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Abstract—In cognitive radio networks, a secondary
user (SU) can share the same frequency band with the
primary user (PU) as long as the interference
introduced to the later is below a predefined
threshold. In this paper, the transmission performance
in cognitive radio networks is studied assuming
imperfect channel estimation, and taking quality of
service (QoS) constraints into consideration. It is
assumed that the cognitive transmitter can perform
channel estimation and send the data at two different
rates and power levels depending on the activity of
the primary users. The existence of the primary user
can be detected by channel sensing. A two-state
Markov chain process is used to model the existence
of the primary users. The cognitive transmission is
also configured as a state transition model depending
on whether the rates are higher or lower than the
instantaneous rates values. This paper studies the
maximum capacity of the cognitive user under the
delay constraint. We use the new metric concept of
effective capacity of the channel and introduce an
optimization problem for rate and power allocation
under interference power constraints. An numerical
example illustrates the average effective capacity
optimization and the impact of other system
parameters.

l. INTRODUCTION

Recent researches in spectrum-sharing techniques
have enabled different wireless communications
technologies to coexist and cooperate towards
achieving a better gain from the limited spectrum
resources. This started when spectrum utilization
measurements showed that most of the allocated
spectrum experiences low utilization [1]. Certain
administrative authorities, as Federal
Communications Commission (FCC) and National
Telecommunications and Information Administration

(NTIA) for radio spectrum regulation divide the radio
spectrum into many frequency bands, and licenses for
the often exclusive usage of these bands are provided
to operators, typically for a long time such as one or
two decades. Depending on the type of radio service
that is then provided by the licensees, frequency
bands are often idle in many areas, and inefficiently
used. The concept of spectrum sharing (the
coexisting of different radio systems in the same
spectrum) then occurred[2], as one device may
transmit, while others in the area are idle. Moreover,
radio systems can dynamically use and release
spectrum wherever and whenever they are available
(“spectrum agile radios”). This dynamic spectrum
access by spectral agile radios helps to minimize
unused spectral bands (“white spaces”). There are
two different cognitive radio strategies[3]. When the
secondary users can use the primary user’s band only
if not currently used by the owner (PU), the scheme
is known as overlay. The existence of the primary
user can be obtained through spectrum sensing. In the
second approach, the secondary users are allowed to
avail the band even with the primary user existence,
but should control their interference powers to a
tolerable threshold to not harm the primary users.
This scheme is known as underlay. This paper adapts
the second which, obviously, provides more spectrum
efficacy [3, 4]. The main challenge for the cognitive
user is to control their interference levels not to
exceed the limit where it may introduce harmful to
the primary user. For this reason, interference should
be carefully controlled under the assumption of
imperfect channel estimation and under the
probabilities of getting false alarms and/or miss
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detections in channel sensing process. The cognitive
user should also guarantee its own quality of service
requirements by transmitting at certain power for
desired rates and by limiting the delay encountered
by the transmission in the buffers[5]. 2 Wireless
channel conditions vary over time due to changing
environment and mobility. The channel fading
coefficients are possible to be estimated imperfectly
through training techniques, which is critical for the
successful deployment of cognitive radio systems in
practice. In addition to channel estimation, activities
of primary users should be detected through channel
sensing. Hence, more challenging scenario may face
the developers. There are certain interdependencies
between these tasks of channel estimation and
sensing. Mistake in channel sensing may lead to
errors in the estimation of the channel coefficients, if
the primary users are in the network but not detected,
the channel estimate may be worse. Studying the
transmission performance of cognitive radio in a
practical scenario in which SUs perform channel
sensing, channel estimation, and operate under QoS
requirements is the main motivations for the recent
researchers. Some early researches in the channel
estimation was studied by an analytical approach to
the design of pilot-assisted techniques [6, 7]. Pilot-
Assisted Transmission (PAT) in which known
training symbol(s) is multiplexed with the data
symbols, may be used to estimate the channel state
and to adapt the receiver parameters accordingly [8—
10].

For practical wireless networks, consideration the
delay QoS requirement deterministically is unrealistic
because of the time-varying feature of wireless
channels. Discussing the statistical case for delay-
QoS is become guarantees.

