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Abstract.

A new result for equivariant functions in terms of invariant functions in the case of Minkowski space is given.
This generalizes the work of Hall and Wightman in the sense that only equivariance is required. In particular, it
implies the possibility of defining physical magnitudes independently of the choice of the coordinate system, like
the center of mass for relativistic particles.
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1 INTRODUCTION

There are several themes of investigation where the theory of equivariant and invariant functions are
essential. Since these type of functions appear in quite different settings, they have particular properties
according to the context under study. It is therefore mathematical interesting and of practical interest to
characterize them.

In the subject of representation of the rotation group, invariance implies independence of equations and
of measurable quantities with respect to the coordinate system, in the context of non-relativistic mechanics. For
the case of the Lorentz group, invariance gives the same conclusion in relativistic mechanics [1] [3].

In the paper by D. Hall and A. S. Wightman [2] it has been proven that any complex valued function of
n four-vector complex variables Z; =1 —ifj, J =1,...,n which is invariant under the orthochronous

Lorentz group, then it is an analytic function of the scalar products Z; - Z, j,k =1,...n.

In this work we consider a four vector valued function that is equivariant with respect to the Lorentz group.
We obtain explicit representations of the functions without assuming any kind of continuity.

In next article we look at some applications to quantum mechanics.

2 PRELIMINARIES
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We denote L( Rn) as the linear transformations on R", which we identify with the real square

matrices of size n. |n denotes the identity in L( Rn). The generalized orthogonal group O(1,n) is by

definition the subset of L( R™) given by

O(l, n) = {g : Jl,n = gT Jl,n g }’ (l)
and the (n + 1)-square matrix
10 0 O
0
(Qin) ) =dip = . ) - 2)
0

One can see that g e O(1,n) implies g™, g’ €O(1,n). Suppose that

a w'
L(R™)>g= ,
( )>4d L A}

with ae R,v,we R", Ae L( R"). Then,

geO@,n) < (vl’=a*-1,A'v=awand ATA—ww' =1,)
< (wlP=a’-1,Aw=av and AA" —w' =1,).

3)

Here |-| denoting the norm in R". O(1,n) is a group under the multiplication in L( R™), and acts on
R™ by left multiplication. One defines the orbit of the point x € R™™ as
Oo(L,n)x:={g-x: geO(,n)}.

Also, the isotropy or stability subgroup of x is defined to be

Iso(x,0(1,n)) ={g €O, n):g-x=x} 4)

For fixed n>2, we denote €;,for j=1,...,n, as the usual canonical vectors in R" Moreover,
e, = (1,0)e R™,
. 5
e,:=(0,g;)eR™ j=1,...,n. ©)

We have the following set identities.
—h = n. .2 2_
O(1,n)eo—h+ ={(a,v) e RxR"": a“—|v|°=1}

O(1,n)e, =h_={(a,v)e RxR": a’—|v|’=-1}

(6)
Oo@,n)e, +e,)=C:={(a,v) e RxR": a=|v[>0}

O(L,n)(0) = {0} = R*™.

Also, one obtains directly from definition that g  Iso(e,,O(1,n)) iff
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.
g= B OA} for some orthogonal matrix A.

We write this as

o(n) = Iso(eO,O(l, n)). (7)
Similarly, one obtains
o(Ln-1)= Iso(el,O(l,n)). (8)
by means of the isomorphism
la 0 w' ]
T 010 0
a w
o(1,n-1) { }—) 0 ©)
v A )
v o A
0

Minkowski space

The Minkowski space-time is defined to be as the vector space R* with the bilinear form

B(): R*xR*= R, given by the formula:

B(X, Y) =x' 'J1,3' y. (10)
It follows that O(1,3) is the group of elements § € L( R4) leaving invariant B :
B(gxgy) =B(xy) (¥xyeR") < geO(13), (11)

and called the Lorentz group which we denote as
£:=0(1,3).
The group £ acts on R'xR* by
R%R%S(x )= (gx.y) (g<k).
For given §€ R4>< R4, the orbit of § under the action of £ is defined to be

££={g£:gefjcR*R"

We take €, = (1,0), € = (0, E'j), ] =1,2,3 as the usual canonical vectors in R 4, and
H, ={xeR* £B(x,x)>0}, H:=H_UH, c R,

also with
My, ={(ue,,ae, + pe): f,u>0ce R} cH, x R*

M., ={(ue,,ae,): u>0,ad e Rfc H, x R*

Mz,lz{(ﬂepﬂeo +ae): fu>0, aeR}cH x R*
(12)
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M,, ={(ue,,ae, +Be,): B,u>0aeR}cH xR’
M,,={(ue, e, +ae +e,)aeR, u>0tcH xR
M,, ={(ue, ae): u>0aeR}cH_x R*

It is easy to see that

M_'ﬂMkI: Mi,jv |:k,J:I (13)
" ' , otherwise

Weput M; =M, UM, , and M, :Uj4:1M2,j-
Definition 1

(i) Afunction T :HxR = is said to be Lorentz-invariant (£ -invariant) iff
f(g-x,g-y)=1(xy) (V(x,y)eHxR*Vgef).

