) = Ky (CDE %, (0).CDE %, (1) = (16 Dg.x, (1), 14.°Df.x, (1)

= (%,(1), %, ()" = (). (3.18)
Combining (3.17) with (3.18), we know that K = (L |yomere )~ The proof is complete.
Define N: X =Y by

NX(t) = N (%, (8), %, (0)" = (¢, (% (),  (t,%,0).°Dg %, ), ¢, (%)), (3.19)
then (2)-(2) can be writtenas LX = NX.

Since f is a continuous function and ¢p (s) is a uniformly continuity function, we can prove by standard

arguments that N is L -compact,i.e, QN and K (I —Q)N are completely continuous.

Lemma 3.4 Suppose (H1)-(H3) hold; then the set Q0 ={X e domL\ker L:Lx=ANx,4€(0,1)} is
bounded.

Proof. Take X € €2, then ANX =LxeImL =kerQ.So QNx =0, then
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1- INVOR

r(ﬁ)j( $ﬂ%@x@>DWWGx%wmmbﬂ:

It follows from (H1) and (3.18) that there exists t, €[0,1] such that | X, (t,) |< A. Now

RAUIS

X () + [ %' ()ds

<%, () |+

f X,'(s)ds

< A+||x,"|,, Yte[01],
thus, we get
X/l < A+[]x L.

Using Lemma 2.1and X,'(0) =0, we have

%, () 7%, (0)+ 187 DY x, (1)

1 p-2C
e D“ —5)72°Df X, (s)ds
<|°Dg. x, —s)’?ds
<|I'D mrw 7 ht=9)
DZx,|,, Vte[0,1
< g DR, Ve
thus, we get
2 = Do+ 2
%"l < Hﬂﬂ -
Combining (3.20) with (3.21), we have
Pll. < A+]Ix, ], < A+r( Dy Xl

Using Lemma 2.1, we have

_ _ C
[°Dg. %, (1) [FI° Dy, %, (0) + 1, "Dy, %, () |

+C
:‘L Df x,(s)ds| <P°D{ x,P,, Vte[0,1].
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thus, we get
1°Dg X, L. <[1°DE. X, L. (3.25)
If Xe€Q,then
CDg, e (t) = Ag(aa(t)), (3.26)
“Dgyaa(t) = Af(t,21(t), DG (1), dg(22(1))). (3.27)

Substituting X, (t) = ¢, (% (C Dg:xl(t))j into (3.21), we have

Fl(fﬁ)(r(lﬁ)“ s)“f(s X, (s),° D (S),%(CD&Xl(t))jds—

ok j (- s)’“f(s x,(5),° D2 %, (s), (Dgixl(t))jds]:O. (3.28)

In view of (H2) and (3.21), we have there exists t, €[0,1].So | % (t,)[<B.

Similarly, we have

1€ Dy XL, <[1%,[1, (3.29)
| Dy %L, <Dy Xyl <[1%/1 (3.30)
%], < B+TII D, Xy}, < B+—HX2|L (3.31)

(1) For 1< p < 2, from (H3) and Proposition 2.2 one gets

I°D8xl, = max | Af (£ (0 D, x, (1) 4 (4 (O) |
max (4O % O 17 O DX O +70)1 4,0, @) +(0)

< ,Uo|| XllLsil + Vo”C Dg+7lX1|L571 + 70” X2|Lo + Do

—luo(B"'ﬁ“ X, j +Vo(||X2|Lg_l)p_l+70||X2|Lo+po

(F( B — oMotV +70J”X2|Lu + Po

<[ it v e | A DL (ot )

Notice (3.4), one arrives at
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1
(F( )plluo""/o"'?/oJA"'/uonl"'po

D Xyll, < . . =M,,
- +V,+7,
F(ﬁ)(F(a)"‘l ot j
which yields [|X,||, < A+%ﬂ)l\/|l,and then [|X,l,, = max{Ml,A+r(1ﬂ) M,}:=M,,
q—l 1 1 g1 o—
X4k, —max{(A+(—ﬁ)M1) r(05)(A+F(ﬁ)l\/ll) =M,

(1) For p = 2, similarly,

||C Doﬂ+X2H>o < ﬂoHX1|L§_l +Vo||c D&Xl\Lf_l +70||X2|Lo + o

Su02p2(|3“+ HXZIL@JWOHXZILO+7o||X2|L+po

1
INa)™™

[(a)*

2P 2 o pt
S(Wﬂo"'vo"'?/oJ(A ) ——|°Dy. 2|LJ+ﬂ02p B*™ + p,.