Effective capacity is an effective technique in
evaluating the capability of a time-varying wireless
channel to support data transmissions. The concept of
effective capacity has been introduced to supporting
QoS requirements[11]. The effective capacity is the
dual concept of the effective bandwidth, and can be
defined as the maximum constant arrival rate that can
be supported by the time-varying service process
where the delay QoS requirement of the system is
satisfied[5,12]. The authors in [13] studied the
effective capacity of cognitive radio network in the
existence of statistical QoS constraints assuming the
availability of perfect channel side information at the
two cognitive radio sides. In this paper, we
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investigate the concept of the effective capacity in
cognitive radio channels, and identify the
performance limits under imperfect channel
estimation and quality of service constraints. The
cognitive radio initially perform channel sensing,
then the channel fading coefficients are estimated in
the training phase of the transmission. Finally, data
transmission is performed. The activity of primary
users is modeled by a Markov process. By this work,
we jointly evaluate and optimize the training symbol
and data symbol powers and transmission rates of the
cognitive users. The rest of the paper is organized as
follows. In Section 11, The cognitive channel model is
given. Section Il formulates expressions for the
probabilities of primary user activities by discussing
the channel sensing phase. Section 1V discusses the
channel training with pilot symbols and derives the
MMSE channel estimation technique. In Sections V
and VI, data transmission phase and its performance
is studied, and a state transition model for cognitive
radio transmission is introduced. In Section VI, we
formally define the effective capacity in terms of
QoS constraints and identify the optimum throughput
that the SU can achieve. We provide numerical
results in Section VII, and conclude this paper in
Section VIII.

. CHANNEL MODEL AND
ASSUMPTIONS

Fig. 1 depicts the proposed frame model for the
cognitive transmission. Initially, the secondary user
performs channel sensing which lasts m seconds of
a frame of total duration T seconds. We assume that
pilot symbols are employed in the system to
facilitate the sensing of channel fading coefficients.
This will make the receiver able to track the time
varying channel. Since the MMSE estimate depends
only on the training energy and not on the training
duration [14], it can be claimed that transmission of
a single pilot at every T seconds is optimal[14, 15].
Instead of increasing number of pilot symbols, a
single symbol with relatively high power is used as
a pilot, with this, a decrease in the duration of the
data transmission can be avoided. Consequently, it
is assumed that the transmission is over time-
selective flat fading channel in which fading
remains constant in each frame. Transmitting one
pilot symbol is enough in each frame. Both powers
of pilot and data symbols, and transmission rates are
related to the channel sensing results. Let S, and ry
be the average transmission power and rate if the
primary user is detected as busy, respectively,
While, they are Sy and ry , if the channel is detected
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(T-T-1/8} fsec) i

Fig. 1. Transmission frame model consisting of channel sensing,
a single symbol as a pilot, and data transmission.

as idle. The secondary transmitter should terminate the
transmission, ie., S, = 0, when the detection process
senses the existence of the primary users. The input-output
relation between the cognitive transmitter and receiver in
the " symbol duration can be expressed as

. { hiz1i + ni, if PU is inactive,

' hiwo:i +ni + G, if PU is active
where x1; and x2; is the secondary transmitted signal when
the channel is idle and busy respectively. y; denotes the
channel output signal, h; represents the fading coefficient
between the cognitive transmitter and receiver, modeled as
zero-mean Gaussian distributed with variance o7, {n;} is
random noise samples at the cognitive receiver, that are
zero-mean Gaussian distributed with variance o2 for all 4.
The term ¢; represents the sum of active primary users’
signals received at the cognitive receiver with a variance
of 0’?.

III. SPECTRUM SENSING BASED ON ENERGY
DETECTION

Among different spectrum sensing schemes [16] for
reliably identifying the spectrum holes, Energy Derection
incurs a very low implementation cost and is hence widely
used[16]. It has a good resistance against fast time varying
radio environment where none a priori knowledge about the
primary users is available (non-coherent detector). In order
to identify the presence of primary users with unknown
frequency locations, energy detector serves as the optimal
sensing scheme since they only need to measure the power
of the received signal[16, 17].

We first present the spectrum sensing model. The spec-
trum occupation status can be modeled the following two
hypotheses: Spectrum sensing is to decide between the
following two hypotheses:

Ho: z=m i=1,2-..mB,
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Hi: z=nm+¢G i=1,2---mB.

