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1.  Abstract  

The optineurin gene has been linked to normal tension glaucoma and amyotrophic lateral sclerosis. 
Optineurin protein, known to interact with a number of proteins including Rab8, myosin VI, and huntingtin, 
plays a role in vesicle trafficking, Golgi organization, antibacterial and antiviral signaling, autophagic clearance 
of protein aggregates, and regulation of gene expression. Its basic biophysical properties however have never 
been explored. This study was aimed to obtain sufficient amounts of purified mammalian optineurin protein 
and to carry out biophysical characterization. Tetracycline inducible RGC-5 cell line that expresses Halo 
tagged human wild type optineurin was created. Tag free optineurin was purified and its purity was assessed 
by SDS-PAGE and Western blotting. The secondary structure of the highly purified optineurin was examined 
by circular dichroism (CD) spectropolarimeter. The posttranslational modification sites were identified by liquid 
chromatography-mass spectrometry. Protein-protein interaction was evaluated by bimolecular fluorescence 
complementation (BiFc) analysis. The aggregation of optineurin was studied by thioflavin T (ThT) assay. The 
CD spectra indicated that the tag free optineurin protein was folded, containing both α-helical and β-sheet 
secondary structures. One previously reported phosphorylation site serine (Ser) 177, four novel 
phosphorylation sites (Ser173, 174, 526 and 528), as well as one new acetylation site (Ser2) were identified. 
Optineurin protein was also shown to be an aggregate prone protein. It interacted with itself as detected by 
BiFc assay, and formed β-sheet rich structures or aggregates as evidenced by ThT assay.  

Keywords: Human optineurin protein; Mammalian expression; Tet-on inducible cell line; Posttranslational 

modification sites; Circular dichroism; Bimolecular fluorescence complementation (BiFc); Thioflavin T (ThT) 
assay. 

 

2.  Introduction 

The optineurin gene was originally identified through a yeast two-hybrid screening by Li et al. [1]  using an adenovirus 

protein E3-14.7K (group C early transcription region 3 14.7-kDa protein) as a bait and was initially named as FIP-2 

(14.7K-interacting protein 2). E3-14.7K protein inhibited tumor necrosis factor-α (TNF-α) induced apoptosis and FIP-2 

could reverse such an effect in human 293 cells [1]. The protein was subsequently noted to display a high homology with 

NF-κB essential molecule (NEMO), and was named NRP (NEMO related protein) [2]. In 2002, this gene was identified 

as a causative gene on chromosome 10p14 in a study of 54 families with autosomal dominantly inherited adult-onset 

primary open angle glaucoma (POAG) and was designated it as “optic neuropathy inducing” or optineurin [3].  It was 

further noted that variations in this gene predominantly resulted in normal tension glaucoma, a subtype of POAG [3]. 

More recently, optineurin gene has also been linked to amyotrophic lateral sclerosis (ALS) [4-6]. 

Optineurin, a 67-kDa protein, is expressed in most tissues such as the heart, brain, placenta, skeletal muscle, kidney, 

pancreas, liver, and the eye [3, 7]. The putative domains in optineurin protein include: a NEMO-like domain, at least one 

leucine zipper, multiple coiled-coil motifs, an ubiquitin-binding domain (UBD), a microtubule associated protein 1 light 

chain 3 (LC3)-interacting motif [8], and a carboxyl (C)-terminal C2H2 type of zinc finger [1, 2, 9-11]. The endogenous 

or ectopically expressed optineurin has been shown to interact with itself to form high molecular weight protein 

complexes (HMCs or homo-oligomer) in RGC-5 [12], NIH3T3 [13] and 293T [2, 13] cells. It also binds with other 

proteins such as Rab8 [14, 15], huntingtin [16], myosin VI [17], transferrin receptor [18, 19], metabotropic glutamate 
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receptor [20], LC3 [8], polo-like kinase 1 (Plk1) [21], and TANK (TRAF-associated NF-kB activator) binding kinase 1 

(TBK1) [8, 22]. These interactions depict basic optineurin functions or participation in cellular processes including 

vesicle trafficking [18, 19, 23], maintenance of the Golgi apparatus [24, 25], NF-κB pathway [26-30], anti-bacterial [8] 

and anti-viral signaling [28], cell division control [21], and autophagy [31-33]. Optineurin has in addition been shown to 

be phosphorylated, which is essential for its functions in mitosis [21] and autophagic signaling pathway [8, 33, 34].  

