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Abstract

In this paper, we introduce and study the concept of soft slightly tg-continuous functions which is weaker than
soft mg-continuous functions and obtain its fundamental properties. The relationship between soft slightly ng-
continuity and other related functions is also analyzed.
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1. Introduction

Molodtsov [8] initiated the concept of soft set theory as a new mathematical tool and presented the fundamental results of
the soft sets. Muhammad Shabir and Munazza Naz [10] introduced soft topological spaces and the notions of soft open
sets, soft closed sets, soft closure, soft interior points, soft neighborhood of a point and soft separation aioms. Kharal et
al. [5] introduced soft function over classes of soft sets. Cigdem Gunduz Aras et al., [1] in 2013 studied and discussed the
properties of Soft continuous mappings which are defined over an initial universe set with a fixed set of parameters. In
this paper, soft slightly mg-continuity is introduced and studied. Moreover, basic properties for soft slightly mg-
continuious functions are investigated and relationship between soft slightly mg-continuious functions and its graphs are
studied.

2. Preliminaries
Definition: 2.1[8]

Let U be the initial universe and P(U) denote the power set of U. Let E denote the set of all parameters. Let A be a non-
empty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: A—P (U).

Definition: 2.2[6]

A subset (A, E) of a topological space X is called soft generalized-closed (soft g -closed), if cl(A,E) € (U,E) whenever
(AJE) € (U,E) and (U,E) is soft open in X.

Definition: 2.3[2]

A subset (A, E) of a topological space X is called soft regular closed, if cl(int(A,E)) = (A,E). The complement of soft
regular closed set is soft regular open set.

Definition: 2.4[2]

The finite union of soft regular open sets is said to be soft m-open. The complement of soft m-open is said to be soft n-
closed.

Definition: 2.5[2]

A subset (A, E) of a topological space X is called soft mg-closed in a soft topological space (X,z, E), if cl(A, E) € (U, E)
whenever (A, E) € (U, E) and (U, E) is soft m-open in X.
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Definition: 2.6[1]

Let (F, E) be a soft set over X. The soft set (F, E) is called soft point, denoted by (x,, E), if for element e € E, F(e) = {x}
and F(e”) = @ for all e’€ E—{e}.

Definition: 2.7[11]

Let (X, t, E)and (Y, 7, E)be two topological spaces. A function f : (X,7,E) = (Y,7,E) is said to be Soft Semi
continuous (Soft pre-continuous, Soft « -continuous, Soft 8 -continuous), if £~1(G, E) is soft semi open(soft pre-open,

soft a -open, soft B -open) in (X, 7, E) for every soft open set (G, E) of (Y, 1, E).
Definition: 2.8[3]

Let (X, 7, E) and (Y, 7, E) be two topological spaces. A function f: (X,t,E) = (Y,7,E) is said to be Soft regular
continuous(Soft -continuous, Soft g-continuous, Soft g-continuous), if £~1(G, E) is soft regular open(soft -open, soft
g-open, soft g-open) in (X, , E) for every soft open set (G, E) of (Y,1,E).

Definition: 2.9[3]

A function f: (X,1,E) - (Y, 7, E) is soft wg-irresolute, if f~1(G, E) is soft mg-open in (X, 1, E) for every soft wg-open set
(G, E) of (Y, 1,E).

Definition: 2.10[2]

A space (X, 1, E) is called soft ng-T1 [6], if every soft mg-closed set is soft closed, or equivalently every soft ng-open set is
soft open. ’

Definition: 2.11[10]

A soft topological space (X, 1, E) is a soft -Tq spce, if for each pair of distinct soft points x and y in X, there exist soft
open sets (F,E) and (G,E) such that x € (F.E)and y ¢ (F, E) or y € (G,E) and x € (G, E).

Definition: 2.12[3]
A function f: (X, 1, E) — (Y, 7', E) is called Smg-open, if image of each open set in X is Stg —open in'Y.
Definition: 2.13[4]

A function f: (X, 1, E) — (Y, 7, E) is called soft contra g-continuous, if f ~1(F, E) is soft mg-closed in X for every soft
open set (F, E) of Y.