Since the bandwidth is B, we have mB symbols in a
duration of m seconds. By the assumption that {¢;} signal
samples are i.i.d., the optimal detector response for this
hypothesis problem is given in [18] by
1 mi
Z=—le.|zfl?§§? s, )

m

where 4 is a pre-designed threshold. The cognitive radio
assumes that the primary system is in operation if 2 >
§ ie., Hi. Otherwise, it assumes Hg. Assuming mB is
sufficiently high, Z can be approximated, using Central
Limit Theorem, as a Gaussian random variable with mean
and variance

E[Z] - {

of +0op

if PUs are inactive
if PUs are active,

(3)
and

o2 — Jﬁf’(mB}
27 @t +0d) — (02— 02)?)/(mB)

if PUs are inactive
if PUs are active,

(G

respectively. The probabilities of detection, false alarm and
missing of energy detection (The miss detection occurs
when the primary is in operation but the cognitive radio
fails to sense it) are given as follows [19]

J—GE—J;’;

V200t +0h) — (02 — 02)/(mB)

Pi— Pr{Z > 6§H1} =Q

5)

Pr=PriZ > oMol =@ =2 ).
Voi/(mB)

Py = Pr{Ho[H:} = 1 - P4, )

where ()(-) represents the complementary distribution func-
tion of the standard Gaussian[20].

Regarding the channel sensing result, the cognitive radio
network has the four cases listed bellow:
1) Correct detection: with two possible cases
« Channel is busy, detected as busy, (BB).
« Channel is idle, detected as idle, (DD).
2) Miss detection: channel is busy, detected as idle(BD).
3) False alarm: Channel is idle, detected as busy (DB).
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I'V. PILOT POWER ANALYSIS

In Pilot Aided Transmission (PAT), a known symbol is
embedded in the data transmitted stream to facilitate the
receiver to estimate the channel fading coefficients[21].
The cognitive transmitter sends one pilot symbol after the
processing of channel sensing to make the receiver able to
estimate the channel coefficients. Obviously, this estimation
will be affected by channel sensing results.

As mentioned, by the assumption of constant frame
fading, one pilot symbol is adequate to provide estimations.
The first m seconds of a frame duration T is reserved
for sensing process, while one sending a single pilot is
optimal[15] because instead of increasing the number of
pilot symbols, a single pilot with relatively high power can
be used. This increases the duration of the data transmis-
sion. After channel sensing and pilot symbol transmission
phases, the rest (T" —m)B — 1 symbols are remaining for
data transmitting. The average input power in each frame

can be written as
TB
Si= Y E[|zul’]; i=0,1,--

i=mB+1

. 1=1,2. (8)

where w; is defined in (1). Thereby, the total power
assigned to the pilot and data symbols, in a frame is limited
by 5; when the channel is busy, or by 5; when the channel
is idle. For the possible two cases mentioned above in
which the channel is busy, the cognitive transmitter trans-
mits with an average power S;. while when the primary
user is transmitting but suffering form interference due to
the transmission of the cognitive users, i.e., BD case, the
cognitive transmitter transmits with an average power S,.
It is assumed, here, that depending on the capabilities of
the transmitters and the energy resources they are equipped
with, there exists peak constraints on both average powers,
say: 8™, ie, (Sp < S™ and 55 < S™).

Additionally, in order to mitigate the average interference
and protect the primary users, the following constraint on
Sp and Sg must be imposed:

PySy + PuSy < S™. (9)

where Py and P,, = (1 — F;) is the detection and miss-
detection probability defined in (5) and (7) respectively.
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Now, the average interference experienced by the primary
user can be expressed as

E{pdsblh'cplg + Pmsd|hcp|2}
= (PaSh + PuSa) E{ |k} < I'T10)

where h., denotes the fading coefficient between the
cognitive transmitter and primary receiver, and I™ is as
the average interference constraint. Note that h., is not
known at the cognitive transmitter and hence the cognitive
transmitter cannot adapt its transmission according to it.
However, if the statistics of this coefficient (E{|h,|?)
is known, then in order to satisfy (10), the cognitive

m

transmitter can choose 5™ = ———~.
E{|hep[*}

The pilot symbol power is also related to the sensing
result. Let the power of pilot symbol be Sy, = ppSy If
the the primary user is detected, while, it is Spq = paSa
when primary user is not detected. where pp and pg are
fractions of the total power assigned to the pilot symbol
when channel is detected as busy and idle, respectively.
Since we assume that the fading coefficients {h;} stay
constant within each frame, the received signal in the pilot
phase inside a certain frame 7 (i.e., y,;) can be written as

hi(Spp)1?% +n + ¢ for BB case
hi(Spa)t’? + na for DD case

pt = hi(S,a)Y% +n; + ¢ for BD case an
hi(S5,)12 +n for DB case,

where p = (mB + 1)i is the sample index of the pilot in
the frame 1.

