

Volume 3, Issue 2 April 20, 2015

Journal of Progressive Research in Mathematics www.scitecresearch.com

On Soft slightly πg -continuous functions

I. Arockiarani¹, A. Selvi²

¹Department of Mathematics, Nirmala College for Women, Coimbatore, India. ²Department of Mathematics, Providence College for Women, Coonoor, India.

Abstract

In this paper, we introduce and study the concept of soft slightly π g-continuous functions which is weaker than soft π g-continuous functions and obtain its fundamental properties. The relationship between soft slightly π g-continuity and other related functions is also analyzed.

Keywords: Soft π g-closed set; soft π g-open set; soft clopen set; soft π g-Continuity; soft slightly continuity; soft slightly π g-continuity.

1. Introduction

Molodtsov [8] initiated the concept of soft set theory as a new mathematical tool and presented the fundamental results of the soft sets. Muhammad Shabir and Munazza Naz [10] introduced soft topological spaces and the notions of soft open sets, soft closed sets, soft closure, soft interior points, soft neighborhood of a point and soft separation aioms. Kharal et al. [5] introduced soft function over classes of soft sets. Cigdem Gunduz Aras et al., [1] in 2013 studied and discussed the properties of Soft continuous mappings which are defined over an initial universe set with a fixed set of parameters. In this paper, soft slightly π g-continuity is introduced and studied. Moreover, basic properties for soft slightly π g-continuious functions are investigated and relationship between soft slightly π g-continuious functions and its graphs are studied.

2. Preliminaries

Definition: 2.1[8]

Let U be the initial universe and P(U) denote the power set of U. Let E denote the set of all parameters. Let A be a nonempty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P(U)$.

Definition: 2.2[6]

A subset (A, E) of a topological space X is called soft generalized-closed (soft g -closed), if $cl(A,E) \cong (U,E)$ whenever $(A,E) \cong (U,E)$ and (U,E) is soft open in X.

Definition: 2.3[2]

A subset (A, E) of a topological space X is called soft regular closed, if cl(int(A,E)) = (A,E). The complement of soft regular closed set is soft regular open set.

Definition: 2.4[2]

The finite union of soft regular open sets is said to be soft π -open. The complement of soft π -open is said to be soft π -closed.

Definition: 2.5[2]

A subset (A, E) of a topological space X is called soft πg -closed in a soft topological space (X, τ , E), if cl(A, E) \cong (U, E) whenever (A, E) \cong (U, E) and (U, E) is soft π -open in X.

Definition: 2.6[1]

Let (F, E) be a soft set over X. The soft set (F, E) is called soft point, denoted by (x_e, E) , if for element $e \in E$, $F(e) = \{x\}$ and $F(e') = \emptyset$ for all $e' \in E - \{e\}$.

Definition: 2.7[11]

Let (X, τ, E) and (Y, τ', E) be two topological spaces. A function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be Soft Semi continuous (Soft pre-continuous, Soft α -continuous, Soft β -continuous), if $f^{-1}(G, E)$ is soft semi open(soft pre-open,

soft α -open, soft β -open) in (X, τ , E) for every soft open set (G, E) of (Y, τ' , E).

Definition: 2.8[3]

Let (X, τ, E) and (Y, τ', E) be two topological spaces. A function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be Soft regular continuous. Soft π -continuous, Soft g-continuous, Soft π g-continuous), if $f^{-1}(G, E)$ is soft regular open (soft π -open, soft g-open, soft π g-open) in (X, τ, E) for every soft open set (G, E) of (Y, τ', E) .

Definition: 2.9[3]

A function $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -irresolute, if $f^{-1}(G, E)$ is soft πg -open in (X, τ, E) for every soft πg -open set (G, E) of (Y, τ', E) .

Definition: 2.10[2]

A space (X, τ , E) is called soft πg - $T_{\frac{1}{2}}$ [6], if every soft πg -closed set is soft closed, or equivalently every soft πg -open set is soft open.

Definition: 2.11[10]

A soft topological space (X, τ, E) is a soft $-T_0$ spee, if for each pair of distinct soft points x and y in X, there exist soft open sets (F,E) and (G,E) such that $x \in (F,E)$ and $y \notin (F, E)$ or $y \in (G,E)$ and $x \notin (G, E)$.

