

Volume 11, Issue 3

Published online: March 09, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Compactness in asymmetric quasi normed spaces

Stela Çeno¹, Gladiola Tigno²

¹Department of Mathematics, "A.Xhuvani" University, Elbasan, Albania ²Department of Mathematics, "A.Xhuvani" university, Elbasan, Albania

Abstract

In this paper it is represented a study of precompact and compact subsets on asymmetric quasi normed spaces.

Keywords: Asymmetric quasi norm; topology; compactness.

1. Introduction

Definition 1.1. A function $p: X \to R^+$ is an *asymmetric quasi norm* on X if for every $x, y, z \in X$, $\lambda \in R^+$ and $k \ge 1$:

1)
$$p(x) = p(-x) = 0 \Leftrightarrow x = 0$$

2)
$$p(\lambda x) = \lambda p(x)$$

3)
$$p(x+y) \le k(p(x)+p(y)).$$

For k = 1 the function is called the *asymmetric norm function*, and the pair (X, p) is called the asymmetric normed space. More information on this structure can be found in [1] and [2].

The function $p^{-1}: X \to R^+$ defined by $p^{-1}(x) = p(-x)$ is also an asymmetric quasi norm.

While the formula $p^{s}(x) = \max \{p(x), p^{-1}(x)\}$ gives a quasi norm on X.

Definition 1.2. A *quasi metric* on a set X is a function $d: X \times X \rightarrow R^+$ that satisfies:

- 1) $d(x, y) = d(y, x) = 0 \Leftrightarrow x = y$
- 2) $d(x+y) \le d(x,z) + d(z,y)$, for every $x, y, z \in X$.

Each quasi metric d on X generates a topology T(d) on X, that in general is a T_0 topology. The basic open sets can be defined as the d-balls:

$$B_d(x,r) = \{ y \in X : d(x,y) < r \}, x \in X, r > 0.$$

An asymmetric quasi norm p on a linear space X induces the quasi metric d_p by means of the formula:

 $d_p(x, y) = p(y-x), x, y \in X.$

Thus the sets: $B_{\varepsilon}^{p}(0) = \{x \in X : p(x) < \varepsilon\}, \varepsilon > 0$, define a fundamental system of neighborhoods of zero for the topology $T(d_{p})$, and for all $y \in X$, the sets $B_{\varepsilon}^{p}(y) = y + B_{\varepsilon}^{p}(0)$ define a fundamental system of neighborhoods of y (these sets are convex). Than we say that the pair (X, p) is an asymmetric quasi normed linear space.

Now let us deal that with the topologies induced by p, p^{-1}, p^s , we will write these symbols before the property we are referring if necessary; for instance, we will write p- compact set, or p^s - compact set to refer to compactness of a set with respect to the topology induced by p (resp. by p^s).

If the space (X, p^s) is complete, we say that (X, p) is a bi-Banach space (see [3]). Denote by $B_{s,\ell}^p$ the set:

$$B^p_{\leq,\varepsilon}(0) = \left\{ x \in X : p(x) \leq \varepsilon \right\}, \ \varepsilon > 0.$$

Let (X, p) an asymmetric quasi normed space and $x \in X$, denote by Ψ_x the set defined by:

$$\Psi_{x} = \left\{ y \in X : d_{p}(x, y) = p(y - x) = 0 \right\}.$$

In particular:

$$\Psi_0 = \left\{ y \in X : d_p(0, y) = p(y) = 0 \right\}.$$

Observe that Ψ_x is the closure of $\{x\}$ in (X, p^{-1}) .

Given a set $A \subset X$ of an asymmetric quasi normed space (X, p) (analogue Lemma 2 in [4]), we have that:

$$\bigcup_{x \in A} \Psi_x = A + \Psi_0$$

where:

$$A + \Psi_0 = \left\{ z \in X : z = x + y, x \in A, y \in \Psi_0 \right\}.$$

We have also that $B_{\varepsilon}^{p}(x) = B_{\varepsilon}^{p}(x) + \Psi_{0}, x \in X$ (see [4]) and if $A \subset X$ is an open set, then $A = A + \Psi_{0}$. **Definition 1.3.** (Its analogue is in [4]) Let (X, p) be an asymmetric quasi normed space. We say it is *right-bounded* if there exists a real constant r > 0, such that:

$$rB_1^p(0) \subset B_1^{p^s}(0) + \Psi_0$$
.