If the receiver employs minimum mean-square error
(MMSE) estimator to obtain the estimate fading coef-
ficients, then the estimated fading coefficients for each
scenario can be found using MMSE estimation [15,22] as
follows.

A f Spbai

- Upj
by = Sppof+o2+ai 2Pl
Spdo;‘: L
Spaci4o ~P]

for BB and DB cases

for BD and DD cases.
(12)

It is essentially to know that the MMSE estimates given
above are related to the channel sensing results. See Ap-
pendix A for more details. fi,- in (12) is the estimate channel
fading, which is a circularly symmetric, complex, Gaussian
random variable with zero mean and variance aﬁ‘_, ie.,
hi ~ CN'(O.JEEJ. It can be expressed as hi = o w,
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where w is a standard complex Gaussian random variable,
w ~ CN(0,1). Thus the fading coefficient can now be
expressed as follows[23]

~

h’f. = hf' + €i, (13)
where ¢; is the estimate error in the " fading coefficient
hi. and €; ~ CN (0, 02)[6,23,24].

Now, the input-output relationship for data phase in (1)

can be rewritten as

o (ﬁi_fi)fli‘i‘ni""Ci
e [‘ibz — €;) T2 + 1y

if channel is busy,
if channel is idle,

(14)
The estimation of the channel variance is[21]
SPMT:
S0l +o2+o7 for BB case
Spdf’.':
Ji _ Spd{;z-‘r_gl?_‘ , . . for DD case
L L
i Py (Spacy, +on +07)  for BD case
Spb 2 2

(Spnof+ai+o7)? (Spbgh + Jn) for DB case,

(15)

where S;, may equal to Sy, or S, depending on channel
sensing result.

The variance of the estimation error o2 can be written
as

, assuming that there is no correlation between the error
and its estimation. We have omitted the frame index in
above equation because of the block fading assumption,
and because of the assumed identicalness property of the
fading coefficient and its estimates random variables in
each frame.

V. DATA TRANSMISSION PHASE

Finding the capacity of the channel in (14) is not
easy task, a lower bound capacity is generally obtained
by considering the estimate error e as another source of
Gaussian noise, i.e., by considering the term (n; — exy;),
[ = 1.2, 1in (14) as Gaussian distributed noise uncorrelated
with the input[5].

The channel can be modeled as a two Morkov chain
states(i.e., ON and OFF), for the state when target trans-
mission rate is greater than or less than the instantaneous
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rate that the channel can support, respectively. These two
states are possible in each of the four cases discussed
above. Hence, totally there are eight states (2 x 4) as
delineated in Fig. 2.

Py

(1-2) 88 case (3-a) N case
{=-0) Bl case {7-8) IB casza

Fig. 2. The 8 states transition model for the cognitive radio
channel.

Considering the channel estimation results and inter-
ference generated by the primary user ¢, we have the
following lower bounds instantaneous channel capacities
in the i'" frame for the four scenarios described above:

Cl, = C,logy(1 + milwi|?), E=1,2,3,4 (16)

T—m)B—1
where C, = % and
2
Sﬂ,o& )
55\5635 +O’ﬁ+o’?
Sado}
54407 +o3
Sdn'CFE
S 02 o2 502
decrfi+af‘+crc
5550’3

1 :BB case

Il
o

DD case
ki = (an

BD case

k=1:
k=2:
k=3
k=4

DB case.

SoT 4aT
Sapor, +o

C1, is the ¢*" frame’s lower band capacity of each scenario
I, which are obtained by assuming e;x; and ¢; as worst case
noises whereas these noises are considered as Gaussian
distributed [14]. Sgs is the data symbol power when the
channel is detected as busy while 544 is the data symbol
power when the channel is detected as idle. These two
powers are related to the cognitive average powers, as
Sa = Sy(1 — 1) /TC, = Sy(1 = )/ ((T —m)B — 1),
and Sgg = Sa(1 — pa) /(T —m)B —1).

