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Abstract 

Service Oriented Architecture (SOA) with transactional workflow support is a state- of- the- art architectural 
style for constructing enterprise application. In this research, rate of progress activities raise distributed 
service in a coordinated manner, using transaction context propagating message, coordination protocol and 
compensation logic. We reviewed the past, present and future of transaction processing and transaction 
integrity. Most of the challenges and requirement that led to the development and evolution of transaction 
processing system are still applicable today and recently, we have some intriguing developments. We take an 
explorative approach to probe the theoretical and implementational feasibility of managing transaction in the 
web service world.  
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1. Introduction 

At present Service-oriented architecture (SOA) is no uniform definition. The more influential SOA is defined as: 

"essentially a collection of services. Mutual communication between services may be simple data transferred; it may be 

conduct two or more coordinating services active. It needs some method of inter-service connections. The so-called 

service is a function with a precise definition, perfect package, independent of other the environment and state serving. 

"Service-oriented architecture (SOA) is an organization based on service computing resources, with loosely coupled 

services and indirect addressing capability of the software architecture. In essence, SOA is service-oriented software 

architecture, to design and build a loosely coupled software solutions approach. The basic elements of SOA architecture 

is service for business processes as reusable components that simplify the information services or the state of the data 

migration process, to respond to customer requests and provide high quality services. In SOA- based system integration, 

long-running business transaction often involve incompatible trust domains, asynchrony and periods of inactivity, 

presenting challenges to traditional ACID-style transaction processing. We take an explorative approach to probe the 

theoretical and implementation feasibility of managing transaction in the web service world. Following the theoretical 

thread, we propose a mental reference model to adapt existing transaction theories, including the classical ACID models 

which are below: 

a. Atomicity: The transaction executes completely or not at all. 

b. Consistency: The transaction preserves the internal consistency of the database. 

c. Isolation: The transaction executes as if it were running alone, with no other transactions. 

d. Durability: The transaction's results will not be lost in a failure. 

First, a transaction needs to be atomic (or all-or-nothing), meaning that it executes completely or not at all. There must 

not be any possibility that only part of a transaction program is executed. For example, suppose we have a transaction 

program that moves $100 from account A to account B. It takes $100 out of account A and adds it to account B. When 

this runs as a transaction, it has to be atomic — either both or neither of the updates execute. It must not be possible for it 

to execute one of the updates and not the other. The TP system guarantees atomicity through database mechanisms that 

track the execution of the transaction. If the transaction program should fail for some reason before it completes its work, 
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the TP system will undo the effects of any updates that the transaction program has already done. Only if it gets to the 

very end and performs all of its updates will the TP system allow the updates to become a permanent part of the database. 

If the TP system fails, then as part of its recovery actions it undoes the effects of all updates by all transactions 

that were executing at the time of the failure. This ensures the database is returned to a known state following a failure, 

reducing the requirement for manual intervention during restart. 

2. Business Relevant Information 

 

The objective of our work is to support the design and development of enterprise applications that require transactional 

semantics. An example is a Customer Relationship Management (CRM) system that serves many concurrent users via 

multiple access channels and processes, including an Internet self-service and a call center. In This CRM, business-

relevant customer profile information is persisted in databases and accessed via Web-accessible services; external 

systems also have to be integrated. 

2.1 SOA and Web services 

SOA reinforces general software architecture principles such as separation of concerns and logical layering. A defining 

element of SOA as an architectural style is the possibility to introduce a Service Composition Layer(SCL), which 

promises to increase flexibility and agility and to provide better responsiveness to constantly changing business 

environments. (Re-)assembling workflows in the SCL does not cause changes on the underlying service and resource 

layers; computational logic and enterprise resource management are separated from the service composition. We refer to 

a SOA with such a SCL as a process-enabled SOA. 

XML-based Web services are a state-of-the-art implementation option for process enabled SOAs. The Web 

Services Description Language(WSDL) describes service interfaces, SOAP service invocation messages. BPEL is a 

workflow language with operational semantics that can be used to realize the SCL. Component models for the 

implementation of services are emerging; SCA is such a model. Service components in SCA are defined from several 

perspectives: an interface describing the input and out put parameters of the operations of a component, references to 

other components, and component implementations. Via imports, a component implementation can reference external 

services. 