Despite intense interests and extensive studies on optineurin in the past decade, its biophysical properties and/or three 

dimensional structure have yet to be explored. The effort has been hampered largely by challenges of accessing sufficient 

amounts of purified mammalian optineurin protein. In this report, we described the establishment of stable inducible 

tetracycline regulated (Tet-on) optineurin-Halo expressing RGC-5 cell lines and the purification of tag free human 

optineurin protein using the Promega’s HaloTag based purification technique. The stable cell lines which express 

optineurin upon doxycycline (Dox) induction provide an excellent source to produce highly purified recombinant protein 

for biophysical characterization including its secondary structure, phosphorylation sites, and aggregation as shown herein. 

Oligomer/dimer formation was also examined by the bimolecular fluorescence complementation (BiFC) assay which is 

based on the principle that two non-fluorescent N- and C-terminal fragments of a fluorescent protein such as green 

fluorescent protein (GFP) can re-associate and form a fluorescent complex when they are fused to two proteins that 

interact with each other or one protein such as α-synuclein that forms dimers/oligomers [35, 36].  

3.  Methodology 

The study did not use animals or involve human subjects. Experiments were carried out using RGC-5 and mouse 

neuroblastoma Neuro2A cell lines.   

3.1. Plasmids 

Plasmid pTRE-OPTNWT-Halo-IRES-GFP-INS-CMVp-rtTA-IRES-Hyg was made in several steps. Human wild type full 

length optineurin (OPTN) gene PCR amplified from plasmid pOPTNWT-EGFP [24] was subcloned into Halo expression 

vector pFC14K-CMV (Promega, Madison, WI, USA) to create pOPTNWT-Halo. Tetracycline regulated expression vector 

pTRE-OPTNWT-Halo-IRES-GFP-INS-CMVp-rtTA-IRES-Hyg was constructed using MultiSite Gateway Pro 4.0 System 

from Invitrogen (Grand Island, NY, USA) by four pieces recombination of entry vectors with destination vector. Briefly, 

entry vector containing TRE promoter (pENTR L1-TRE-L5r) was made by PCR amplification of attB1-attB5 flanked 

TRE and recombinated with donor vector pDONR 211 P1-P5r. Entry vectors containing OPTNWT-Halo (pENTR L5-

OPTNWT-Halo-L4), IRES-GFP (pENTR L4r-IRES-GFP-L3r) and INS (pENTR L3-INS-L2) were similarly made. 

Destination vector containing pCMVp-rtTA-IRES-Hyg was made by insertion of rfA element (destination conversion 

system from Invitrogen) into pCMVp-rtTA-IRES-Hyg-pcDNA3.1z [37]. Finally LR reaction was performed using four 

entry vectors pENTR L1-TRE-L5r, pENTR L5-OPTNWT-Halo-L4, pENTR L4r-IRES-GFP-L3r, pENTR L3-INS-L2 and 

destination vector pCMVp-rtTA-IRES-Hyg-rfA to generate plasmid pTRE-OPTNWT-Halo-IRES-GFP-INS-CMVp-rtTA-

IRES-Hyg. 

For BiFC analysis, pOPTNWT-YN, pYN-OPTNWT, and pOPTNWT-YC, were constructed using Gateway Multisite pro 

4.0 System (Invitrogen). Full length optineurin gene was subcloned into pDONR 211 P1-P5r to produce entry vector 

pENTR L1-OPTNWT-L5r. YN (1-154 amino acids of enhanced yellow fluorescent protein or EYFP) was PCR amplified 

from bJun-YN (courtesy of Dr. Tom Kerppola) [38] and subcloned into pDONR 211 P5- P2 to make pENTR L5-YN-L2. 