Since w ~ CN(0,1), the magnitude |w| will have the
Rayleigh distribution and the squared magnitude |w|? will
have Exponential distribution with unity mean.

Volume 6, Issue 2 available at www.scitecresearch.com/journals/index.php/jisct 629




Journal of Information Sciences and Computing Technologies(JISCT)

The transmitter will transmit the information at the
desired rate unconcerned with the channel conditions. We
assume that the transmitter will send its data at fixed rate
ry, if the channel is sensed as busy, and at ry if it is sensed
as idle. If these rates are below the instantaneous capacity
values, i.e., when ry, < C!,C} or ry < C}, C} (the index k
is dropped again for convenience), the transmission can be
assessed to be in the ON state and, so, the target rates can
be achieved. While , if r, > C1.C} or ry > CL, Cl, the
channel is in the OF'F state, where reliable communication
can not be achieved and outage event occurs.

The activity of the primary user between the frames can
be also modeled as a two-state Markov model. Busy state
indicates that the primary user occupied the channel, and
iDle state indicates the absent of the primary users in the
channel, as can be seen in Fig. 3. Switching from busy
state to idle state and from idle state to busy state is with
probability b and d, respectively. The state transition is
assumed to occur every T seconds.

f!"_’ﬁ b
~ —
Py “\\’d______m\
\.( B S { D ~ 1-d
HH______’“\,_M______‘)““‘—\:;)_\
d

Fig. 3. Primary user activity between two states: Busy and iDle

Taking into account the four possible cases related to the
channel sensing results jointly with the reliability of the
transmissions states, the cognitive radio transmission can
be represented by state transition model as P(8x®) tran-
sition matrix. The entries transition probabilities depend
on channel coefficients, sensing probabilities, transmission
rates, and the two state Markov model declared in Fig. 3

Fo | P2 T Py  Ps
popz - P7 ps
p1 pz -+ Pr Pa
P i fa - Pr Ps (18)
o Pz Py P
P P2z Py P
i Pz - Pr P
LB Pz - Pr ps J

Table (I) summarizes the entries of the matrix P, where
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TABLE 1
THE TRANSITION PROBABILITIES OF MATRIX P

1=1,2,56 n=234T78

pr1 = dPge "1 = 1

Prz = dPua(l —e 1) =y

Prs = (1 —d)(1 — Prle 72 = pg
Pra = (1 —d){1 — Pp)(1—e?2)

=Py

Pns = dPme™?3 = fis

Pra = dPp(1—e™?3) = fg

Pnr = (1— d)f’.rf:'“ =pr

prs = (1 —d)Pr(1 —e ) = ps

piu=(1—b)Fge” "1 =p1
Pz =(1—b)Pa(l1—e )= po
Pis = b(1— Pple *2 = py
pa=b{1—Pp)(1l—e?2)=p,

pis = (1 = b)Pre™ = ps
pie = (1 —B)Pn(l —e™?3) = pg
pir = bPre= M = py

pis = bPp(l — e_""] =ps

A; in the table is defined as:
glre/Cal _g . )
—, i=l4
Ai = { 2[".—_{«*'%01_]_! =23, (19)
i
The details are provided in Appendix B.

According to the entries of the matrix P displayed in
Table (I), the rank of this matrix is 2.

Note that all p.s and p.s are functions of A; which in
tern function of all the parameters in (17).

VI. EFFECTIVE CAPACITY OPTIMIZATION FOR
COGNITIVE USER

A. Preliminary on Effective Capacity

The Effective Capacity (E) (or Effective Bandwidth)
theory is a powerful approach to evaluate the capability
of a wireless channel to support data transmissions with
diverse statistical quality of service (QoS) guarantees[11,
12,25,26]. It is defined, as the dual concept of effective
bandwidth, as the maximum constant arrival rate that
the channel can support while meeting the QoS require-
ment[12].

In particular, the statistical QoS guarantee can be char-
acterized by a metric called QoS exponent denoted by
f, 0 < # < oo[ll]. The QoS exponent f characterizes
the exponentially decaying rate of the violation probability
against the queue-length threshold[12]. With the pair (Ef-
fective Capacity E and QoS exponent #), it can be ob-
served that there is tradeoffs between the QoS requirement
and the system rate. Higher # represents more stringent
delay QoS requirements, and vice versa.