2.2 Transactional Workflow 

Transactional workflows coordinate the outcome of the local and remote service invocations that access and manipulate 

the enterprise resources. Transactional workflows in process-enabled SOA are particularly challenging to design due to 

the potentially long-lived nature of processes, the loose coupling and autonomy of services, the existence of non-

transactional resources, and the diversity in coordination and communication protocols synchronous and asynchronous 

message exchange patterns). Traditional system transactions alone are not directly applicable in a SOA setting; a more 

decentralized coordination model and application-level compensation strategies have to be added.  

3. Web service oriented transaction processing Model 

Concentrates on adapting these models to meet transaction processing needs in a service-oriented architecture. SOA 

impacts the understanding of transactions, and why the ACID-style transaction models are inadequate for SOA. Major 

challenges in web service transaction management are emphasized, and the analyses of how to meet these challenges are 

operationalized into a set of eight design criteria. This is followed by a brief introduction of the WS-TX protocol family, 

which are web service standards governing the transaction space. Based on the design criteria and the web service 

standards, a reference model for web service transaction management is constructed and presented. 

 Solving transaction problems at the web service level introduces an extra degree of complexity, which makes it 

a less efficient solution compared to transaction management at the application or database level. When used in system 

integration, web services usually wrap around coarse-grained functionality in legacy systems which otherwise would not 

be able to communicate. These legacy systems typically run in different execution environments with platform-specific 

transaction support, usually an implementation of the strict ACID-style two-phase or three-phase commit. If all services 

in a transaction are managed entirely within a single execution environment, web service transaction management will 

have no role to play. Transaction management at the web service level should only be considered when using web 

services to integrate disparate systems, as shown in Figure 1. 
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Figure 1: Integrating transaction domains in SOA 

3.1 Interoperability 

A web service transaction middleware consists of, among other things, transaction coordinators. The purpose is to 

coordinate the system to reach common decision on whether to commit, rollback or compensate the changes done by the 

business workflow. Interoperability is provided by wrapping legacy systems behind a web service interface, between 

otherwise incompatible systems. Examples of such system are SAP, .NET, EJB, CORBA, JMS, etc.   

3.2 Stateless Service vs. Statefull Transaction 

As statelessness is a key service-oriented principle, requiring individual services to retain state for the sake of transaction 

management seems to be a step back from the service-oriented ideal. The paradox between statefull transactions and 

stateless services is exacerbated by the necessity of treating legacy business services as ―black-boxes‖ in system 

integration. 

 The composition principle in SOA makes it possible to aggregate several business services in a composite 

service. In this research, the three terms – composite service, service orchestration and business activity – will be used as 

synonyms. The subsidy application service in the CAP case is an example of a composite service, representing the entry 

point to a long-running activity and a semi-automated business process. Every service orchestration introduces a level of 

context into an application runtime environment. The more complex a business activity, the more context information it 

tends to bring with it. Managing transaction contexts in service orchestrations inevitably requires managing and 

propagating these contexts, or transactional states. 

3.3 Heterogeneous transactional requirements in SOA 

Orchestrated services have varying transaction requirements, the relationship of a transaction to a legacy web service 

might be as simple as delegating a transaction to an existing transaction execution environment for the legacy service. It 

may also be as complex as coordinating a single transaction across multiple Participants in a long-running business 

process, across arbitrary execution environments. A variety of transaction protocols should be available for use with 

different transactional requirements, ranging from tighter-coupled, short-lived strict ACID transactions to loosely-

coupled and long-running automated business process executions. 

3.4 Composable Transaction Model 

In some complex web service workflows, certain stages of a service orchestration require a strict atomic outcome, while 

other stages can have more relaxed ACID requirements. This is the case in our subsidy application service example, 

where the top-level service is a long-running business transaction, which entails three subtractions of different types - a 

flat atomic transaction (the account payable service), a nested atomic transaction (the case registration service) and a 

long-running business transaction (eligibility evaluation service). These heterogeneous nested transaction types represent 

the requirement which gives rise to our sixth design criterion: 
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Figure 2: A coordination hierarchy with embedded transaction models 

4. WS( Web Services) Transaction Standard 

Several competing web service transaction specifications have been proposed. We have chosen to base our prototype 

design upon the WS-Transaction specifications, i.e. the WS-TX (Web Services Transaction) protocol family. The WS-

TX protocol family comprises three specifications: WSCOOR (Coordination Framework, part of WS-TX), WS-AT(Web 

Services Atomic Transaction) and WS-BA (Web Services Business Activity). These specifications are, from our vantage 

point, a good match to what we believe should be captured by a good web service transaction processing model.  