Note that the inclusion $B_{\varepsilon}^{p^s}(x) + \Psi_0 \subset B_{\varepsilon}^p(x)$ holds in any asymmetric quasi norm space (X, p), for every $\varepsilon > 0$ and $x \in X$. In fact if $y \in B_{\varepsilon}^{p^s}(x) + \Psi_0$, then there are some $x_0 \in B_{\varepsilon}^{p^s}(x)$ and $z_0 \in \Psi_0$ such that $y = x_0 + z_0$. By the triangle inequality we have that $p(y-x) < \varepsilon$. Then $y \in B_{\varepsilon}^p(x)$.

2. Main results

Let (X, p) be an asymmetric quasi normed space.

Definition 2.1. A subset A of X is p-bounded if there is a positive constant M such that $p(x) \le M$ for all $x \in A$. It is obvious that if a set A is p-bounded and p^{-1} -bounded, then A is p^{s} -bounded.

Definition 2.2. We say that a subset A of X is p-precompact if for all $\varepsilon > 0$ we can find a finite set of points $\{a_1, ..., a_n\}$ in A such that: $A \subset \bigcup_{i=1}^n B_{\varepsilon}^p(a_i)$.

We say that a subset A of an asymmetric quasi normed space (X, p) is *outside* p-precompact if for each $\varepsilon > 0$ there is a finite set $\{x_1, ..., x_n\}$ in X such that $A \subset \bigcup_{i=1}^n B_{\varepsilon}^p(x_i)$. Obviously if a set A is p-precompact, then it is outside p-precompact; the converse is not true in general, a p-convergent sequence is outside p-precompact but not necessarily p-precompact.

The relationship between p-precompactness and outside p-precompactness is given by the following proposition.

Proposition 2.3. Let (X, p) be an asymmetric quasi normed space. A subset A of X is p-precompact if and only if for all $\varepsilon > 0$ there is a finite set $\{x_1, ..., x_n\}$ in X such that $A \subset \bigcup_{i=1}^n B_{\varepsilon}^p(x_i)$ and $B_{\varepsilon}^{p^{-1}}(x_i) \cap A \neq \Phi$ for all $i \in \{1, ..., n\}$.

Proof. The direct implication is obvious by the definition of p-precompact set. To prove the converse fix a positive \mathcal{E} and choose a finite set $\{x_1, ..., x_n\}$ in X such that $A \subset \bigcup_{i=1}^n B_{\frac{\mathcal{E}}{2k}}^p(x_i)$ and $B_{\frac{\mathcal{E}}{2k}}^{p^{-1}}(x_i) \cap A \neq \Phi$ for some $k \ge 1$. Take $a_i \in B_{\frac{\mathcal{E}}{2k}}^{p^{-1}}(x_i) \cap A$; we must prove that $B_{\frac{\mathcal{E}}{2k}}^p(x_i) \subset B_{\mathcal{E}}^p(a_i)$. If $x \in B_{\frac{\mathcal{E}}{2k}}^p(x_i)$, then:

$$p(x-a_i) \le k \left(p(x-x_i) + p(x_i-a_i) \right) < k \left(\frac{\varepsilon}{2k} + p^{-1}(a_i-x_i) \right) = k \left(\frac{\varepsilon}{2k} + \frac{\varepsilon}{2k} \right) = \varepsilon.$$

Then the set A is p-precompact.

Proposition 2.4. Let (X, p) be an asymmetric quasi normed space then:

- (1) The finite sum and the finite union of p-precompact sets is p-precompact.
- (2) The convex hull of a p-precompact set is p-precompact.