(ii) A vector valued function F @ H x R4—> R* is called equivariant iff

F(g-x9-Y)=g-F(x,y) (V(x,y)eHxR*Vvgef).

Lemma 1l The following relations hold true.
(i) EM,=H,xR*
(ii) EM,=H_xR*
(iii) Mlﬁ £M2:M2ﬁ £M1=®

Proof: For given (X,Y) € Hx R * We define

1= u(x) =] B(x,) >0

a=a(xy)= B(x.y) (14)
= p(x.y):=|B(y, y)—% 2
Note that
—,_ BXxY) _
vi=y B(x %) X = B(v,x)=0. (15)
Also,
B(v,v) = B(y, y) - 20 = sgnB(v.v) 22 16)

B(x, x)

Because of (6), given X H , there exist J,,0; €£ such that
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X = 9o '(,ueo)’ Xe H+ (17)
g - (ue)), XxeH_

By using (14) and (15), we write for p=0,1,

y=v+ag,-e, or gl-y=gl-v+ae, (18)

It (t,,t,t,,t)= g;l'v , from (15) we get

B(v,X)
u

- (19)

(-1)°t, = B(g,v.e,) =

Suppose now p=0 : This means xeH_ and g;l-v=(0,t1,t2,t3) . Equation (16) vyields
t7 +t> +tZ >0. Owing to (7), we can take K € 150(e,,£) such that K- (€)= (0,t,,t,,t;) . Then, (18)

gives
9,0y = (ot t,,1,) =k - (ag, + S8)).
Therefore,

(X ¥)=(9, -(uey) 9y ok-(ae +p5e)) =g, ck-(ue ,ae  +pe)ecEM,.
This implies assertion (i) of the lemma.
When p=1,onehas Xe H and g;'v =(t,,0,t,,t,), so that (18) becomes
9 Y =0, vHae =, oty ty). (20)
By using (8) with n =3, we choose Kj,K,,K; € 10(e,, £), obeying
kl'(ﬂeo)1 ts_tZZ_t?? >0;
(tO,O,tz,t3) = kz ’(:Bez)' tg _t22 _t§ <0; (21)
k,-(e, +e,), tZ=tZ+t>>0.
This, together with (20), implying

g0k, (ue)=x for j=123;

g, ok, - (e, +ae), tf _t22 _t§ >0;
g, ok, - (ae + Be,), tf _t22 _t§ <0;

= 0,0k, (e, +ae, +e,), tZ=tZ+t>>0;
(0,0,0,0), t2=t2+t2=0.
Denoting k4 = |4, we conclude from these identities that
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(9 ok) (% y) = (uey, kT o g y) e My,
for j =1,2,3,4.This proves (ii), and (iii) follows from (i) — i) . A

Remarks

(a). Functions s,cx, 3 defined in equation (14) are indeed £ -invariant, with domain H x R
(b). Any function f IMi,j — R, can be expressed in the form = f (u,«, 8) where T has domain

contained in R "x R x [0, ).

In order to analyze the homogeneous space structure of the orbits £& for £ <M, U M,, and to give

1
appropriate parametrizations of them we need the following proposition.

Lemma2 Let M, ., 1=1.2, j=1,...4, begiven by (12). Suppose g-&e M, UM, for some

W 1~V
Ee Mi,j and some gef.Then g-&=¢& and g€k, where
Iso(e, ,E) " Iso(e, ,E) i=1,j=1;
Iso(e, ,£), i=1,j=2;
E = Iso(e, ,£) N Iso(e, ,£), i=2,j=1,
" lIso(e, ,.£) N Iso(e, ,£), i=2,j=2;
Iso(e;,£) N Iso(e, +e,,£), 1=2,j=3;
Iso(e, ,£), i=2,j=4.

Proof: Firstsuppose that {-€; =C-€; forsome constant ce R andsome j=0,1,2,3. Applying B on this
equation, using (11), gives ¢ =+1. Now we consider two cases.