Definition: 2.14[4]

A space (X, 1, E) is said to be soft ng-compact, if every soft tg-open cover of X has a finite sub cover.
Definition: 2.15[4]

Soft countably mg-compact, if every soft mg-open countably cover of X has a finite subcover.
Definition: 2.16[4]

soft ng-Lindel6f, if every soft #g-open cover of X has a countable subcover.

Definition: 2.17[4]

A space (X, 1, E) is called soft =g-connected provided that X cannot be written as the union of two disjoint non-empty soft
Tg-open sets.

Definition: 2.18[10]

A soft topological space (X, 1, E) is a soft ng -T, spce, if for each pair of distinct soft points x and y in X, there exist soft
open sets (F,E) and (G,E) such that x € (F.E) and y ¢ (F, E) or y € (G,E) and x € (G, E).

3. Slightly =rg-continuous functions
Definition: 3.1

A function f: (X,1,E) = (Y,7,E) is called soft slightly continuous, if f~1(G, E) is soft open in X for each soft clopen
subset (G, E) of Y.
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Definition: 3.2

A function f: (X,1,E) - (Y, 7, E) is said to be soft slightly ng-continuous, if f ~1(G, E) is soft mg-open in X for each soft
clopen subset (G, E) of Y.

Theorem: 3.3
The following statements are equivalent for a function f: (X, 1, E) — (Y, 7, E)
1. fissoft slightly ng-continuous.
2. for every soft clopen subset (G,E) of Y, f~1(G, E) is soft ng-closed in X.
3. for every soft clopen subset (G,E) of Y, f1(G, E) is soft ng-clopen in X.
Proof:
D=(2)

Let (G, E) be soft clopen in Y. Then Y\ (G, E) is soft clopen in Y. Since f is soft slightly ng-continuous, f~1(Y\ (G, E)) is
soft mg-open in X. f~1(Y\ (G, E)) = X— f~1 (G, E) is soft ng-open in X implies f~1 (G, E) is soft mg-closed in X.

(2) =)

Let (G, E) be soft clopen in Y. Then Y\ (G, E) is soft clopen in Y. By (2) f~*(Y\ (G, E)) is soft mg-closed in X. Hence
f~1 (G, E) is soft mg-open in X implies £~ (G, E) is soft ng-clopen in X.

(3) =(2): obvious

Theorem: 3.4

Every soft slightly continuous function is soft slightly mg-continuous.
Proof: Obvious.

Remark: 3.5

The converse of the above theorem is not true in general as shown in the following examples.

Example 3.6

Let X = {hy hy hy hs}, Y = {hy hy hs}, E = {ey, e,}. Let Fy, Fy, F3, Fyq and G;, G, are functions from E to P(X) and E to
P(Y) are defined as follows:

Fi(e1) = {h3} , Fi(e2) = {h1}; Fa(e1) = {ha}, Fa(e2) = {h2}; Fs(e1) = { hs, ho}, Fa(e2) = {hy, ho}; Fa(er) = { s, ha}, Fa(ez) =
{ h2, h4} Fs(el): { hg, h3, h4}, F5(E2) = {hl, h2, h3}, F6(el)~:;{ h]_, h3, h4} , Fe(ez) = {hl, hz, h4} and Gl(el) = {h]_} , Gl(ez) =
{h:}; Ga(e1) = {hz hs}, Ga(e2) = { hy ,hs}. Thent= {@, X, (F1, E) (F2, E), (Fs, E), (F4, E), (Fs, E), (Fs, E)} is a soft
topological space over X and ©* = {@, Y, (Gy, E), (G,, E)} is a soft topological space over Y. If the function f:
(X,1,E) = (Y,7,E) is defined as f(h;) = h;, f(hs) = h, then f is soft slightly mg-continuous but not soft slightly
continuous.

Theorem: 3.7

Let (X, 1, E) be a soft ng-T1 space. Then the function f: (X, 1, E) — (Y, 7, E) is soft slightly ng-continuous if and only if it
is soft slightly continuous.2

Proof:

Let (G, E) be soft clopen in Y. Since f is soft slightly ng- continuous, f~! (G, E) is soft ng-open in X implies f~* (G, E)
is soft open in X. Therefore f is soft slightly continuous. Conversely every soft slightly continuous is soft slightly ng-
continuous.