LR reaction of these two entry vectors pENTR L1-OPTN-L5r and pENTR L5-YN-L2, and destination vector pCMV/Zeo 

(Promega) was performed to make plasmid pOPTNWT-YN. pYN-OPTNWT was generated by a similar strategy. A YN 

fluorescent complementary YC plasmid pOPTNWT-YC was also generated. YC (155-238 amino acids of EYFP) was 

PCR amplified from bFos-YC (courtesy of Dr. Tom Kerppola) [38] and subcloned into pDONR 211 P1-P5r to generate 

pENTR L1-YC-L5r, and OPTNWT was subcloned into pDONR 211 P5-P2 to generate pENTR L5-OPTN-L2. LR 

recombination was performed using pENTRL1-OPTN-L5r, pENTR L5-YC-L2 and destination vector pCMV/Zeo to 

generate pOPTNWT-YC. All plasmids were sequenced to verify the sequence integrity and in frame fusion of genes.  

3.2. Establishment of Tet-on Wild Type Optineurin-Halo Expressing Stable RGC-5 Cells  

RGC-5 cells were transiently transfected for 20 h with plasmid pTRE-OPTNWT-Halo-IRES-GFP-INS-CMVp –rtTA-

IRES-Hyg in T-25 flasks using Lipofectamine LTX transfection reagent (Invitrogen). The complete growth medium 

(Dulbecco's Modified Eagle's medium or DMEM with 10% fetal bovine serum) was changed to selection medium 

containing 100 μg/ml of hygromycin (EMD Millipore, Billerica, MA, USA) and the selection continued for about 2 

weeks until medium sized colonies grew out. The cells were then trypsinized and induced with 1 μg/ml of Dox 

(Clontech, Mountain View, CA, USA) for 24 h. GFP-expressing or GFP positive cells were sorted using 

DakoCytomation MoFlo into 96 well plates (1 cell/well) with maintenance medium (with 50 μg/ml of hygromycin but 

without Dox) for another 2 weeks. Cells were screened for GFP expression after induction with Dox by fluorescence 

microscopy. Bright GFP positive clones (high expresser clones) were allowed to multiply and were banked in liquid 

nitrogen. 
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3.3. Purification of Tag Free Optineurin Protein 

Tet-on optineurin-Halo inducible RGC-5 cells were induced with complete medium plus Dox (1 μg/ml) for 24 h. Cells 

were lysed in 50 mM Tris-HCl, 150 mM NaCl, supplemented with 0.005% NP40 and proteinase inhibitor, pH 7.4 and 

purified using Promega’s HaloTag based affinity purification technique under native conditions. Briefly, total lysate was 

incubated with HaloLink resin overnight at 4
o
C. The resin was subsequently washed three times with lysis buffer, and the 

protein on the beads was incubated overnight at 4
o
C with Halo-TEV protease in washing buffer (same as lysis buffer). 

Tag free optineurin protein was collected the next day following centrifuging at 5,000 rpm for 5 min (referred to as elute 

1). The beads were incubated with lysis buffer again for elutes 2 and 3. The purity of the isolated protein was assessed by 

SDS-PAGE and Coomassie blue staining.  

For purification of phosphorylated optineurin protein, NaCl in the lysis buffer was replaced with same concentration of 

NaF, a potent phosphatase inhibitor. 

3.4. Western Blotting 

Samples from different stages of the purification process were resolved on 10% SDS-PAGE gels and transferred to 

nitrocellulose membrane. The membrane was immunoblotted with anti-optineurin polyclonal antibody (Cayman 

Chemical, Ann Arbor, MI, USA). To examine whether the purified optineurin protein was phosphorylated, the protein 

was immunoblotted with anti-phosphotyrosine and anti-phosphoserine monoclonal antibodies (Sigma, St. Louis, MO, 

USA). 