Proof. (1) This result is an immediate consequence of the definition. We give the proof for the case of the sum of two p-precompact sets A_1 and A_2 . Let $\varepsilon > 0$. Take $\frac{\varepsilon}{2k}$ for some $k \ge 1$, and consider the sets $\{x_1^1, ..., x_n^1\} \subset A_1$ and $\{x_1^2, ..., x_m^2\} \subset A_2$ such that:

$$A_1 \subset \bigcup_{i=1}^n \frac{B_{\frac{\varepsilon}{2k}}^p(x_i^1)}{2k}$$
 and $A_2 \subset \bigcup_{i=1}^m \frac{B_{\frac{\varepsilon}{2k}}^p(x_i^2)}{2k}$.

If $z \in A_1 + A_2$ then $z = z_1 + z_2$, with $z_1 \in A_1$ and $z_2 \in A_2$. There are elements x_i^1 and x_j^2 such that $p(z_1 - x_i^1) < \frac{\varepsilon}{2k}$ and $p(z_2 - x_j^2) < \frac{\varepsilon}{2k}$. Then: $p(z - (x_i^1 + x_j^2)) \le k \left(p(z_1 - x_i^1) + p(z_2 - x_j^2) \right) < k \left(\frac{\varepsilon}{2k} + \frac{\varepsilon}{2k} \right) = \varepsilon.$

Thus the set $\{x_i^1 + x_j^2; i = 1, ..., n; j = 1, ..., m\}$ define an adequate set of centers of p-balls of radius ε to cover the set $A_1 + A_2$.

For the proof of (2), let see A a p-precompact subset of X. For $\varepsilon > 0$, we can find a set of points of A, $\{x_1, ..., x_n\}$ such that $A \subset \{x_1, ..., x_n\} + B_{\varepsilon}^p(0)$. Denote by convex(A) the convex hull of A; we have:

$$convex(A) \subset convex(\{x_1,...,x_n\}) + B_{\varepsilon}^p(0).$$

Note that since $convex(\{x_1, ..., x_n\})$ is p^s -compact, then it is p-precompact. Thus we can define a set $\{y_1, ..., y_n\}$ in $convex(\{x_1, ..., x_n\})$ such that:

$$convex(\{x_1,...,x_n\}) \subset \{y_1,...,y_n\} + B_{\frac{s}{2}}^p(0).$$

Then we conclude that:

$$convex(A) \subset \left\{ y_1, ..., y_n \right\} + B_{\varepsilon}^p(0) + B_{\varepsilon}^p(0) \subset \left\{ y_1, ..., y_n \right\} + B_{\varepsilon}^p(0)$$

and confirm that convex(A) is p-precompact.

Proposition 2.5. A subset A of (X, p) is p -precompact if and only if the p^{-1} -closure of A is p -precompact.

Proof. If A is p-precompact and $\varepsilon > 0$, $k \ge 1$, there is a finite set in A, $\{x_1, ..., x_n\}$ such that:

$$A \subset \bigcup_{i=1}^{n} B_{\frac{\varepsilon}{2k}}^{p}(x_{i}) \subset \bigcup_{i=1}^{n} B_{\leq,\frac{\varepsilon}{2k}}^{p}(x_{i}).$$

Note that the sets $B^p_{\leq,\frac{\varepsilon}{2k}}(a_i)$ are p^{-1} -closed. Then:

$$\overline{A}^{p^{-1}} \subset \overline{\bigcup_{i=1}^{n} B^{p}_{\leq,\frac{\varepsilon}{2k}}(x_{i})}^{p^{-1}} \subset \bigcup_{i=1}^{n} \overline{B^{p}_{\leq,\frac{\varepsilon}{2k}}(x_{i})}^{p^{-1}} = \bigcup_{i=1}^{n} B^{p}_{\leq,\frac{\varepsilon}{2k}}(x_{i}) \subset \bigcup_{i=1}^{n} B^{p}_{\leq,\varepsilon}(x_{i}).$$

Conversely: If $\overline{A}^{p^{-1}}$ is p-precompact, for $\varepsilon > 0$ and some $k \ge 1$, there is a finite subset of $\overline{A}^{p^{-1}}$, $\{x_1, ..., x_n\}$, such that:

$$A \subset \overline{A}^{p^{-1}} \subset \bigcup_{i=1}^{n} \left(x_i + B^p_{\frac{\varepsilon}{2k}}(0) \right).$$

We have that for every $i \in \{1, ..., n\}$, $x_i \in \overline{A}^{p^{-1}}$. Then for a fixed index i there is some $a_i \in A$ such that:

$$p^{-1}(a_i - x_i) = p(x_i - a_i) < \frac{\varepsilon}{2k}$$
.