The delay, which is a QoS measure, can be described
through the probability that the occupancy of the buffer is
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higher than a specific value, say x, so the QoS exponent
can be formulated as
0— — Tim log Pr{L > .7:}
T—+00 T
where L is the cognitive queue length and follows the
equilibrium queue-length distribution of the buffer at the
source [11,26]. When # — 0, the user does not impose any

(20

delay constraints on the service process. On the other hand,
# — oc implies that any delay is not tolerable, and thus
the effective capacity reduces to the minimum supportable
service rate.

From (20), for large x,(=™), the buffer violation proba-
bility can be approximated as

Pr{L = 2™} =~ exp(—2™#). (21)

Smaller # corresponds to looser constraints, and larger ¢
implies more strict QoS constraints.

B. Framework for Effective Capacity Optimization

The goal here is to analyze the maximum capacity that
the cognitive radio channel of the given state transition
model of Fig. 2 can sustain under constraints specified by
the QoS exponent of the connection imposed in the form
of delay violation probabilities.

The effective capacity for a given ¢ is defined in [11.
27] as

.= — !E%Q%Ic:-gE(exp[—Hf?(ﬂ)} @2

where Rt) = 21{:1 r(i) is the time-accumulated service
process. r(i) is discrete time stationary and ergodic stochas-
tic service process. E(.) is the expectation operator with
respect to the random variable r.

It can be noticed that the service rate is r(i) = rp1
if the cognitive user is in state ON; or ON; at time 7
(the subscribe points to the state number). Similarly, the
service rate is r(i) = rg0" in states ONg and ON;. In
the remaining states (OFF;.j = 2,4,6,8), the target
transmission rates is greater than the instantaneous channel
capacities and, so, communication can not be achieved.
This leads to vanish all the service rates in these four even
states.

Equation (22) can be solved using the technique given

in [25] as follows

1 1
k. = 3 log p(M) = r log p(D.P), (23)
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where p(M) function is the spectral radius of the matrix
M. D = diag(di(0),--- ,dn(#)) is a diagonal matrix
with elements equal to the moment generating functions
of the processes in N states [25] (here, we have 8
states). Spectral radius of a matrix is the maximum of
the absolute values of its eigenvalues, ie., p(A) =
max(|w;|), w;’s are the eigenvalues[28]. P in (23) is the
lr;msilion matrix given in (18). Note that, in our as-
sumptions, the transmission rates are deterministic and
constants in each state, thus, the possible rates are: T'ry,
Trq, and 0 for which the moment generating func-
tions e TP and 1 respectively. Therefore, D =
diag(eT0 1, eT0ra 1 T0ra 1 T 1), So the matrix M
can be filled:

[ mp1 T ToPr  TuPs |
Pt P2 .- Pr DPs
Tdp1  Tap2 -+ TdPr  Tdps
Moppo | OB
Td  TdP2 -+ TdPt TdPs
P P2 - pr ps
TP TeP2 -+ TeDr  TuPR
| Bt P2 -+ Pr D8

where 7, = €79, and 74 = €T?"¢ are moment generating
functions of the possible rates when the channel is busy
and idle respectively.

It is easy to note that the matrix M has also a rank of
2. The characteristic polynomial of the matrix shorten to:

Qlw) = w? — Crw + Cg. (25)

where the nonzero-eigenvalues w can be found by just
solving the quadratic equation (25). See Appendix C for
details.

The effective capacity in (22) can be optimized by choos-
ing the maximum values of r;, and r; over the optimized
power allocation constraints. This maximization is firstly
done by choosing the maximum value of the eigenvalue
of the matrix (D.P) which maximize the function p(M)
in (23), then another optimization should be done over
the entire variables which leads to the optimal effective
capacity formula.
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E® —max—

1
‘ 0T B
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1 . . c 1 . .
log {g(ﬂ:(m +07) +7a(ps + P3) + p2 +ps + Py + ps) +3 ((Tb(:of +07) +7a(ps + ps)

2
+po + ps + By -His) —4(752(157?31 — P py) +T§(P5 Ps — P3 P5) + To(Py P2 + Dy Ps — By Py — P2 Py