3.5. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) Analysis 

Posttranslational modification sites of optineurin protein were identified by LC-MS/MS at the Mass spectrometry, 

Metabolomics & Proteomics Facility, Research Resources Center, University of Illinois at Chicago. Briefly, purified 

optineurin protein was digested with trypsin (Promega), and phosphorylated peptides were enriched using NTA medium 

(Qiagen, Germantown, MD, USA). Both the retained and the unretained fractions were subjected to nano scale 

LC/MS/MS analysis on a LTQ Qrbitrap Velos Pro mass spectrometer (Thermo Scientific, Waltham, MA, USA). Raw 

data acquisition files were processed with the Mass Matrix File Conversion tool to generate Mascot generic files and 

searched against NCBI database. The variable modifications include: phosphorserine (pSer), threonine (pThr) and 

tyrosine (pTyr) as well as acetylation at the N-terminus of the protein. 

3.6. Circular Dichroism (CD) Spectroscopy 

CD spectra of purified optineurin at 0.03 mg/ml in 50 mM Tris. 150 mM NaF, pH 7.4 were collected using a Jasco J-710 

CD spectrometer at room temperature with a 2 mm path length cuvette [39].  Deconvolution was performed utilizing 

Dichroweb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) using a mean residue molecular weight of 115 [40].  

3.7. BiFc Assay 

Mouse neuroblastoma Neuro2A cells plated into Lab-Tek II CC2 8-well chamber slides (10,000 cells/well) were cultured 

overnight. The cells were co-transfected for 20 h with combinations of BiFc plasmids (pOPTN-YN + pOPTN-YC; pYN-

OPTN + pOPTN-YC; pbJun-YN + pbFos-YC) using lipofectamine LTX,  fixed with 4% paraformaldehyde and mounted 

with Vectashield with 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratory, Burlingame, CA, USA). Images were 

taken on Zeiss LSM-710 confocal microscope (Carl Zeiss, Thornwood, NY, USA) using a GFP filter. The fluorescence 

observed was thus green (GFP) rather than yellow (YFP). Cells transfected with pOPTN-YN or pOPTN-YC alone were 

used as negative control while co-transfected with pbJun-YN + pbFos-YC were served as positive control. 

3.8. Thioflavin T (ThT) Assay 

The aggregation or fibril formation of optineurin was examined by ThT assay. Purified optineurin diluted in 50 mM Tris-

HCl, 150 mM NaCl, pH 7.4 was incubated at 37°C for up to 4 days. ThT (Sigma) solution was added (10 μM in 50 mM 

glycine-NaOH, pH 8.5) into each tube, mixed by vortex and transferred into black 96-well polystyrene plates. 

Fluorescence was read on TECAN GENios pro plate reader (TECAN, Salzburg, Austria). The excitation wavelength 

used was 450 nm, and the emission wavelength was 485 nm. All assays were performed in triplicate. For the effect of 

different ionic strength on the aggregation/fibril formation, purified optineurin was incubated at 37°C for 4 days in 50 

mM Tris, pH 7.4 containing 0-2 M of NaCl.  

4.  Results 

4.1. Purification of Tag Free Human Optineurin Protein 

Inducible Tet-on optineurin-Halo expressing RGC-5 stable cell line was established using a single plasmid vector pTRE-

OPTN-Halo-IRES-GFP-INS-CMVp-rtTA-IRES-hyg-pcDNA3.1z (Figure 1) which contains both tetracycline regulatory 
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and responsive components based on Clontech’s Tet-on advance system. Optineurin-Halo was expressed along with GFP 

when the cells were induced with Dox (1 µg/ml) for 24 h (Figure 2). 

 

                                                                                                                                                                                               

 
 

Figure 1. Schematic presentation of single plasmid construct used to make Tet-on inducible human optineurin-

Halo (OPTNWT-Halo or OPTN-Halo) expressing RGC-5 stable cell line. There are two expression cassettes in this 

plasmid. In responsive element expression cassette (yellow), OPTN-Halo and IRES-GFP are under the control of Ptight 

promoter and in regulatory element expression cassette (blue), rtTA-Advance and IRES-hygromycin (IRES-Hyg) are 

under the control of CMV promoter. These two expression cassettes are separated by 5’-HS4 chicken β–globin insulator 

(INS, in pink). 