Theorem: 3.8

Suppose StGO(X) is soft closed under arbitrary unions. Let f: (X,1,E) - (Y, 7, E) be a function. Then f is soft slightly
ng-continuous if and only if for each point x € X and each soft clopen set (V,E) containing f(x), there exists a soft ng-
open set (U,E) containing x such that f(U,E) € (V,E).

Proof:
Let x € X and (V,E) be soft clopen then f(x) € (V,E). Since f is soft slightly ng-continuous,
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£~ (V, E) is soft mg-open in X. If we put (U,E) = £~ (V, E) then x € (U,E) and f(U,E) € (V,E). Conversely let (V,E) be
a soft clopen subset of Y and let x €f~1(V, E). Since f(x) € (V,E) , there exists a soft mg-open set (U,E) in X
containing x such that (U,,E) & f~1(V,E). We obtain f~1(V,E) = U{(U,E): x €f~1(V, E)}. Thus f~1(V,E) is soft mg-
open.

Definition: 3.9

A space (X, 1, E) is said to be soft locally indiscrete, if every soft open set of X is soft closed in X.
Theorem : 3.10

If a function f: (X, 1, E) — (Y, v/, E)is soft slightly ng-continuous and (Y, 7', E) is soft locally
indiscrete, then f is soft ng-continuous.

Proof:

Let (A, E) be a soft open set in Y. Since Y is soft locally indiscrete, every soft soft open set is soft closed. Since f is soft
slightly mg-continuous, £~1(A, E) is soft ng-open in X. Hence f is soft slightly continuous.

Theorem: 3.11

If a function f: (X,1,E) = (Y, 7, E)is soft slightly ng-continuous and (X, t, E) is soft ng-T1 space then f is soft slightly
continuous. i

Proof:

Let (A, E) be a soft clopen set in Y. By hypothesis f ~1(A, E) is soft ng-open in X. Since X is soft ng-T1 space, f ~1(A,
E) is soft open in X. Hence f is soft slightly continuous. ’

Definition: 3.12

A space (X, 1, E) is said to be soft submaximal, if each soft dense subset of X is soft open.

Definition: 3.13

A space (X, 1, E) is said to be soft extremally disconnected, if the soft closure of each soft open set of X is soft open in X.
Definition: 3.14

The graph G(f) of a function f : (X, 1, E) — (Y, 7', E) is said to be soft slightly g-graph, if for each (x,y) € (X x Y)\
G(f), there exist a Smg-open set (A,E) in X containing x and a soft clopen set (B,E) in Y containing y such that (A x B,
E) n G(f) = @.

Theorem: 3.15

Let f: (X, 1, E) — (Y, 7, E) be soft function and let g: (X, 1, E)— (X x Y, txt’, E) be the soft graph function of f, defined
by g(x) = (x, f(x)) for every x € X. Then f is soft slightly ng-continuous, if g is soft slightly wg-continuous.

Proof:

Let (V, E) € SCO(Y) then X x (V, E) € SCO(X x Y). Since g is soft slightly mg-continuous, f~! (V, E) = g1 (X x (V,
E)) € SrGO(X). Thus f is soft slightly mg-continuous.

Theorem: 3.16

Let f: (X, 1, E) = (Y, 7, E) be soft slightly ng-continuous function and let g: (X,t, E)— (X x Y, ©x1’, E) be the soft graph
function of f, defined by g(x) = (x, f (x)) for every x € X. If for each soft clopen subset (W,E) of (X x Y, txt’, E) and
for each x € g~}(W, E), the set g~'(W,E) n f~1(W,, E) where (W,,E) is a vertical cut of (W,E) at x is soft mg-open
relative to f~1(W, , E) then g is soft slightly mg-continuous.