From (3.5), we have

202 9o
( — oa Mot Vo+7o) ||X2|Lo+ﬂ02p28pl+po

20

[(a)®
- : ( 2" ,U0+Vo+7/oJ
LA\ T ()™

which leads to [|X,|l;, <mMax{N;, A+ ———-N,}=

(ﬁ)
1%, < max{(A+£Nl)q*1,B+ 1 (A+ 1 N,)*"}:= N,. Thus,
' B M) T(B)

Hlezl <max{M;,N;}:= M, ||X2||22 <max{M,,N,}:=N.

= o1 Mo tVo +70jA+ﬂ02p “B" + p,

D3 x|, < —( =N,

X[k = mexdl[x[l, (%, } = max{M, N}.

Therefore, €, is bounded. The proof is complete.

Lemma 3.5 Suppose that (H2) holds, then the set Q, ={x € ker L: Nx € ImL} is bounded.

Proof. For VX € Q,,then X =(c,,C,)" and
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a
1-¢

QNx = ( ([a-9 g, e)ds= [ (¢ -9 (e

1_@ . [ J'Ol(l—s)ﬂ’l f(s,¢,.0,4, (c,) )ds - KGO (5.¢.0,4, (cz))ds)j

=(¢q(cz),$( @5 (5.6,0.4,(c,) ks -

Lo 046k

=(0,0)".
So ¢, =0. From (H2), we have |C, [<B. Thus ||X|lx =| C, |[< B <M, which implies Q, = €, is bounded.
Let Q={x=(x,%,)" edomL:||x[L, <M +L %L, <N+1} , thn Q> >Q. is

bounded and open set. Clearly, conditions (D1) and (D2) in Theorem 2.3 are satisfied. The remainder is to verify condition
(D3). To this end, we define isomorphism J:ImQ-—>kerL by J(X,X%)" =(X,X%)" . Let

H (X, A) = AX+ (1— 2)JONX, V(X, 1) € Qx[0,1]. Then

B
1-n’

H(x,2) = [le ' (1—1)( (@9 £s%,(9). D2 (). (s -

[[1=9)" £(5,%,(5).°Dg x,(5). 4, (%, (s)))dsD,

a
1-¢“
It is easy to see that H (X, A1) #0 for V(x, 1) € (6 ker L) x[0,1]. Hence,

deg{JON |5 ... .2 ker L,0} = deg{H (-,0), Q~ker L,0}

2%, +<1—z>( ( [[a=9)""g,(x,(sNds— [ (£ ~9)" 4 (x, (s»dsm ,

=deg{H (1), Qker L,0}
=deg{l,Qker L,0}=0.
Theorem 2.3 yields that LX = NX has at least one solution X € domL Q. Namely, BVP (1.1) has at least one

solution in X. The proof is complete.

4 Example

In this section, we give some examples to illustrate the usefulness of our main result.

Example 4.1
“Dy; ¢ (“ Dy u(t)) = f (t,u(t),” Dy, (), Dyu(t)),t e[0,1],
(4, (°Dyu(0)))' =0, “Dy/u(0.25) =°D,/u(l), (4.0)
u’'(0) =1, u(0.5) =u(d),
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Corresponding to BVP (1.1), wehave p=3, =17, #=15, n=0.25, £=0.5,

1 1(1 1 1
f th’ ’Z =—+— _+t_t2 X2+—t2 2+—t221
(tx3.2) 2 2(8 j 8 y 16

Clearly, assumtions (H1)-(H2) are all satisfied. Let g(t) = %(%+t —tzj, v(t) = %tz, y(t) = %t . pt) = %

then 4 ——3 V
(N ]
16

11
g’ Yo 16" Po 2’
1 2 2i+1+i ~0.7241<1.
r@as)(r@7n?16 8 16

Then (H3) and (3.5) hold.
Therefore, BVP (1.1) has a solution by Theorem 3.1.
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