The human optineurin protein expressed was purified and isolated with high purity (Figure 3A) using Halo purification 

strategy from Promega. Optineurin-Halo fusion protein has a molecular weight of around 100 kDa. After cleavage by 

Halo-TEV (Halo-tagged TEV protease, which is the 27 kDa catalytic domain of the nuclear inclusion a protein encoded 

by tobacco etch virus), the tag free optineurin was eluted with molecular weight of around 74 kDa. On the SDS gel, there 

was also a faint band with a molecular weight slightly higher than the optineurin band which might represent 

phosphorylated optineurin (Figure 3A).  

Western blotting using rabbit anti-C-terminal optineurin indicated that the elutes after TEV digestion were tag free 

optineurin (Figure 3B). With a modified protocol in which NaCl in the lysis buffer was replaced with NaF, a general 

inhibitor for protein phosphatases, the higher molecular weight band in the doublet (phosphorylated optineurin 

population) was dramatically enhanced (Figure 3C). Both bands of the doublet were sent for mass spectrometry and 

were verified to be human optineurin protein (Figure 4A). Immunoblotting further showed that the purified optineurin, 

immunoreactive to both anti-phosphotyrosine and anti-phosphoserine monoclonal antibodies, was tyrosine- and serine-

phosphorylated (Figure 3D), as was the endogenous optineurin demonstrated previously [12]. The yield of highly 

purified optineurin protein was approximately 23 μg/500 cm
2
 dish.  

 

 

 

Figure 2. Expression of optineurin-Halo in Tet-on inducible RGC-5 stable cells. A representative clone (OPTN-

Halo) showed GFP expression (from IRES-GFP, see Figure 1) after Dox (1 µg/ml) induction for 24 h. The same clone 

showed minimal green fluorescence in growth medium without Dox (Control). This indicates the human OPTN-Halo 

fusion gene expression under Dox induction but no such an expression without induction. The nuclei were stained with 

DAPI in blue. Scale bar, 20 μm. 
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Figure 3. Purification of tag free human optineurin (OPTN) protein. Samples from different stages of the 

purification process were resolved on 10% SDS-PAGE gels. The gels were either stained with Coomassie blue (A) or 

immunoblotted with rabbit anti-optineurin (C-term) polyclonal antibody for Western blot analyses (B). The molecular 

weight of optineurin-Halo is about 100 kDa and that of the tag free optineurin is 74 kDa. The purified tag free optineurin 

was seen in elutes 1, 2, and 3. C. Phosphorylated optineurin (pOPTN) was enriched using a modified purification 

procedure. D. Phosphorylated optineurin reacted with anti-phosphotyrosine (Anti p-Tyr) and anti-phosphoserine (Anti p-

Ser) indicating that the purified optineurin was tyrosine- and serine-phosphorylated.  

4.2. Identification of Posttranslational Modification Sites 

The purified optineurin protein (both unphosphorylated and phosphorylated) was trypsin digested. Phosphopeptides were 

further enriched by passing through a phosphopeptide enrichment column. When subjected to LC-MS/MS analysis, the 

spectra showed a 43% amino acid sequence coverage (Figure 4A). Five phosphorylated serine sites: Ser173, 174, 177, 

526, and 528 were identified (Figure 4B). Ser2 was also found to be acetylated (Figure 4B). Representative spectra of 

phosphorylation at Ser174 and 177 are shown in Figure 4C and D.   
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Figure 4. A. Identification of human optineurin by mass spectrometry. Purified optineurin gel bands (doublet) were 

analyzed by mass spectrometry and were identified to be human optineurin protein. 23 exclusive unique peptides were 

identified that covered 43% of total optineurin amino acids (highlighted in yellow). B. Posttranslational modifications of 

amino acids such as phosphorylation (highlighted in green) and acetylation (highlighted in purple) were found.  C. 

Representative spectra of phosphorylation at Ser174. D. Representative spectra of phosphorylation at Ser177. 

