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Abstract. 

Krawtchouk polynomials plays very important role in many different areas of mathematics such as discrete 

mathematics, coding theory, association schemes and graph theory. The issue of existence of integer zeros of 

Krawtchouk polynomials is crucial for the existence of combinatorial structures in the Hamming schemes. In 

this Paper our goal is to investigate the integer zeros of the modified Krawtchouk polynomials of the 8
th
 order, 

𝑄𝑘
𝑛 𝑦 = 𝑘! 𝑃𝑘

𝑛  
𝑛−𝑦

2
 , where 𝑘 = 8. 
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1. Integer Zeros of Krawtchouk Polynomials of Degree 6 and 7. 
1.1. Krawtchouk Polynomials of Degree 6. 

A complete sets of the integral zeros of the binary Krawtchouk polynomials of degree 6 and 7 has been 
provided by Roelof J. Stroker in his Paper  2 . 
 
Krawtchouk polynomials for degree 6 is: 
 

 
               

Using Diophantine Equation to solve (1). 
  
Let  𝑈 = 𝑛 and 𝑉 = 𝑦2  in (1), the following diophantine equation comes in: 
 

 
           

Solution of 𝑈 and 𝑉 in (2) was shown in details in  2 . 
 

1.2. Zeros of Krawtchouk Polynomials of Degree 6. 
 
Theorem 1.  2  The diophantine equation (2) has integral solutions (𝑈, 𝑉) as given in table 1, and no others. 
 
 
 
 
 

 𝑦6 − 15𝑦4𝑛 + 40𝑦4 + 45𝑦2𝑛2 − 210𝑦2𝑛 − 15𝑛3 + 184𝑦2 + 90𝑛2 − 120𝑛 = 0 (1) 

 −15𝑈3 + 45𝑈2𝑉 − 15𝑈𝑉2 + 𝑉3 + 90𝑈2 − 210𝑈𝑉 + 40𝑉2 − 120𝑈 + 184𝑉 = 0 (2) 
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Table 1: Solutions of equation (1) 

Solution (𝑈, 𝑉) of (2), 𝑈 = 𝑛 and 𝑉 = 𝑦2, 𝑥 ≤ 𝑛/2 
(𝑈, 𝑉) 𝑥 𝑛 𝑦 (𝑈, 𝑉) 𝑥 𝑛 𝑦 (𝑈, 𝑉) 𝑥 𝑛 𝑦 

(-14,-56)    (3,1) 1 3 1 (12,4) 5 12 2 
(-4, -20)    (3,9) 0 3 3 (12,36) 3 12 6 
(-1,-9)    (4,0) 2 4 0 (12,100) 1 12 10 
(0,0) 0 0 0 (4,4) 1 4 2 (16,144) 2 16 12 
(1,1) 0 1 1 (4,16) 0 4 4 (25,9) 11 25 3 
(2,-14)    (5,1) 2 5 1 (67,25) 31 67 5 
(2,0) 1 2 1 (5,9) 1 5 3 (345,1225) 155 345 35 
(2,4) 0 2 2 (5,25) 0 5 5     
(3,-5)    (9,25) 2 9 5     
In addition to the solutions, the table also gives the corresponding values of 𝑥, 𝑛, 𝑦. Symmetry about 𝑥 = 𝑛/2 
permits the restriction to  𝑥 ≤ 𝑛/2. 
 
 

1.3. Krawtchouk Polynomials of Degree 7. 
 
Modified Krawtchouk polynomials for degree 7 is: 

 
 

         
 
 
 

Using Diophantine Equation to solve (3). 
 

Let  𝑈 = 𝑛 − 1 and 𝑉 = 𝑦2 − 1 in (3), the following diophantine equation comes in: 
 

 
          

Solution of 𝑈 and 𝑉 in (4) was shown in details in  2 . 
 

1.4. Zeros of Krawtchouk Polynomials of Degree 7. 
 
Theorem 2.  2  The diophantine equation (4) has integral solutions (𝑈, 𝑉) as given in table 2, and no others. 
 