Now let us prove that: $x_i + B_{\varepsilon}^p(0) \subset a_i + B_{\varepsilon}^p(0)$.

Let $y \in x_i + B_{\frac{\varepsilon}{2k}}^p(0)$. Then $p(y - x_i) < \frac{\varepsilon}{2}$ and: $p(y - a_i) \le k \left(p(y - x_i) + p(x_i - a_i) \right) < k \left(\frac{\varepsilon}{2k} + \frac{\varepsilon}{2k} \right) = \varepsilon$.

So we have A is p-precompact.

Let (X, p) be an asymmetric quasi normed space and $K \subset X$.

Then K is compact respect to the topology $T(d_p)$ induced by the asymmetric quasi norm p if and only if $K + \Psi_0$ is compact for the same topology (see [4]). An analogue proposition and its proof of the following proposition, for the case of the asymmetric norm is given in [5]

Proposition 2.6. Let (X, p) be an asymmetric quasi normed space. If K is a subset of X such that $K_0 \subset K \subset K_0 + \Psi_0$ where K_0 is p^s -compact, then K is p-compact.

Theorem 2.7. Let (X, p) be an asymmetric quasi normed space. Let K be a subset of X, then:

- (1) If (X, p) is a bi-Banach right-bounded space with constant r = 1 and K is p-precompact set then there is a p^s -compact subset K_0 of X such that $K \subset K_0 + \Psi_0$.
- (2) If there is a p^s -precompact subset K_0 of X such that $K \subset K_0 + \Psi_0$ then K is outside p-precompact.

Proof. (1) Step 1. First we construct an special family of balls covering the set K in order to find an adequate p^s compact set. By the definition of p-precompactness we have that for $\varepsilon = \frac{1}{4k}$ and $\varepsilon = \frac{1}{2k}$, $k \ge 1$:

$$K \subset \bigcup_{i=1}^{n_1} B_{\frac{1}{2k}}^p(x_i^1), \left\{ x_1^1, ..., x_{n_1}^1 \right\} \subset K \text{ and } K \subset \bigcup_{i=1}^{n_2} B_{\frac{1}{4k}}^p(x_i^2), \left\{ x_1^2, ..., x_{n_2}^2 \right\} \subset K.$$

It follows that for all $i = 1, ..., n_2$, there is an index $j_i \in \{1, ..., n_1\}$ such that $x_i^2 \in B_{\frac{1}{2k}}^p(x_{j_i}^1)$.

We also have that $B_{\frac{1}{2k}}^{p}(x_{j_{i}}^{1}) \subset B_{\frac{1}{2k}}^{p^{s}}(x_{j_{i}}^{1}) + \Psi_{0}$. Thus $x_{i}^{2} = \overline{x_{i}}^{2} + z$ with $\overline{x_{i}}^{2} \in B_{\frac{1}{2k}}^{p^{s}}(x_{j_{i}}^{1})$ and $z \in \Psi_{0}$.

If $y \in B^p_{\frac{1}{4k}}(x_i^2)$ then:

$$p(y-x_i^2) \le k(p(y-x_i^2)+p(z)) < k(\frac{1}{4k}) = \frac{1}{4}$$

Thus $B_{\frac{1}{4k}}^p(x_i^2) \subset B_{\frac{1}{4k}}^p(\overline{x_i^2})$, and $\left\{B_{\frac{1}{4k}}^p(\overline{x_i^2}): i=1,...,n_2\right\}$ defines a p-cover of K.