4.3. Secondary Structure of Optineurin Protein 

CD spectroscopy was carried out to test whether the purified optineurin was in fact folded and to examine its secondary 

structure. As shown in Figure 5, optineurin adopted a folded conformation containing α-helix and β-strand elements as 

expected. Deconvolution of the data estimated that the helix content was 30%, β-strand content was 18%, turn content 

was 16%, and unordered was 36%. This indicated that optineurin was mostly α-helix and unordered, suggesting that the 

protein might be highly flexible, or possibly consisted of largely of helical domains separated by flexible linker regions. 
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Figure 5. Circular dichroism spectrum of purified optineurin. The spectrum indicates that purified optineurin adopts 

a folded conformation, containing both α-helix and β-strand secondary structure. The data is displayed as mean residue 

ellipticity. The inlay represents the fit of the deconvoluted data using Dicroweb. The estimated helix content is 30%, β-

strand content is 18%, turn content is 16%, and unordered is 36%.    

4.4. BiFc Assay 

BiFc plasmids pair pOPTN-YN + pOPTN-YC, pYN-OPTN + pOPTN-YC, or pbJun-YN + pbFos-YC (positive 

control) were co-transfected into Neuro2A cells. Transfection with single plasmid pOPTN-YC or pOPTN-YN, 

which was served as negative control, did not generate any fluorescence in the cells (Figure 6A). By contrast, 

fluorescence was observed (Figure 6C and D) in the cytoplasm of cells with pOPTN-YN + pOPTN-YC or pYN-OPTN + 

pOPTN-YC co-expression.  The N- and C-terminal EYFP fragments would be brought together to constitute fluoresce 

only if and when optineurin protein interacted with itself to form dimers/oligomers. The positive result thus signified the 

dimer/oligomer formation by optineurin in cells. The binding of bJun and bFos (positive control) also led to fluorescence 

in the nuclei of cells as anticipated (Figure 6B). 
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Figure 6. Protein-protein interaction assayed by BiFc. Neuro2A cells were transfected for 20 h with A. pOPTN-YN or 

pOPTN-YC plasmid only to serve as negative control; B.  pb-Jun-YN + pb-Fos-YC to serve as positive control; C. 

pOPTN-YN + pOPTN-YC; and D.  pYN- OPTN + pOPTN-YC. Images were examined under a Zeiss confocal 

microscope using a GFP filter. No fluorescence was seen in the negative control group (A), while it was observed in the 

nuclei in the positive control (B). Fluorescence was also detected in the cytoplasm in the pOPTN-YN + pOPTN-YC (C) 

and pYN-OPTN + pOPTN-YC (D) co-transfection groups indicating homo-dimerization or oligomerization between 

optineurin molecules. Nuclei were stained with DAPI. Scale bar, 20 μm.  

4.5. ThT Assay  

Protein aggregation and fibril formation was examined by ThT assay. Purified optineurin protein incubated in 

physiological buffer (50 mM Tris-HCl, 150 mM NaCl, pH7.4) resulted in a heightened ThT fluorescence intensity, which 

was increased with the incubation time (Figure 7A). Bovine serum albumin, under the same conditions, showed minimal 

effect. The increase of ThT fluorescence by optineurin protein was also observed with increased ionic strength from 0.15 

M to 2M NaCl in 50 mM Tris-HCl, pH 7.4 buffer (Figure 7B).   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 7. A. ThT emission intensity for 10 μM of purified optineurin (OPTN) and bovine serum albumin (BSA, 

negative control). All were incubated at 37
o
C in 50 mM Tris-HCl, 150 mM NaCl (pH 7.4) for 1-4 days. B. ThT 

emission intensity for 1.5 µM of purified optineurin in 50 mM Tris-HCl (pH 7.4) with various ionic strengths (0.15 M, 

0.5 M, 1 M, 1.5 M, or 2 M NaCl). Protein was incubated at 37
o
C for 4 days. 

5.  Discussion 

Optineurin has raised high interests in recent years due to its association with neurodegenerative diseases [41, 42] such as 

normal tension glaucoma [3, 43, 44] and ALS [45, 46]. To facilitate biophysical characterization, Halo tagged optineurin 

was expressed in the current study under native condition in mammalian cells and tag free optineurin was purified via 