Table 2: Solutions of equation (3) 

Solution (𝑈, 𝑉) of (3), 𝑈 = 𝑛 and 𝑉 = 𝑦2, 𝑥 ≤ 𝑛/2 

(𝑈, 𝑉) 𝑥 𝑛 𝑦 (𝑈, 𝑉) 𝑥 𝑛 𝑦 (𝑈, 𝑉) 𝑥 𝑛 𝑦 
(-22,-132)    (3,3) 1 4 2 (13,15) 5 14 4 
(-6, -42)    (3,15) 0 4 4 (13,63) 3 14 8 
(-3,-25)    (4,0) 2 5 1 (13,143) 1 14 12 
(0,0) 0 1 1 (4,8) 1 5 3 (16,80) 4 17 9 
(1,3) 0 2 2 (4,24) 0 5 5 (21,255) 4 22 16 
(2,-18)    (5,3) 2 6 2 (1028,1368) 469 1029 37 
(2,0) 1 3 1 (5,15) 1 6 4     
(2,8) 0 3 3 (5,35) 0 6 6     
(3,-7)    (8,8) 3 9 3     

In addition to the solutions, the table also gives the corresponding values of 𝑥, 𝑛, 𝑦. Symmetry about 𝑥 = 𝑛/2 
permits the restriction to  𝑥 ≤ 𝑛/2. 
 
The solution process employs recent developments in the estimation of linear forms in elliptic logarithms. 
Extensive coverage of this method is given in  3 ,  4 ,  5 . Proof of theorem 1 is found in  2 . The proof of 
theorem 2 has entirely similar structure. 

 𝑦 𝑦6 − 21𝑦4𝑛 + 70𝑦4 + 105𝑦2𝑛2 − 630𝑦2𝑛 − 105𝑛3 + 784𝑦2 + 840𝑛2 − 1764𝑛
+ 720 = 0 

 
(3) 

 −105𝑈3 + 105𝑈2𝑉 − 21𝑈𝑉2 + 𝑉3 + 630𝑈2 − 462𝑈𝑉 + 52𝑉2 − 840𝑈 + 360𝑉 = 0 (4) 
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2. Integer Zeros of Krawtchouk Polynomials of Degree 8. 
 

Modified Krawtchouk polynomials for degree 8, 𝑄𝑘
𝑛  𝑦 = 𝑘! 𝑃𝑘

𝑛  
𝑛−𝑦

2
 , where 𝑘 = 8. 

 
  
 
 

 

2.1. Modular  Setting on Krawtchouk Polynomials of Degree 8. 
 
Consider equation (5) with 𝑛, 𝑦 ∈ ℤ. Further 𝑓(𝑛, 𝑦) stands for the right hand of the equation. 
 

(1) Considering (5) (𝑚𝑜𝑑 7), build matrix  𝑓 𝑛, 𝑦  𝑚𝑜𝑑 7 0≤𝑛≤6,   0≤𝑦≤6  
 
 

0 0 0 0 0 0 0 
4 4 4 4 4 4 4 
2 2 2 2 2 2 2 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
2 2 2 2 2 2 2 
4 4 4 4 4 4 4 

  

 

We can see that  𝑓 𝑛, 𝑦  𝑚𝑜𝑑 7 = 0 if and only if 𝑛 = 0 (𝑦 is arbitrary), so integer zeros (𝑛, 𝑦) of (5) must be of the 

form 𝑛 = 7𝑚, 𝑚 ∈ ℤ. 

 

Remark 1.  Condition  𝑛 = 7𝑚, 𝑚 ∈ ℤ can be obtained without calculation 𝑓 𝑛, 𝑦  𝑚𝑜𝑑 7 for 49 pairs  𝑛, 𝑦 . 

Remember the little theorem of Fermat: 

 

𝑎𝑝 = 𝑎   𝑚𝑜𝑑 𝑝 . 

 

For any simple p and integer a. Assuming 𝑝 = 7, 𝑎 = 𝑦, we obtain that 𝑦8 = 𝑦2. So equation (5) (𝑚𝑜𝑑 7) becomes 

very simple: 

 4𝑛2  𝑚𝑜𝑑 7 = 0 

and  𝑛 = 7𝑚, 𝑚 ∈ ℤ. 