Definition: 2.12[3]

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called $\tilde{S}\pi$ g-open, if image of each open set in X is $\tilde{S}\pi$ g-open in Y.

Definition: 2.13[4]

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called soft contra π g-continuous, if $f^{-1}(F, E)$ is soft π g-closed in X for every soft open set (F, E) of Y.

Definition: 2.14[4]

A space (X, τ, E) is said to be soft πg -compact, if every soft πg -open cover of X has a finite sub cover.

Definition: 2.15[4]

Soft countably πg -compact, if every soft πg -open countably cover of X has a finite subcover.

Definition: 2.16[4]

soft π g-Lindelöf, if every soft π g-open cover of X has a countable subcover.

Definition: 2.17[4]

A space (X, τ, E) is called soft πg -connected provided that X cannot be written as the union of two disjoint non-empty soft πg -open sets.

Definition: 2.18[10]

A soft topological space (X, τ, E) is a soft πg -T₀ spee, if for each pair of distinct soft points x and y in X, there exist soft open sets (F,E) and (G,E) such that $x \in (F,E)$ and $y \notin (F, E)$ or $y \in (G,E)$ and $x \notin (G, E)$.

3. Slightly π g-continuous functions

Definition: 3.1

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called soft slightly continuous, if $f^{-1}(G, E)$ is soft open in X for each soft clopen subset (G, E) of Y.

Definition: 3.2

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be soft slightly πg -continuous, if $f^{-1}(G, E)$ is soft πg -open in X for each soft clopen subset (G, E) of Y.

Theorem: 3.3

The following statements are equivalent for a function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$

- 1. f is soft slightly π g-continuous.
- 2. for every soft clopen subset (G,E) of Y, $f^{-1}(G, E)$ is soft π g-closed in X.
- 3. for every soft clopen subset (G,E) of Y, $f^{-1}(G, E)$ is soft π g-clopen in X.

Proof:

(1)⇒(2)

Let (G, E) be soft clopen in Y. Then Y\ (G, E) is soft clopen in Y. Since f is soft slightly π g-continuous, $f^{-1}(Y \setminus (G, E))$ is soft π g-open in X. $f^{-1}(Y \setminus (G, E)) = X - f^{-1}(G, E)$ is soft π g-open in X implies $f^{-1}(G, E)$ is soft π g-closed in X.

(2) ⇒(3)

Let (G, E) be soft clopen in Y. Then Y\ (G, E) is soft clopen in Y. By (2) $f^{-1}(Y \setminus (G, E))$ is soft πg -closed in X. Hence $f^{-1}(G, E)$ is soft πg -open in X implies $f^{-1}(G, E)$ is soft πg -clopen in X.

(3) \Rightarrow (1): obvious

Theorem: 3.4

Every soft slightly continuous function is soft slightly π g-continuous.

Proof: Obvious.

Remark: 3.5

The converse of the above theorem is not true in general as shown in the following examples.

Example 3.6

Let $X = \{h_1, h_2, h_3, h_4\}$, $Y = \{h_1, h_2, h_3\}$, $E = \{e_1, e_2\}$. Let F_1 , F_2 , F_3 , F_4 and G_1 , G_2 are functions from E to P(X) and E to P(Y) are defined as follows:

 $\begin{array}{l} F_1(e_1) = \{h_3\} \ , \ F_1(e_2) = \{h_1\}; \ F_2(e_1) = \{h_4\}, \ F_2(e_2) = \{h_2\}; \ F_3(e_1) = \{\ h_3, h_4\}, \ F_3(e_2) = \{h_1, h_2\}; \ F_4(e_1) = \{\ h_1, h_4\} \ , \ F_4(e_2) = \{h_2, h_4\} \ F_5(e_1) = \{\ h_2, h_3, h_4\}, \ F_5(e_2) = \{h_1, h_2, h_3\}; \ F_6(e_1) = \{\ h_1, h_3, h_4\} \ , \ F_6(e_2) = \{h_1, h_2, h_4\} \ and \ G_1(e_1) = \{h_1\} \ , \ G_1(e_2) = \{h_1\}; \ G_2(e_1) = \{h_2, h_3\}, \ G_2(e_2) = \{\ h_2, h_3\}. \ \ Then \ \tau = \{\widetilde{\emptyset}, \widetilde{X}, \ (F_1, E) \ (F_2, E), \ (F_3, E), \ (F_4, E), \ (F_5, E), \ (F_6, E)\} \ is \ a \ soft \ topological \ space \ over \ X \ and \ \tau' = \{\widetilde{\emptyset}, \widetilde{Y}, \ (G_1, E), \ (G_2, E)\} \ is \ a \ soft \ s$