Following this construction for each $N \in \mathbb{N}$ we obtain a family $\left\{ \begin{matrix} -N & -N \\ x_1 & \dots & x_{n_N} \end{matrix} \right\}$, such that for each $\overline{x_i}$, $i = 1, \dots, n_N$ there is $\overline{x_{j_i}}^{N-1}$ such that:

$$p^{s}\left(\frac{-N}{x_{i}}-x_{j_{i}}^{-N-1}\right) < \frac{1}{2^{N-1}}$$

and:

$$K \subset \bigcup_{i=1}^{n_N} B^p_{\frac{1}{2^N}} \left(\overset{-N}{x_i} \right).$$

Let $L = \{x_1, x_2, ..., x_{n_1}, x_1, ..., x_{n_2}, ...\}$, with $x_i^{-1} = x_i^{-1}$ for $i = 1, ..., n_1$. We will prove first that L is p^s -precompact.

Let $\varepsilon > 0$ and consider some $N \in \mathbb{N}$ such that $\frac{1}{2^{N-2}} < \frac{\varepsilon}{k}$ for some $k \ge 1$. We omit the subindexes for the aim of clarity. Take some $\overline{x}^m \in L$; then we have two cases:

<u>Case 1</u>: $m \le N$. Then we have:

$$\overline{x}^{m} \in B_{\varepsilon}^{p^{s}}\left(\overline{x}^{m}\right) \subset \bigcup_{i=1}^{n_{m}} B_{\varepsilon}^{p^{s}}\left(\overline{x}^{m}_{i}\right) \subset \bigcup_{l=1}^{N} \bigcup_{i=1}^{n_{l}} B_{\varepsilon}^{p^{s}}\left(\overline{x}^{l}_{i}\right).$$

<u>Case 2</u>: m > N, fixed \overline{x}^m there is an element \overline{x}^{m-1} such that $p^s \left(\overline{x}^m - \overline{x}^{m-1}\right) < \frac{1}{2^{m-1}}$.

In the same way there is \overline{x}^{m-2} such that $p^s \left(\overline{x}^{m-1} - \overline{x}^{m-2}\right) < \frac{1}{2^{m-2}}$ and if we continue like this we obtain \overline{x}^N such that $p^s \left(\overline{x}^N - \overline{x}^{N-1}\right) < \frac{1}{2^{N-1}}$. Then we have: $p^s \left(\overline{x}^l - \overline{x}^{l-1}\right) < \frac{1}{2^{l-1}}$ for l = N, ..., m.

Thus:

$$\begin{split} p^{s}\left(\overline{x}^{m}-\overline{x}^{N}\right) &\leq k\left(p^{s}\left(\overline{x}^{m}-\overline{x}^{m-1}\right)+p^{s}\left(\overline{x}^{m-1}-\overline{x}^{m-2}\right)+\ldots+p^{s}\left(\overline{x}^{N+1}-\overline{x}^{N}\right)\right)\\ &\leq \frac{1}{2^{m-1}}+\frac{1}{2^{m-2}}+\ldots+\frac{1}{2^{N}}\\ &\leq \frac{1}{2^{N-1}}\left(\sum_{j=1}^{\infty}\frac{1}{2^{j}}\right)=\frac{1}{2^{N-1}}. \end{split}$$

Then we conclude $p^{s}\left(\overline{x}^{m}-\overline{x}^{N}\right) \leq k \frac{1}{2^{N-1}} < k \frac{\varepsilon}{k} = \varepsilon$, that is: $\overline{x}^{m} \in B_{\varepsilon}^{p^{s}}\left(\overline{x}^{N}\right) \subset \bigcup_{i=1}^{n_{N}} B_{\varepsilon}^{p^{s}}\left(\overline{x}^{N}_{i}\right)$.

Therefore $L \subset \bigcup_{l=1}^{N} \bigcup_{i=1}^{n_l} B_{\varepsilon}^{p^s} \left(\overline{x_i}^{l} \right)$ which proves that L is p^s -precompact, thus \overline{L}^{p^s} is p^s -compact.

Step 2. Let $K_0 = \overline{L}^{p^s}$. We must prove that $K \subset K_0 + \Psi_0$.