 

 

(2) Because  𝑓 𝑛, 𝑦  𝑚𝑜𝑑 7 = 0 only when 𝑛 = 0, we can substitute 𝑛 = 7𝑚 with 𝑚 ∈ ℤ. Separate the 
part of 𝑓 𝑛, 𝑦 , divisible by 49: 

 

  

  

 

 

 Denote 

 𝑄8
𝑛 𝑦 = 𝑦8 − 28𝑦6𝑛 + 112𝑦6 + 210𝑦4𝑛2 − 1540𝑦4𝑛 − 420𝑦2𝑛3 + 2464𝑦4

+ 4200𝑦2𝑛2 + 105𝑛4 − 11872𝑦2𝑛 − 1260𝑛3 + 8448𝑦2 + 4620𝑛2

− 5040𝑛 = 0 
(5) 

 𝑓 𝑛, 𝑦 = 𝑦8 − 28𝑦6𝑛 + 112𝑦6 + 210𝑦4𝑛2 − 1540𝑦4𝑛 − 420𝑦2𝑛3 + 2464𝑦4 + 4200𝑦2𝑛2

+ 105𝑛4 − 11872𝑦2𝑛 − 1260𝑛3 + 8448𝑦2 + 4620𝑛2 − 5040𝑛
=  𝑦8 + 14𝑦6 + 14𝑦4 + 20𝑦2 + (−28 ∙ 7𝑦6𝑚 + 98𝑦6 + 210 ∙ 72𝑦4𝑚2

− 1540 ∙ 7𝑦4𝑚 − 420 ∙ 73𝑦2𝑚3 + 2450𝑦4 + 4200 ∙ 72𝑦2𝑚2 + 105 ∙ 74𝑚4

− 11872 ∙ 7𝑦2𝑚 − 1260 ∙ 73𝑚3 + 8428𝑦2 + 4620 ∙ 72𝑚2 − 5040 ∙ 7𝑚) 

(6) 
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So,  

 

 

we can rewrite (5) in the form: 

 

where  𝑔(𝑚, 𝑦) is a polynomials with integer coefficients . Obviously, 

49𝑔 𝑚, 𝑦 𝑚𝑜𝑑 49 = 0 

for any integer 𝑛, 𝑦. So, (8) holds  (𝑚𝑜𝑑 49) if and only if 𝑦 𝑚𝑜𝑑 7 = 0 (i.e. 𝑦2  𝑚𝑜𝑑 49 = 0), or 

     Considering  (9) with  (𝑚𝑜𝑑 49) condition, we have such possible value for 𝑦 𝑚𝑜𝑑 49. 

𝑦 𝑚𝑜𝑑 49 ∈  1,3,5,44,46,48  

 Note that 44 = −5, 46 = −3, 48 = −1 (𝑚𝑜𝑑 49), respectively to evenness of right hand of (9) and (5) by 𝑦. So, we 
have such alternatives for 𝑦: 

𝑦 = 7𝑠, 𝑦 = ±1 + 49𝑠, 𝑦 = ±3 + 49𝑠, 𝑦 = ±5 + 49𝑠, 

where 𝑠 ∈ ℤ.  

3. Considering 𝐲𝟐 𝐦𝐨𝐝 𝟗, we can obtain four alternatives: 

       

             where 𝑘 ∈ ℤ.   

Now substitute 𝑦2  in (5) with alternatives (10). 

𝑦2 = 9𝑘 + 1 (it occurs when 𝑦 𝑚𝑜𝑑 9 = 1 or 𝑦 𝑚𝑜𝑑 9 = 8; note that 8 = −1 (𝑚𝑜𝑑 5)). All coefficients of 

 𝑓(𝑛,  9𝑘 + 1) is divisible by 3. Equation  
𝑓(𝑛, 9𝑘+1)

3
= 0  can be written in the form: 

 

         Equation (11) with condition (𝑚𝑜𝑑 9) has zeros (𝑛, 𝑦) with 𝑛 = 3,  and 𝑛 = 8. So, we have such alternatives 

for 𝑛: 

 
𝑔 𝑚, 𝑦 =  

1

49
  −28 ∙ 7𝑦6𝑚 + 98𝑦6 + 210 ∙ 72𝑦4𝑚2 − 1540 ∙ 7𝑦4𝑚 − 420 ∙ 73𝑦2𝑚3

+ 2450𝑦4 + 4200 ∙ 72𝑦2𝑚2 + 105 ∙ 74𝑚4 − 11872 ∙ 7𝑦2𝑚− 1260
∙ 73𝑚3 + 8428𝑦2 + 4620 ∙ 72𝑚2 − 5040 ∙ 7𝑚 
= −4𝑦6𝑚 + 2𝑦6 + 210𝑦4𝑚2 − 210𝑦4𝑚 − 420 ∙ 7𝑦2 + 50𝑦4