Promega’s Halo technology. As optineurin overexpression following a 48 h transient transfection has been shown to be 

toxic [24], a tetracycline regulated Tet-on inducible RGC-5 cell line was established to express human optineurin-Halo 

fusion protein. RGC-5 was originally created as a rat retinal ganglion cell line, however it was re-characterized recently 

to be, in fact, a mouse 661W photoreceptor cell line [47-49]. This cell line nevertheless was used in the present report 

simply as a “factory” to produce optineurin protein, not as a model for retinal ganglion cells. HaloTag is a modified 

haloalkane dehalogenase found only in certain bacteria. The binding of Halo tag to the HaloLink resin is covalent and 

essentially irreversible; it overcomes the equilibrium-based binding limitations associated with affinity tags and enables 

efficient capture and purification of target protein, even at low expression levels [50]. Another advantage to use Halo tag 

is that the target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to Halo tag 

(Halo-TEV), leaving both Halo tag and Halo-TEV permanently attached to the resin and highly pure, tag free protein in 

solution. Through this technology, we were able to obtain tag free, properly folded (Figure 5) optineurin protein with 

high purity (Figure 3A) in high yield. To our knowledge, this is the first time that mammalian optineurin was purified in 

native conditions. The inducible cell line would provide a reliable source for highly purified recombinant protein in a 

scaled-up and cost-effective manner for biophysical studies of optineurin. 
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Using LC-MS/MS, five phosphorylated serine sites in optineurin (Ser173, 174, 177, 526 and 528) were identified 

(Figure 4B). Ser177 has been reported previously that it can be directly phosphorylated by polo-like kinase 1 (Plk1) [21] 

or TANK-binding kinase 1 (TBK1) [8]. Plk1 belongs to a conserved subfamily of serine/threonine protein kinases that 

have pivotal roles in the cell-cycle progression [51]. Following phosphorylation at Ser177 by Plk1, optineurin is shown 

to associate with a myosin phosphatase complex, which antagonizes the mitotic activity of plk1 [21]. TBK1 is a NF-κB-

activating serine/threonine kinase that has important roles in multiple signaling pathways such as innate immunity, 

autophagy, and cancer [52]. TBK1 is documented to phosphorylate optineurin also at Ser177, enhancing thereby the 

binding affinity of optineurin to LC3 and the autophagic clearance of cytosolic Salmonella enteric through an ubiquitin-

dependent pathway [8]. Phosphorylation of optineurin at Ser177 by TBK1 in addition can regulate clearance of protein 

aggregates via an ubiquitin-independent autophagy pathway [53].  

Interestingly, Wild et al. [8] speculated that a stretch of serines (169NSSGSSEDSFVEIRMA184) in the LIR motif of 

optineurin might be phosphorylated. We herein provide direct evidence that Ser173, 174, 177 are phosphorylated in this 

region and suggest that the multiple serine phosphorylation sites may be crucial for optineurin’s physiological function. 

Furthermore, we found two additional novel phosphorylation sites at Ser526 and 528 which are close to the C-terminus 

of the optineurin protein. The serine phosphorylation at the C-terminus is likely also of importance in optineurin’s 

function.   

The purified optineurin protein did exhibit reactivity toward anti-phosphotyrosine (Figure 3D). However, LC-MS/MS 

failed to detect any tyrosine phosphorylation site for optineurin. Increasing the coverage of peptides in the LC-MS/MS 

analyses may help to identify phosphorylation sites on optineurin in the future.  

Ser2 was found to be acetylated (Figure 4B) by LC-MS/MS. A majority of eukaryotic proteins are subjected to N-

terminal acetylation which emerges as a multifunctional regulator, acting as a protein degradation signal, an inhibitor of 

endoplasmic reticulum translocation, and a mediator of protein complex formation [54]. The finding of a new acetylation 

site in optineurin is of interest although its significance is unclear at present.  

The CD result (Figure 5) indicates that optineurin protein is folded, consisting of both α-helix and β-strand elements. 