—Ps Py — Pe Py — Py Pg + Ps 1) + Ta(Ps pe — Paps — py Ps + s Py — Pabe + Pe D3 — Ds Pe + Da Ps)

+1p7a(P3 Pt + Py Ps —Pr p3) —Pepy + Py pe+ Py Pt — Py P+ PPy — P2 P8 — Pé P + D8 Dé +ﬁ8p2))

St 0< S5,8;<85™
0 < ppopra =1
rh, g = 0
PiSy + P55 < 5™
(PySy + PrS)E(|hp[?) < I
(26)

-

Al

4

The effective capacity expression in (26) is obtained by
choosing the largest value of the eigenvalues of the matrix
M for a given sensing duration m, detection threshold 4,
and QoS exponent . One can note that If the sensing
results are perfect with no errors, i.e., the detection prob-
ability Py = 1, and so (F,, = Py = 0), the transition
probabilities in matrix P, ps = pg = pr = ps = ps =
Ps = pr = pg = 0 in the effective capacity expression in
(26). As declared in [29], problem (26) is always convex,
and an analytical optimized solution is possible whenever
the generating function has an analytical expression[29,
30]. In the following Section, we investigate the impact
of several parameters on the effective capacity through
numerical example, postponing the analytical solution to
a future work.

VII. NUMERICAL EXAMPLE

In this section, we numerically illustrate the impact of
the sensing duration m, detection threshold §, and other
factors on the effective capacity. We set all variances to
unity(op, = o, = o = 1), we also assume the symbol rate
B = 10000symbol / see, and the frame duration T = 0.25s,
this means that we have 2500 symbol in the frame. Unless
they are not variable, time allocated for sensing is set to
5ms, and QoS exponent # is assumed to be 10%. The
maximum average power constraint S,, = 204B. The

fraction assigned to the pilot symbol is 10% either the
channel is busy or idel (i.e., up = pg = 0.1). Finally,
to simplify the objective function of the effective capacity,
we assume that the transition probabilities of the two-state
Markov model in Fig. 3, b & d, such that b = 1 — d,
where b = 0.8. We further assume that in each frame,
primary user activity does not change, while it may change
independently from one state to another across the frames.

In Fig. 4, the normalized effective capacity is plotted
versus the delay QoS exponent (#) for various interference-
limit values. We observe that the capacity increases as
¢ decreases. However, the gain in the effective capacity
decreases for higher values of #. The figure shows that in
the case with loose QoS restrictions, i.e., lower values of
f, the capacity benefits significantly, whereas in the case
with higher values of #, ie., # = 10(1/bit), about 70%
reduction in the capacity is noticed.

Fig. 5 dedicates the effective capacity of the cognitive
user versus the interference limit that the primary user can
tolerate, ™ for various QoS exponent values. The figure
reveals that the capacity gain that can be achieved under
strict peak interference constraint is much lower than the
one under released interference constraint. Also, as the
conclusion in the previous figure, for specific I™ value,
the capacity increases as ¢ becomes lower which means
loose QoS restrictions.
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Fig. 6 studies the effect of the channel sensing duration
(m). It can be seen that for short time reserved for sensing
process, the cognitive user is more probable to get false
alarm to detect the primary user, whereas the detection
probability is certainty for long sensing duration.

&F)
oo
o D -

Probabilty ol sarsing | P

o o9
o = fa i

i i i
001 . 0.0
Duration of 5ensing t (Sec) for e =0.07

=l

Fig. 6. Probabilities of sensing (FPg& Fy) versus Channel sensing dura-
tion.

In Fig. 7, we display the effective capacity (normalized
value) as a function of the detection probability, for dif-
ferent values of S,,. As expected, with increasing S,
the effective capacity value increases. It can be seen from
the figure that the maximum effective capacity points are

ISSN: 2394-9066

achieved at F; is close to 0.9. As F; further increases
and approaches 1, the cognitive users start to consider the
channel as busy all the time and hence the performance
degradation is occurred, this is because of not being able
to take advantage of idle channel states. The impact of the
average power on the capacity is also clear in the figure,
more average power means more relax constraints, which
leads to more capacity.

Effectve Capacily (Bils 5Hz)

04 0.6 [
Probabilify of defection fpgi

Fig. 7. Effective capacity versus probability of detection Py for different
values of Sm.