Theorem: 3.7

Let (X, τ, E) be a soft $\pi g \cdot T_{\frac{1}{2}}$ space. Then the function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft slightly πg -continuous if and only if it is soft slightly continuous.

Proof:

Let (G, E) be soft clopen in Y. Since f is soft slightly πg - continuous, f^{-1} (G, E) is soft πg -open in X implies f^{-1} (G, E) is soft open in X. Therefore f is soft slightly continuous. Conversely every soft slightly continuous is soft slightly πg - continuous.

Theorem: 3.8

Suppose $\tilde{S}\pi GO(X)$ is soft closed under arbitrary unions. Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a function. Then f is soft slightly πg -continuous if and only if for each point $x \in X$ and each soft clopen set (V,E) containing f(x), there exists a soft πg -open set (U,E) containing x such that $f(U,E) \cong (V,E)$.

Proof:

Let $x \in X$ and (V,E) be soft clopen then $f(x) \in (V,E)$. Since f is soft slightly π g-continuous,

 f^{-1} (V, E) is soft π g-open in X. If we put (U,E) = f^{-1} (V, E) then $x \in (U,E)$ and $f(U,E) \simeq (V,E)$. Conversely let (V,E) be a soft clopen subset of Y and let $x \in f^{-1}(V, E)$. Since $f(x) \in (V,E)$, there exists a soft π g-open set (U_x,E) in X containing x such that (U_x,E) $\simeq f^{-1}(V,E)$. We obtain $f^{-1}(V,E) = \cup \{(U_x,E): x \in f^{-1}(V,E)\}$. Thus $f^{-1}(V,E)$ is soft π g-open.

Definition: 3.9

A space (X, τ, E) is said to be soft locally indiscrete, if every soft open set of X is soft closed in X.

Theorem: 3.10

If a function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft slightly π g-continuous and (Y, τ', E) is soft locally

indiscrete, then f is soft π g-continuous.

Proof:

Let (A, E) be a soft open set in Y. Since Y is soft locally indiscrete, every soft soft open set is soft closed. Since f is soft slightly π g-continuous, $f^{-1}(A, E)$ is soft π g-open in X. Hence f is soft slightly continuous.

Theorem: 3.11

If a function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft slightly πg -continuous and (X, τ, E) is soft $\pi g \cdot T_{\frac{1}{2}}$ space then f is soft slightly continuous.

Proof:

Let (A, E) be a soft clopen set in Y. By hypothesis $f^{-1}(A, E)$ is soft π g-open in X. Since X is soft π g- $T_{\frac{1}{2}}$ space, $f^{-1}(A, E)$ is soft open in X. Hence f is soft slightly continuous.

Definition: 3.12

A space (X, τ, E) is said to be soft submaximal, if each soft dense subset of X is soft open.

Definition: 3.13

A space (X, τ, E) is said to be soft extremally disconnected, if the soft closure of each soft open set of X is soft open in X.

Definition: 3.14

The graph G(f) of a function $f : (X, \tau, E) \to (Y, \tau', E)$ is said to be soft slightly πg -graph, if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a $\tilde{S}\pi g$ -open set (A,E) in X containing x and a soft clopen set (B,E) in Y containing y such that (A × B, E) $\cap G(f) = \emptyset$.

Theorem: 3.15

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be soft function and let g: $(X, \tau, E) \rightarrow (X \times Y, \tau \times \tau', E)$ be the soft graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. Then f is soft slightly π g-continuous, if g is soft slightly π g-continuous.