The protein appears to be highly flexible, possibly containing helical domains separated by flexible linker regions. The 

structural flexibility may be the basis why optineurin can interact with quite a few proteins and function in multiple 

cellular pathways. It is believed that optineurin, via different sequence regions, can impact biologic processes through 

protein interactions and exert different functions. Mutations or truncations in specific regions may lead to the 

development of pathogenic consequences. Detailed illustration and verification in this regard however must await X-ray 

crystallography work for the high resolution 3-dimensional structure. 

By BiFc assay, the optineurin-optineurin interaction was directly visualized in the cytoplasm of Neuro2A cells (Figure 

6). The dimer/oligomer formation is in agreement with previous findings of optineurin foci [12, 24], as well as high 

molecular weight complex formation and oligomerization demonstrated by gel filtration analysis, blue native gel 

electrophoresis, and an in situ proximity ligation assay [2, 12, 13]. Optineurin is in addition shown in the present study to 

be an aggregation prone protein as evidenced by ThT assay (Figure 7). ThT is a benzothiazole salt dye that is widely 

used to visualize and quantify the presence of amyloid aggregates, both in vitro and in vivo. When it binds to β sheet-rich 

amyloid fibril structures, the dye displays enhanced fluorescence and a characteristic red shift of its emission spectrum 

[55]. As shown in Figure 7A, increasing incubation time of purified optineurin protein in physiological condition led to 

an increased ThT fluorescence. Increasing ionic strength also increased the ThT fluorescence (Figure 7B). These indicate 

that optineurin can aggregate to form β sheet-rich fibril structures. Small aggregates were also observed by atomic force 

microscopy (AFM) after incubation at 4
o
C or 37

o
C in 50 mM Tris, 150 mM NaCl, pH 7.4 for 4 days (data not shown). 

Specific features or fibrils however were not seen. The experimental conditions for AFM might need to be further 

optimized. The AFM aggregates nevertheless may represent oligomer/multimer species of optineurin. 

In neurodegenerative disorders, intracellular deposition of aggregated proteins into inclusion bodies, Lewy bodies, or 

aggresomes is a prominent cytopathological feature [56]. The sequestration of proteins (such as α-synuclein in Parkinson) 

into Lewy bodies or aggresomes is dependent on the microtubule-based pathway [57]. Similar to α-synuclein, optineurin 

is also demonstrated to be an aggregation prone protein. Foci formation by optineurin is contingent on the integrity of the 

microtubule network and overexpression of optineurin induces apoptosis [24, 58, 59]. These similarities further reinforce 

the association of optineurin with neurodegenerative diseases including glaucoma. 

6.  Conclusion 

In the current study, mammalian expression of optineurin protein is demonstrated. Knowledge regarding its secondary 

structure, posttranslational modification sites and aggregation is attained. The biophysical information is of fundamental 

value and may help elucidate ultimately pathophysiological pathways triggered by optineurin mutants such as 

Glu
50

 →Lys (E50K) found in normal tension glaucoma [60] and Gln
398

 stop (Q398X) and Glu
478

 →Gly (E478G) found 

in ALS [4].  
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7.  List of Abbreviations 

ALS, amyotrophic lateral sclerosis;  BiFc, bimolecular fluorescence complementation; CD, circular dichroism; DAPI, 

4',6-diamidino-2-phenylindole; Dox, doxycycline; EYFP, enhanced yellow fluorescent protein; GFP, green fluorescent 

protein; Halo-TEV, Halo-tagged TEV protease; LC-MS/MS, liquid chromatography-mass spectrometry; NEMO, NF-κB 

essential molecule; NRP,  NEMO related protein;  OPTN, optineurin; OPTN-Halo, Halo tagged human wild type 

optineurin; Plk1, polo-like kinase 1; POAG, primary open angle glaucoma; TBK1, TANK (TRAF-associated NF-kB 

activator) binding kinase 1; Tet-on, tetracycline inducible; ThT, thioflavin T; TNF-α, tumor necrosis factor-α; UBD, 

ubiquitin-binding domain. 
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