 

 

Figure 3: WS-Transaction services and protocols 

 

5. Managing data in Distributed Online Transaction Processing Environment 

There is huge database bottleneck that cause major problems of retailers and other organizations with highly distributed 

online environments. Databases containing customers and product data must be read from and written to constantly and 

in near real time to support the quality and timelines of each transaction. As for example, after a customer places his 

selections in a shopping cart, data on product price and availability in addition to customer address and credit must be 

instantly accessed, analyzed and updated before the transaction can be completed. In a distributed IT environment, 

various data elements required for this transaction are likely to be located in multiple nodes across the entire system. 

Making sure that the right data is available at the right time to provide a seamless and high quality experience for the user 

is a goal that gets increasingly harder to achieve for some companies as they grow their business. 

Sometimes a customer is ready to buy only to determine that shipping costs are much higher than they had anticipated 

putting the purchase at risk. If product inventory data across multiple warehouses is not well integrated, a buyer might be 

told the product is on backorder when it is actually available in an alternative warehouse. This type of problem happens 

because there is too much data that needs to be analyzed, accessed and coordinated in real time. 

How can companies deal with these complex real times transaction management issues? In essence, companies 

follow one of the three available options described below: 
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a. Use of in-memory data grids 

This method supports the caching of frequently used data in a distributed, in-memory data grid. The quantity and variety 

of data that must be cached in-memory is often expansive including data related to customers, individual products, 

shipping locations, third party suppliers, warehouse, and inventory. While this approach helps to eliminate data 

bottlenecks and can lead to significant improvements in transaction performance, it comes with the real risk of data loss 

when nodes fail. Because data and transactions are stored in memory only, loss of a node can mean failed transactions 

and loss of revenue. Even with the deployment of elaborate backup and recovery plans, most companies find this 

approach insufficient to support business-critical OLTP applications. 

b. Use of in-memory data grids combined with manual management of persistence 

This method uses advanced software development designed to improve a company‘s success with in-memory data grids. 

One important aspect of this method is the implementation of the two-phase commit protocol to eliminate some of the 

risk of data loss. The two-phase commit protocol is a technical algorithm that provides the required coordination between 

all the processes that must take place to persist a transaction accurately to permanent disk. This approach can take many 

months to implement in a distributed environment and requires significant development knowledge and on going manual 

software code updates. The software engineers need to know the server location of all the data elements required for a 

transaction so that the data can quickly be read, reviewed, and then written in the appropriate location to keep up with the 

desired transaction speed. This approach requires highly skilled engineers to successfully handle moderate transaction 

loads with software that is written for a specific use case. Most companies find that, persisting data in this way results in 

systems insufficient to support more extreme loads. 

c. Keep with the status quo and react to exceptions 

This approach is very common in retail and other distributed transaction environments. Sometimes retailers in highly 

competitive markets will cut corners when it comes to designing fault tolerant architectures and quality control measures 

for data because they are under pressure to get to market quickly with new features and functionality. They may also 

eliminate some system safeguards that might slow down the system because they want to ensure that the online shopping 

environment performs well during spikes in demand.  As a result, the system may maintain performance levels, but there 

are lots of places where errors may occur. In systems like this, the engineering teams analyze the product and customer 

databases every night looking for places where the integrity of the data has been disturbed and they make corrections as 

needed. 

6. Summary and Outlook 

Transaction models are becoming the predominant web service transaction management protocol in lieu of the ACID-

style transactions. Appropriate countermeasures must be used to provide alternative reliability guarantees for 

compensation-based transaction protocols. Various possible combinations of web services within a transaction often 

require the use of multiple protocols and an external Coordinator capable of bridging disparate execution environments. 

We introduced a new analysis and design method leveraging architectural decision models and patterns in support of the 

full lifecycle of designing transactional workflows, a particularly challenging problem in the construction of process-

enabled SOA. We then defined three conceptual patterns, Process activity, Communication Infrastructure and Service 

Provider level. Future work includes documenting more variations and pattern selection guidance for our three patterns. 

The three primitives can be mapped to more runtime platforms such as the Spring framework. To extend the method, 

architectural patterns for other recurring decisions, for example business-level compensation, should be documented. 
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