Proof:

Let $(V, E) \in \tilde{S}CO(Y)$ then $X \times (V, E) \in \tilde{S}CO(X \times Y)$. Since g is soft slightly πg -continuous, $f^{-1}(V, E) = g^{-1}(X \times (V, E)) \in \tilde{S}\pi GO(X)$. Thus f is soft slightly πg -continuous.

Theorem: 3.16

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be soft slightly πg -continuous function and let g: $(X, \tau, E) \rightarrow (X \times Y, \tau \times \tau', E)$ be the soft graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If for each soft clopen subset (W,E) of $(X \times Y, \tau \times \tau', E)$ and for each $x \in g^{-1}(W, E)$, the set $g^{-1}(W, E) \cap f^{-1}(W_x, E)$ where (W_x, E) is a vertical cut of (W,E) at x is soft πg -open relative to $f^{-1}(W_x, E)$ then g is soft slightly πg -continuous.

Proof:

Let (W, E) be any soft clopen subset of $X \times Y$ and let $x \in g^{-1}(W, E)$, be an arbitrarily chosen soft point. Then (W, E) \cap ({x} × Y) is soft clopen in {x} × Y containing g (x). Also {x} × Y is soft homeomorphic to Y. Hence, the vertical cut $W_x = \{y \in Y: (x, y) \in (W, E)\}$ is a soft clopen subset of Y. Since f is soft slightly π g-continuous, $f^{-1}(W_x, E)$ is a soft rag-open subset of X. By hypothesis $g^{-1}(W, E) \cap f^{-1}(W_x, E)$ is soft π g-open relative to $f^{-1}(W_x, E)$, so $g^{-1}(W, E) \cap f^{-1}(W_x, E)$ is soft π g-open in X. Therefore $g^{-1}(W, E)$ is soft π g-open in X. Then g is soft slightly π g-continuous.

Theorem: 3.17

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ and g: $(Y, \tau', E) \rightarrow (Z, \tau'', E)$ be functions. Then the following properties hold:

- 1. if f is soft πg -irresolute and g is soft slightly πg -continuous, then $g \circ f: (X, \tau, E) \to (Z, \tau'', E)$ is soft slightly πg -continuous.
- 2. if f is soft πg -irresolute and g is soft πg -continuous, then $g \circ f: (X, \tau, E) \to (Z, \tau'', E)$ is soft slightly πg -continuous.
- 3. if f is soft πg -irresolute and g is soft slightly continuous, then $g \circ f: (X, \tau, E) \to (Z, \tau'', E)$ is soft slightly πg -continuous.

Theorem: 3.18

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ and g: $(Y, \tau', E) \rightarrow (Z, \tau'', E)$ be functions. If f is soft M- π g-open surjective and g \circ f: $(X, \tau, E) \rightarrow (Z, \tau'', E)$ is soft slightly π g-continuous then g is soft slightly π g-continuous.

Proof:

Let (A, E) be any soft clopen in Z. Since gof is soft slightly πg -continuous, (gof)($f^{-1}(A, E)$) = $f^{-1}(g^{-1}(A, E))$ is soft soft πg -open. Since f is soft M- πg -open, then $f(f^{-1}(g^{-1}(A, E))) = g^{-1}(A, E)$ is soft soft πg -open in Y. Hence g is soft slightly πg -continuous.

Theorem: 3.19

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be surjective soft πg -irresolute, soft M- πg -open and let g : $(Y, \tau', E) \rightarrow (Z, \tau'', E)$ be a function. Then g \circ f: $(X, \tau, E) \rightarrow (Z, \tau'', E)$ is soft slightly πg -continuous if and only if g is soft slightly πg -continuous.

4. Soft π g-compact space and Soft π g-connected space

Definition: 4.1

A space (X, τ, E) is said to be soft mildly compact, if every soft clopen cover of X has a finite sub cover.

Theorem: 4.2

If a function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft slightly πg -continuous and (A, E) is soft πg -compact relative to X, then f(A,E) is soft mildly compact relative to Y.