Proof:

Let (W, E) be any soft clopen subset of X x Y and let x € g~*(W, E), be an arbitrarily chosen soft point. Then (W, E) N
({x} x Y) is soft clopen in {x} x Y containing g (x). Also {x} x Y is soft homeomorphic to Y. Hence, the vertical cut
W, ={y € Y: (x,y) € (W, E)} is a soft clopen subset of Y. Since f is soft slightly ng-continuous, f~}(W,, E) is a soft
ng-open subset of X. By hypothesis g~1(W,E) n f~1(W,, E) is soft ng-open relative to f~1(W, , E), so g~*(W,E) n
f~YH(W,, E) is soft ng-open in X. Therefore g~ (W, E) is soft mg-open in X. Then g is soft slightly ng-continuous.
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Theorem: 3.17
Letf: (X,7,E) - (Y,7,E)and g: (Y, 7, E) - (Z, 1", E)be functions. Then the following properties hold:

1. if fis soft mg-irresolute and g is soft slightly mg-continuous, then g ° f: (X, t, E) — (Z, t", E) is soft slightly ng-
continuous.

2. if fis soft ng-irresolute and g is soft mg-continuous, then g« f: (X, T, E) — (Z, 1", E) is soft slightly g-
continuous.

3. iffissoft ng-irresolute and g is soft slightly continuous, then g - f: (X, t,E) » (Z, t",E) is soft slightly ng-
continuous.

Theorem: 3.18

Letf: X, 1, E) = (Y, 7, E)and g:(Y, 7, E) = (Z,1", E) be functions. If f is soft M- ng-open surjective and g ° f: (X, 7,E) =
(Z,1", E) is soft slightly ng-continuous then g is soft slightly ng-continuous.

Proof:

Let (A, E) be any soft clopen in Z. Since gef is soft slightly mg-continuous, (g°f )(f "}(A, E)) = f~ (g~ (A, E)) is soft
soft mg-open. Since f is soft M- ng-open, then f(f ~1(g (A, E))) = g (A, E) is soft soft mg-open in Y. Hence g is soft
slightly mg-continuous.

Theorem: 3.19

Let f: (X,1,E) = (Y, 7', E) be surjective soft ng-irresolute, soft M-ng-open and let g : (Y, 1, E) — (Z,1", E) be a function.
Theng-f: (X,1,E) — (Z,1", E) is soft slightly ng-continuous if and only if g is soft slightly ng-continuous.

4. Soft mg-compact space and Soft wg-connected space
Definition: 4.1
A space (X, 1, E) is said to be soft mildly compact, if every soft clopen cover of X has a finite sub cover.

Theorem: 4.2

If a function f: (X, 1, E) — (Y, 7, E) is soft slightly ng-continuous and (A, E) is soft ng-compact relative to X, then f(A,E)
is soft mildly compact relativeto Y .

Proof:

Let {(Vi, E): i € I} be any soft cover of f(A,E) by soft clopen sets of the subspace f(A,E). For each i € | there exists a soft
clopen set (A;, E) of Y such that (V;, E) = (A;, E) n f(A,E). For each x € (A,E), there exists i(x) € | such that f(x) €
(Aix),E ) and there exists (F,, E) € SmtGO(X, x) such that f(F,, E) & (Ai(x),E ). Since the family {(F,, E) : x € (A[E)} is
a soft cover of (A,E) by Smg- open sets of X, there exists a finite subset (A, E) of (A,E) such that (A,E) & U{(F,, E) :
x € (Ao,E)}. Hence, we obtain f(A,E) C U {f(F,, E): x € (Ao,E) which is a subset of U{(A4;),E ): x € (A¢,E)}. Thus,
f(AE) = U{Vi(,),E ): x € (Aq,E)}. Hence f(AE) is soft mildly compact relative to Y .

Corollary: 4.3

If f. (X,t,E) = (Y,7,E) is soft slightly mg-continuous surjection and X is soft mg-compact, then Y is soft mildly
compact.