If $x \in K$, for each $n \in \mathbb{N}$, there is some \overline{x}^n of the corresponding family obtained in the previous step (we omit the indexes since there in no confusion) such that:

$$x \in B_{\frac{1}{2^n}}^p \left(\overline{x}^n \right) = B_{\frac{1}{2^n}}^{p^s} \left(\overline{x}^n \right) + \Psi_0$$

Then for every $n \in \mathbb{N}$, there are $\overline{y}^n \in B_{\frac{1}{2^n}}^{p^s}(\overline{x}^n)$ and $z^n \in \Psi_0$ such that $x = \overline{y}^n + z^n$.

Consider the sequence $\{\overline{x}^n\}_{n\in\mathbb{N}} \subset \overline{L}^{p^s}$; since \overline{L}^{p^s} is p^s -compact there is a subsequence $\{\overline{x}^n\}_l$, p^s -convergent to $x_0 \in \overline{L}^{p^s}$.

Let us now prove that $p(x-x_0) = 0$. For a positive \mathcal{E} there is some index l_0 such that for all $l \ge l_0$, we have: $p^s(\overline{x}^{n_l} - x_0) < \frac{\mathcal{E}}{2}$, note that: $p^s(\overline{x}^{n_l} - \overline{y}^{n_l}) < \frac{1}{2^{n_l}}$.

If we choose l_1 such that $\frac{1}{2^{n_l}} < \frac{\varepsilon}{2k}$ for $l \ge l_1$ and some $k \ge 1$, and consider $l_2 = \max\{l_0, l_1\}$, then for all $l \ge l_2$ we have:

$$p(x-x_0) \le k \left(p(x-\overline{y}^{n_l}) + p(\overline{y}^{n_l} - \overline{x}^{n_l}) + p(\overline{x}^{n_l} - x_0) \right)$$

$$\leq k \left(0 + p^{s}(\overline{y}^{n_{l}} - \overline{x}^{n_{l}}) + p^{s}(\overline{x}^{n_{l}} - x_{0}) \right) < k \left(\frac{1}{2^{n_{l}}} + \frac{\varepsilon}{2k} \right) < k \left(\frac{\varepsilon}{2k} + \frac{\varepsilon}{2k} \right) = \varepsilon$$

Since this can be done for every $\varepsilon > 0$, we obtain that $p(x - x_0) = 0$ so $x - x_0 \in \Psi_0$. We conclude that:

$$x \in \overline{L}^{p^{s}} + \Psi_{0} = K_{0} + \Psi_{0}.$$

End of the proof for (1).

For the proof of (2), choose some $\varepsilon > 0$. Since K_0 is p^s -precompact, there is a finite set $\{x_1, ..., x_n\}$ in K_0 such that $K_0 \subset \bigcup_{i=1}^n B_{\varepsilon}^{p^s}(x_i)$. Then (see [4]):

$$K_0 \subset \bigcup_{i=1}^n B_{\varepsilon}^{p^s}(x_i) + \Psi_0 = \bigcup_{i=1}^n \Big(B_{\varepsilon}^{p^s}(x_i) + \Psi_0 \Big) \subset \bigcup_{i=1}^n B_{\varepsilon}^p(x_i).$$

That is clear that K is outside p-precompact.

References

- [1] S.Cobzas. Functional on Asymmetric Normed Spaces. Springer Fronties in Mathematics, 2013. ISBN. 978-3-0348-0478-3.
- [2] L.M. Garcia Raffi, S.Romaguera, E.A.Sanchez-Perez, *The dual space of an asymmetric normed linear space*. Quaestiones Math.26 (2003) 83-96.
- [3] L.M. Garcia Raffi, S.Romaguera, E.A.Sanchez-Perez, *The bicomplection of an asymmetric normed linear space*. Acta. Math. Hungar. 97 (3) (2002) 183-191.
- [4] L.M. Garsia-Raffi, *Compactness and finite dimension in asymmetric normed linear spaces*, Topology Appl. 153 (2005), 844-853.
- [5] C.Alegre, I.Ferrando, L.M. Garcia Raffi, E.A.Sanchez-Perez, *Compactness in asymmetric normed spaces*. Topology and its Applications 155 (2008) 527-539.