Proof:

Let {(V_i, E): i ∈ I} be any soft cover of f(A,E) by soft clopen sets of the subspace f(A,E). For each i ∈ I there exists a soft clopen set (A_i, E) of Y such that (V_i, E) = (A_i, E) ∩ f(A,E). For each $x \in (A,E)$, there exists $i(x) \in I$ such that $f(x) \in (A_{i(x)}, E)$ and there exists $(F_x, E) \in \tilde{S}\pi \text{GO}(X, x)$ such that $f(F_x, E) \subset (A_{i(x)}, E)$. Since the family {($F_x, E) : x \in (A,E)$ } is a soft cover of (A,E) by $\tilde{S}\pi g$ - open sets of X, there exists a finite subset (A₀, E) of (A,E) such that (A,E) $\subset \cup \{(F_x, E) : x \in (A_0,E)\}$. Hence, we obtain $f(A,E) \subset \cup \{f(F_x, E) : x \in (A_0,E)\}$ which is a subset of $\cup \{(A_{i(x)},E) : x \in (A_0,E)\}$. Thus, $f(A,E) = \cup \{V_{i(x)},E) : x \in (A_0,E)\}$. Hence f(A,E) is soft mildly compact relative to Y.

Corollary: 4.3

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft slightly πg -continuous surjection and X is soft πg -compact, then Y is soft mildly compact.

Definition: 4.4

A space (X, τ, E) is said to be:

- 1. Soft mildly countably compact, if every soft clopen countably cover of X has a finite subcover.
- 2. Soft mildly Lindelöf, if every soft cover of X by soft clopen sets has a soft countable subcover.
- 3. Soft π g-closed compact, if every soft π g-closed cover of X has a finite subcover.
- 4. Soft countably π g-closed-compact, if every countable cover of X by soft π g-closed sets has a finite subcover.

Theorem: 4.5

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a soft slightly π g-continuous surjection. Then the following statements hold:

1. If X is soft π g-Lindelöf, then Y is soft mildly Lindelöf.

2. If X is soft countably π g-compact, then Y is soft mildly countably compact.

Proof:

(1) Let { (V_{α}, E) : $\alpha \in I$ } be a soft clopen cover of Y. Since f is soft slightly πg -continuous, then { $f^{-1}(V_{\alpha}, E)$: $\alpha \in I$ } is a soft πg -open cover of X. Since X is soft πg -Lindelof, there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}, E) : \alpha \in I_0\}$. Thus $Y = \bigcup \{(V_{\alpha}, E) : \alpha \in I_0\}$ and hence Y is soft mildly Lindelöf. Proof of (2) Similar to (1).

Theorem: 4.6

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a soft slightly π g-continuous surjection. Then the following statements hold:

- 1. If X is soft π g-closed compact, then Y is soft mildly compact.
- 2. If X is soft π g-closed Lindelöf, then Y is soft mildly Lindelöf.
- 3. If X is soft countably π g-closed compact, then Y is soft mildly countably compact.

Theorem: 4.7

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft slightly π g-continuous surjective function and X is soft π g-connected, then Y is soft connected.

Proof:

Suppose Y is not soft connected. Then there exist non-empty disjoint soft clopen subsets (U, E) and (V, E) of Y such that $Y = (U, E) \cup (V, E)$. Since f is soft slightly πg -continuous, we have $f^{-1}(U, E)$ and $f^{-1}(V, E)$ are non-empty disjoint soft πg -open sets in X. Moreover, $f^{-1}(U, E) \cup f^{-1}(V, E) = X$. This shows that X is not soft πg -connected which is a contradiction. Hence Y is soft connected.

Theorem: 4.8

If f is a soft slightly π g-continuous function from a soft π g-connected space X onto any space Y, then Y is not a soft discrete space.

Proof:

Suppose that Y is soft discrete. Let (A, E) be a proper nonempty soft open subset of Y. Then $f^{-1}(A, E)$ is any proper nonempty soft π g-clopen subset of X, which is a contradiction to the assumption that X is soft π g-connected. Therefore Y is not a soft discrete space.

Theorem: 4.9

A space X is soft π g-connected, if every soft slightly π g-continuous function from a space X into any soft T₀-space Y is constant.