Definition: 4.4
A space (X, 1, E) is said to be:
1. Soft mildly countably compact, if every soft clopen countably cover of X has a finite subcover.
2. Soft mildly Lindelof , if every soft cover of X by soft clopen sets has a soft countable subcover.
3. Soft ng-closed compact, if every soft ng-closed cover of X has a finite subcover.
4. Soft countably ng-closed-compact, if every countable cover of X by soft ng-closed sets has a finite subcover.
Theorem: 4.5
Letf: (X, 1,E) = (Y, 7, E) be a soft slightly mg-continuous surjection. Then the following statements hold:
1. If X is soft ng-Lindelof, then Y is soft mildly Lindel&f.
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2. If X'is soft countably g-compact, then Y is soft mildly countably compact.
Proof:

(1) Let {(V,, E): a € I} be a soft clopen cover of Y. Since f is soft slightly mg-continuous, then {f ™ (V,E) : a € I} is a
soft mg-open cover of X. Since X is soft g-Lindelof, there exists a countable subset I, of 1 such that X =U{f~! (V,E) : a
€ lg}.Thus Y =U{(V,E) : a € Ig} and hence Y is soft mildly Lindel6f. Proof of (2) Similar to (1).

Theorem: 4.6

Let f: (X, 1, E) = (Y, 7, E) be a soft slightly mg-continuous surjection. Then the following statements hold:
1. If Xis soft ng-closed compact, then Y is soft mildly compact.
2. If Xis soft ng-closed Lindel6f, then Y is soft mildly Lindelof.
3. If Xis soft countably ng-closed compact, then Y is soft mildly countably compact.

Theorem: 4.7

If f: (X,1,E) = (Y, 7,E) is soft slightly ng-continuous surjective function and X is soft ng-connected, then Y is soft
connected.

Proof:

Suppose Y is not soft connected. Then there exist non-empty disjoint soft clopen subsets (U, E) and (V, E) of Y such that
Y = (U, E) U (V, E). Since f is soft slightly ng-continuous, we have f~*(U, E) and f~1(V, E) are non-empty disjoint soft
ng-open sets in X. Moreover, f~1(U, E) U f~1(V, E) = X. This shows that X is not soft mg-connected which is a
contradiction. Hence Y is soft connected.

Theorem: 4.8

If f is a soft slightly ng-continuous function from a soft ng-connected space X onto any space Y, then Y is not a soft
discrete space.

Proof:

Suppose that Y is soft discrete. Let (A, E) be a proper nonempty soft open subset of Y. Then f~1(A, E) is any proper
nonempty soft ng-clopen subset of X, which is a contradiction to the assumption that X is soft ng-connected. Therefore Y
is not a soft discrete space.

Theorem: 4.9

A space X is soft mg-connected, if every soft slightly ng-continuous function from a space X into any soft Ty-space Y is
constant.

Proof:

Suppose that X is not soft ng-connected. Let every soft slightly ng-continuous function from X into any soft Ty-space
then Y is constant. Since X is not soft tg-connected, there exists a proper nonempty soft ng-clopen subset (A, E) of X.
Then f is a non-constant and soft slightly ng-continuous such that Y is soft -T,, which is a contradiction. Hence, X is soft
ng-connected.

Theorem: 4.10

If a function f: X — [] Y, is soft slightly mg-continuous, then P, o f: X — Y, is soft slightly ng-continuous for each
a € A, where P, is the projection of [TY, onto Y,.

Proof:

Let (V,, E) be any soft clopen set of Y, Then P,"'(V,E) is soft clopen in []Y, Hence (P, H(VL,E) =
(f"1(P7Y(V,E)) is soft mg-open in X. Therefore, P, o f is soft slightly mg-continuous.

Theorem: 4.11

If a function f: [T X, — [] Y. is soft slightly soft ng-continuous, then f,: X, — Y, is soft slightly ng-continuous for each
o€ A.

Proof:
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Let (V,, E) be any soft clopen set of Y,. Then P,~*(V,, E) is soft clopen in [T Y, and f~*(P~%(V,, E)) =f~! (V,, E) x
[T1{X. : @ € A\ {a}}. Since f is soft slightly mg-continuous, f~1(P~1(V,, E)) is soft mg-open in [] X,. Since the
projection P, of [ X, onto X, is soft open and soft continuous, f, *(V,, E) is soft ng-open in X,. Hence f, is soft slightly
mg-continuous.
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