+ 4200𝑦2 + 𝑚2 + 105 ∙ 72𝑚4 − 1696𝑦2𝑚 − 1260 ∙ 72𝑚3 + 172𝑦2

+ 4620𝑚2 − 720𝑚 
 

(7) 

 
𝑦8 + 14𝑦6 + 14𝑦4 + 20𝑦2 + 49𝑔 𝑚, 𝑦 = 0 

(8) 

 
 𝑦6 + 14𝑦4 + 14𝑦2 + 20  𝑚𝑜𝑑 49 = 0 

                   
(9) 

 
𝑦2 = 9𝑘, 𝑦2 = 9𝑘 + 1, 𝑦2 = 9𝑘 + 4, 𝑦2 = 9𝑘 + 7 

(10) 

 25344𝑘 + 66528𝑘2 + 27216𝑘3 + 2187𝑘4 − 1680𝑛 − 35616𝑘𝑛 − 41580𝑘2𝑛 − 6804𝑘3𝑛
+ 1420𝑛2 + 12600𝑘𝑛2 + 5670𝑘2𝑛2 − 420𝑛3 − 1260𝑘𝑛3 + 35𝑛4 = 0 

(11) 
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𝑛 = 9𝑗 + 3,   𝑛 = 9𝑗 + 8, 

where 𝑗 ∈ ℤ. Taking into account that 𝑛 = 7𝑚  𝑚 ∈ ℤ , we have such alternatives for 𝑛: 

𝑛 = 63𝑗 + 21,   𝑛 = 63𝑗 + 35, 

where 𝑗 ∈ ℤ. 

𝑦2 = 9𝑘 + 4 (it occurs when 𝑦 𝑚𝑜𝑑 9 = 2 or 𝑦 𝑚𝑜𝑑 9 = 7; note that 7 = −2 (𝑚𝑜𝑑 5)). All coefficients of 

 𝑓(𝑛,  9𝑘 + 4) is divisible by 3. Equation  
𝑓(𝑛, 9𝑘+4)

3
= 0  can be written in the form: 

 

         

Equation (12) with condition (𝑚𝑜𝑑 9) has zeros (𝑛, 𝑦) with 𝑛 = 3,  and 𝑛 = 8. So, we have such alternatives for 𝑛: 

𝑛 = 9𝑗 + 5,   𝑛 = 9𝑗 + 6, 

where 𝑗 ∈ ℤ. Taking into account that 𝑛 = 7𝑚  𝑚 ∈ ℤ , we have such alternatives for 𝑛: 

𝑛 = 63𝑗 + 14,   𝑛 = 63𝑗 + 42, 

where 𝑗 ∈ ℤ. 

𝑦2 = 9𝑘 + 7 (it occurs when 𝑦 𝑚𝑜𝑑 9 = 4 or 𝑦 𝑚𝑜𝑑 9 = 5; note that 5 = −4 (𝑚𝑜𝑑 5)). All coefficients of 

 𝑓(𝑛,  9𝑘 + 7) is divisible by 3. Equation  
𝑓(𝑛, 9𝑘+7)

3
= 0  can be written in the form: 

 

 

Equation (13) with condition (𝑚𝑜𝑑 9) has zeros (𝑛, 𝑦) with 𝑛 = 3,  and 𝑛 = 8. So, we have such alternatives for 𝑛: 

𝑛 = 9𝑗 + 6,   𝑛 = 9𝑗 + 8, 

where 𝑗 ∈ ℤ. Taking into account that 𝑛 = 7𝑚  𝑚 ∈ ℤ , we have such alternatives for 𝑛: 

𝑛 = 63𝑗 + 42,   𝑛 = 63𝑗 + 35, 

where 𝑗 ∈ ℤ. 