Proof:

Suppose that X is not soft πg -connected. Let every soft slightly πg -continuous function from X into any soft T_0 -space then Y is constant. Since X is not soft πg -connected, there exists a proper nonempty soft πg -clopen subset (A, E) of X. Then f is a non-constant and soft slightly πg -continuous such that Y is soft $-T_0$, which is a contradiction. Hence, X is soft πg -connected.

Theorem: 4.10

If a function f: $X \to \prod Y_{\alpha}$ is soft slightly πg -continuous, then $P_{\alpha} \circ f : X \to Y_{\alpha}$ is soft slightly πg -continuous for each

 $\alpha \in \Lambda$, where P_{α} is the projection of $\prod Y_{\alpha}$ onto Y_{α} .

Proof:

Let (V_{α}, E) be any soft clopen set of Y_{α} . Then $P_{\alpha}^{-1}(V_{\alpha}, E)$ is soft clopen in $\prod Y_{\alpha}$. Hence $(P_{\alpha} \circ f)^{-1}(V_{\alpha}, E) = (f^{-1}(P^{-1}(V_{\alpha}, E)))$ is soft πg -open in X. Therefore, $P_{\alpha} \circ f$ is soft slightly πg -continuous.

Theorem: 4.11

If a function f: $\prod X_{\alpha} \to \prod Y_{\alpha}$ is soft slightly soft πg -continuous, then $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ is soft slightly πg -continuous for each $\alpha \in \Lambda$.

Proof:

Let (V_{α}, E) be any soft clopen set of Y_{α} . Then $P_{\alpha}^{-1}(V_{\alpha}, E)$ is soft clopen in $\prod Y_{\alpha}$ and $f^{-1}(P^{-1}(V_{\alpha}, E)) = f^{-1}(V_{\alpha}, E) \times \prod\{X_{\alpha} : \alpha \in \Lambda \setminus \{\alpha\}\}$. Since f is soft slightly πg -continuous, $f^{-1}(P^{-1}(V_{\alpha}, E))$ is soft πg -open in $\prod X_{\alpha}$. Since the projection P_{α} of $\prod X_{\alpha}$ onto X_{α} is soft open and soft continuous, $f_{\alpha}^{-1}(V_{\alpha}, E)$ is soft πg -open in X_{α} . Hence f_{α} is soft slightly πg -continuous.

References

- [1] C.G. Aras and A. Sonmez, On soft mappings, arXiv: 1305.4545, (2013).
- [2] I.Arockiarani and A.Selvi, Soft πg-operators in soft topological spaces, International Journal of Mathematical archive, 5(4) 2014, 37-43.
- [3] I.Arockiarani and A.Selvi, Soft π g-continuous functions and irresolute functions, International Journal of Innovation and Applied Studies, 7(2)2014, 440-446.
- [4] I.Arockiarani and A.Selvi, On soft contra πg-continuous functions, International Journal of Mathematics Trends and Technology, 19(2)2015, 80-90.
- [5] Athar Kharal and B. Ahmad, Mappings on soft classes, arXiv: 1006.4940(2010).
- [6] E.Ekici, On contra π g-continuous functions, Chaos Solitons and Fractals, 35(2008) 71-81.
- [7] K.Kannan, Soft Generalized closed sets in soft Topological Spaces, Journal of Theoretical and Applied Information Technology, 37 (2012), 17-20.
- [8] D.Molodtsov, Soft set Theory- First Results, Computers and Mathematics with Applications (1999), 19-31.
- [9] Saziye Yuksel, Naime Tozlu, Zehra Guzel regul, On soft generalized closed sets in Soft topological Spaces, Journal of Theoretical and Applied Information Technology, 37 (2012), 17-20.
- [10] M.Shabir and M. Naz, On Soft topological spaces, Computers and Mathematics with Applications 61(7)(2011), 1786-1799.
- [11] Y.Yumak, A.K. Kayamakci, Soft β -open sets and their application, arXiv: 1312.6964(2013).
- [12] I.Zortlutuna, M. Akday, W.K.Min, S.Atmaca, Remarks on soft topological spaces, Annals of fuzzy mathematical and Informatics, 3(2012) 171-185.