(@. (i=1) and (j=1,2): Suppose EeMy - It follows from lemma 1 that g.£e Myq and
E=(u e, a8, +/5'e1), implying

g-&=(u'e,a'e,+p'e)
forsome s, 44 >0; a,a’ € R; B, > 0. Therefore,

ge, =“ e = u'=pand gelso(e, £). (22)
7

Furthermore,
a'e,+p'e,=g-(ae,+pe)=ae,+59-e. (23)

Yielding,
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o' =B(a'e, + fe,,e,) = B(ag, + fe,,9'e,) = B(ae, + Be,,6,) = c.
Now we get from (23) that 3 g e =p'ey= pB=4" Inthe case B =0 we get
£eM,, and g € Iso(e, ,£).
Sothat g € E,,. For the case >0 we obtain,
$eM,, and g € Iso(e, .£) N Iso(e, ,£),
yielding J € E1,1 and proving the statement of the proposition for i =1 and j=1,2.
(b). (i=2) and (j=1):Take £€M,. Lemmalshowsthat g-£eM,.

Suppose now ¢ €M, this gives & = (ue,, e, +ae), and g-&=(ue,t.e, +t,e +t,6,), with

!

u, 3,1/ >0. Due to gel=ﬁel, this leads to 4=, and Q€ =€, . So that, gelso(el,E) -
y7i

Furthermore, we have that
te, +te +t,e, =g -(fe,+ae)=49-e +ae,. (24)
Then,
-1, = B(t,e, +1,6 +1,8,,6) = B(g(Be, +ae),e,) = B(Be, +ae,,e) = —a.
This equality and (24) give
Bag-e =te, +t,e, and B> =t2 —t2. (25)
Incase g-&£eM,; for j=2,3 or j=4, we obtain, respectively, that
t,=0and t,>0,t, =t,=1ort, =t, =0.
This leads in either case to ﬂ 2 < 0, obtaining necessarily that,

M,>g-&=te +te eM,, =t >0,t, =0.

Therefore, (25) implies that {, = f and ge, =e,, yielding g € Iso(e,,£) " 1so(e, ,E) . This proves the
statement of the proposition in the case 1 =2 and j=1.

Remaining cases, namely, i =2 and j=2,3,4 follow by similar arguments. A

The previous lemmas and remarks yield the next corollary.
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Corollary 1
(i) The set M := M, UM, contains just one point of each orbit.
(ii) The canonical projection
P:HxR*5>HxR'E
given by

P(x,y) =£(x,y),
gives rise to a bijection o when restricted to M :
p:M > HxRYE
P=Pl\ -

(iii) The following diagram commutes:

H x RYE
P_~
p—l
H x R* l
L ™
M

and L is an £ -invariant map. Furthermore, a function h:H x R*— R is £- invariant iff there exists a
function f:M — R such that

h(x,y) = foL(xY).
Proof: Statements (i) and (ii) follow from Lemma 1 and Lemma 2.

To prove (iii ), note that invariance of L follows easily. Now suppose that h is £ -invariant. Since
L|,,:M — M is the identity map, one gets that statement (iii ) holds true on M :

h(§)=hoL(5) (VEeM).
So that, we can take f :=h|,, . For arbitrary (X, y)eH xR*, one can write (X,y)=g-(&,&,), for some
gef and (&,¢,) €M . Invariance of hand L yields,

h(x,y) = fol(&., &) = foL(g-(5,5,)) = f o L(X ). A
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Theorem 1. A function F:HxR* —>R" is equivariant iff there exist £ -invariant functions A, p=1,2,

such that for arbitrary (X, y) € HxR?,
F(X,y) = 4% Y)x+2,(x Y)y. (26)

Proof: When F obeys equation (26), then F is equivariant.
Suppose now that F is equivariant. The proof is given in the following two steps:

1. We analyze the function F on M, and show that the statements of theorem hold true on this subset. Let us
define the following one-parameter subgroups of £,

¢ (R+)>E;,
1 0 O 0
01 O 0
t) = t) = t :etAlz ,
¢11( ) ¢12( ) ¢21( ) O 0 COSt —sint
0 0 sint cost
cosi 0 O sinh
0 10 0
t:etAZ: ,
¢22() 0 0 1 O
sini 0 0 cosh
2 2 ]
l+t— 0 v t
2 2
_ _ _ 1
b= gu=e" =] 2 0 0
— 0 1-—— t
2 2
|t 0 -t 1]
with
0 00 O 0 001
Al_OOOO AZ-OOOOAS—A-AAi
oo o -1 2 joo o0 oo Y
001 O 1 000

Then, the infinitesimal generator of ¢,] lies in the Lie algebra of £ [4]. Furthermore, equivariance implies,
for teR,and Q any of A,, p=1234,
F(e'x,e'%y) =e'F(x, y).

We will denote & = (51, 52) in this proof. When & e Miyj and ¢ij the corresponding group homomorphism

in E; ;, from lemma 2 we obtain the following identity for t e R,

F(&) =e9F (&) = F(&) ekerQ.
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For i=1,j=1,2, we choose ¢;(t)=e" =e™, and ker Q is the subspace generated by {€,.,&}.