𝑦2 = 9𝑘 (obviously, sufficient to consider 𝑦2 = 9𝑘2; it occurs when 𝑦 𝑚𝑜𝑑 3 = 0). All coefficients of 𝑓 𝑛, 3𝑘  is 

divisible by 3. Separating the part divisible by 9, rewrite equation 
𝑓 𝑛,3𝑘 

3
= 0 in the form: 

 26880 + 101376𝑘 + 105408𝑘2 + 31104𝑘3 + 2187𝑘4 − 26320𝑛 − 76608𝑘𝑛
− 50652𝑘2𝑛 − 6804𝑘3𝑛 + 8140𝑛2 + 17640𝑘𝑛2 + 5670𝑘2𝑛2

− 980𝑛3 − 1260𝑘𝑛3 + 35𝑛4 = 0 
(12) 

 73563 + 182340𝑘 + 137970𝑘2 + 34020𝑘3 + 2187𝑘4 − 57736𝑛 − 112644𝑘𝑛
− 57456𝑘2𝑛 − 6804𝑘3𝑛 + 14650𝑛2 + 21420𝑘𝑛2 + 5670𝑘2𝑛2

− 1400𝑛3 − 1260𝑘𝑛3 + 35𝑛4 = 0 
(13) 

 3𝑛 + 6𝑘𝑛 + 7𝑛2 + 3𝑛3 + 8𝑛4 + 9𝑕 𝑛, 𝑘 = 0 (14) 
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where 𝑕 𝑛, 𝑘  is a polynomial with integer coefficients. Obviously, (14) holds (𝑚𝑜𝑑 9) if 𝑛 𝑚𝑜𝑑 9 = 0, or  

 

For equation (15) we have 27 zeros (𝑚𝑜𝑑 9) 

𝑛 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 

𝑘 1 4 7 1 4 7 1 4 7 2 5 8 2 5 8 2 5 8 0 3 6 0 3 6 0 3 6 

 

4. Conclusion.  

       The following conditions were obtained for (𝐧, 𝐲) being integer zero of equation (5). 

4.1. 𝑛 = 7𝑚,   𝑚 ∈ ℤ. 

4.2. 𝑦 = 7𝑠, 𝑦 = ±1 + 49𝑠, 𝑦 ± 3 + 49𝑠, 𝑦 ± 5 + 49𝑠, 

where 𝑠 ∈ ℤ. 

4.3. One of the following alternatives must hold: 

 

𝑛 𝑦 𝑛 𝑦 𝑛 𝑦 𝑛 
𝑦 

63𝑗 + 21 9𝑖 ± 1 63𝑗 3(9𝑖 + 4) 63𝑗 + 56 3(9𝑖 + 7) 63𝑗 + 77 
3(9𝑖 + 2) 

63𝑗 + 35 9𝑖 ± 1 63𝑗 3(9𝑖 + 7) 63𝑗 + 21 3(9𝑖 + 2) 63𝑗 + 77 
3(9𝑖 + 5) 

63𝑗 + 14 9𝑖 ± 2 63𝑗 + 28 3(9𝑖 + 1) 63𝑗 + 21 3(9𝑖 + 5) 63𝑗 + 77 
3(9𝑖 + 8) 

63𝑗 + 42 9𝑖 ± 2 63𝑗 + 28 3(9𝑖 + 4) 63𝑗 + 21 3(9𝑖 + 8) 63𝑗 + 42 
3(9𝑖 + 0) 

63𝑗 + 42 9𝑖 ± 4 63𝑗 + 28 3(9𝑖 + 7) 63𝑗 + 49 3(9𝑖 + 2) 63𝑗 + 42 
3(9𝑖 + 3) 

63𝑗 + 35 9𝑖 ± 4 63𝑗 + 56 3(9𝑖 + 1) 63𝑗 + 49 3(9𝑖 + 5) 63𝑗 + 42 
3(9𝑖 + 6) 

63𝑗 3(9𝑖 + 1) 63𝑗 + 56 3(9𝑖 + 4) 63𝑗 + 49 3(9𝑖 + 8) 63𝑗 + 7 
3(9𝑖 + 0) 

63𝑗 + 7 3(9𝑖 + 6) 63𝑗 + 35 3(9𝑖 + 0) 63𝑗 + 35 3(9𝑖 + 6) 63𝑗 + 7 
3(9𝑖 + 3) 
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