Therefore, &€ M, implies
ker A > F(&) = f,(5)e, + fi(H)e, (27)

for some functions f_, f, and

E=(ue,,ae,+pe), >0,20,xeR.
For >0 we can write

o, () f,($)
5 )&+ 5

F(&) = 2 (f,(&) - 5,
7]

(28)
= fl(ll) (5)‘:51 + f1(12) (5)52’ (Vée M1,1)-

When g =0, we denote a permutationk € O(3) = Iso(g,, £) =E, ,,, interchanging just e <>e,. From
(27) and lemma 2 one can deduce that

f. (2, + f.(S)e = F(&) = F(k-3) =k-(f,(S)e, + y(S)e) = f, (e, + fi(S)e,.

Sothat, f,(£)=0 for &eM,,. Thisimplies,

f
JOEREC
y7,
(29)
= fl(zl) (&)é+ fl(zz)(é:)fz' (Vée Ml,Z)'
Therefore, we have maps
9,2 :M,; >R and 9, fP:M,, >R
obeying (28) and (29), respectively. A similar proceeding shows the existence of pair of functions,
) £@ .
obeyingon M, for 1< j<4,
F(& &) = 157G &)a+ 156, 86)8, (30)

We consider maps ;fp, p =1,2, withdomain M, defined by

_ L@, SeMy ;=12
4,(8) = (31)
006, £eM,;;j=1234

]

This yields, due to (28), (29) and (30),
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F(&) = A& +4()E (VEeM). (32)

2. Equivariance of F, gives for arbitrary (X,y) e HxR*, with (x,y)=g-&=g-(&,&,) for
some gef£, £eM,

g o F(X,Y) = F(&) = 4(O)& + A ()&,
Yielding,
F(,Y) = A(E)x+ L&)y (Y(xy)e HxR?). (33)

Now we note that the maps (31) can be extended to the whole space H xR* as £ -invariant functions
Ay P=12, by means of the formula:

A, ' HxR* >R

Ay (%, ¥) = A, o L(X, Y)
This and equation (33) prove the proposition. A
3 System of two relativistic particles

We consider a system of two relativistic particles with positions x and Y, and respective momentum

P=(P,y B) =(Py: P, P, Ps) q=1(d,,d) =(0,,%,d,0s)-
Their total momentum is defined to be
P=p+aq.

If one wants to define the relative energy-momentum vector & =&(p,() of the system, it might be defined so
that it is an equivariant function. From previous theorem, it must have the expression

=4 Pp+4q (34)

for some invariant functions A; = 4;(p,d), j =1,2. In similarity with classical mechanics, one can impose
the condition

A4 =1, (35)

so that

e=4P-q,
(36)
B(P,s)+B(P,q)
B(P,P) '

A4(p,q) =
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In particular, when B(P,&) =0, one gets the energy-momentum vector of the system as

BP9 g =0z, BED, (37)
B(P,P) B(P,P)" B(P,P)

A

By using (2), the vector & inthis case is coupled to the vector Y = X—Y in the sense that the Poisson bracket
obeys
{Yﬂ’gv}: (Jl,s)ﬂv'
Furthermore, for
« = B(P.Q) _B(P.p)
B(P,P) B(P,P)

Ys (38)

one gets
{X,, P}= (‘]1,3),”-
P being the total momentum, then X can be thought of as the center of mass-energy of the system. It follows
that once the relative energy-momentum ¢ is fixed, also the center of mass X is determined except on a set

of measure zeroin R*x R*.

See [5] for a further discussion about this example.

We show an additional application of our results in the following example.

Example 1

Let us denote the Haar measure on the Lorentz group £ by 4 . For a given function
f :Hx R*> R, we consider the following function defined by the (Lebesgue) integral on £ :

F,:HxR*>R*
F00y)= [ (9™ (x y)g-adu(g). (39)

Here ae R" is a fixed vector. It follows from invariance of Haar measure that F, is equivariant [6] [7].

Assuming convergence of the integral, our result implies that there exist £ -invariant functions A _,i =1,2,

such that "
F (6 Y) = 4. (X% V)X + 4, (%, Y)Y

Theorem 1 gives a method to fix F, . In fact, the result implies that it is sufficient to know 4, , and A4,, on

M . This in turn implies only a few calculations. For instance, for £ e M, , <M, then & = (ue,, ae, + fe,)
and

B(F,($).e) = B(j’l,a & +/12,a§27el) = ﬂ’Z,aB(§2’el)
= _ﬂiz,a (40)
B(F,($).&)

= ﬂ’z,a = /Iz,a (5) == ﬂ
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and giving for 4, , (&), € M, ,, the formula

70a(6)= SB(F. (&), + Ze))
U p

In the same way, one can determine A4, ,,4,, onthe whole set M . This fixes F, on its whole domain.

We mention that there are several applications for the theory of equivariant functions, and where our

results might be helpful. See for instance [8] [9] [10].
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