In Fig.8, we plot the effective capacity as a function of
the energy detection threshold value & for two different
sensing durations m. At the same axis, we compare the
probabilities of detection and false alarm in Fig. 9. First,

Normalized Ellective Capacily

3 4 5
Channel detection threshold (&)

Fig. 8 Effective Capacity versus detection threshold &.

Fig. 7 shows that the effective capacity is increasing with
increasing the detection ¢ threshold. However, at the same
time, as 4 increases, the probability of false alarm and
the probability of detection are getting smaller as can be
seen in Fig 9. For instance, when 6 ~ 2.5, P; starts
diminishing, which in turn increases the effective capacity
values significantly. If 4 is increased beyond 3, we observe
that P; starts decreasing, causing increasing disturbance
to the primary users. The secondary user assumes that the
channel is idle in the case of miss detection and transmits at
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a higher power level, this leads to increase in the effective
capacity. This increase occurs at the cost of increased
interference to the primary users. Furthermore, we can note
that having a larger m decreases the effective capacity
values outside the range of ¢ values at which transitions
in the false alarm and detection probabilities occur. This
can be interpreted as m increases, (1°— m), time available
for data transmission, reduces.
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Fig. 9. Probabilities of sensing (F;& Fy) versus detection threshold & .

VIII. CONCLUSION

In this paper, we have analyzed the effective capacity
of cognitive radio channels taking into account QoS con-
straints, imperfect channel information, and transmission
power limitations. First, a system model is introduced in
which the cognitive transmitter initially senses the channel
in order to detect the activity of the primary users. It then
sends a pilot symbol for channel estimation followed by
data transmission. An energy detector is adopted to perform
channel sensing, which incurs a very low implementation
cost and is widely used. The estimation of the channel
fading coefficients is performed via the aid of a pilot
transmission in the training phase. The minimum mean
square error estimator M M SE' is assumed to be employed
at the receiver. Through the study, the interrelation between
channel sensing and estimation has been investigated. We
have observe that degradation in the channel estimation is
a result of faulty sensing. The cognitive transmitter is as-
sumed to transmit data at fixed powers and rates according
to the channel sensing results. For the cognitive user, we
have constructed a state-transition model taking into our
account the reliability of the transmission, channel sensing
results, and the primary user activity in the channel. We
have formulated the transition probabilities for this model.
A closed form for the effective capacity is obtained as a
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function of exponent delay constraint. Through numerical
example, we have examined the impact of delay constraint,
interference limit, channel sensing duration . threshold,
and sensing probabilities on the effective capacity. A lot
of insightful observations and investigations are drawn in
Section VIL

APPENDIX A

The signal received by the cognitive receiver in the
training phase is

) Sph+n if PUs are inactive(channel is idle)
4= VSph+n+¢ if PUs are active((channel is busy)
(A-1)

S, represents to the pilot’s power, which is equal to Sy if
sensing result is busy and equal to S,z if sensing result is
idle. It is assumed that n and ¢ are zero mean independent
Gaussian random variables with variances o2 and o2,

respectively. Hence, the overall variance of the noise is
2

On

or o2 + ag depending the sensing results. Noticing
that the cognitive receiver does not have exact information
about the occupancy status of the primary user, but it has
predictions via sensing probabilities, the inclusive noise

variance, 2, is random taking these two values.

Based on this uncertainty, the MMSE estimate can be
found as follows:

h=E[hly] = Pr(c® =02+ d2|y)E[hly.0? = o2 + o]
+  Pr(e? =2 jy)E[hly,0? = o2 (A-2)
2
_ 2 _ 2 2 V' Sp0%
= Pr(e” =0, +0¢ly) S, 10T gg
2
2 V56
+ Prlo” = gn|-y}S p y (A-3)

Here, we use the property of conditional expectation [31]

E[A|B] = E[E[A|B.C] B

Using Bayes’ rule the conditional probabilities expressions

are as follow

Pr(o? =a2 + G’E)f{y|0’2 =02+ G’E)
fly)

Pr(o® = o3)f(ylo® = 07)

fly)

Pr(oc? =02 + J§|y)

Pr(o® = a7|y)

(A-4)
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y is conditionally Gaussian distributed with zero mean and
variance o2 as the relations (A-1) points. the conditional
distribution function of y, i.e., f(y) is defined as [32]

1 — lvl?
2 2 R

Yylo- = a, = —_—F P R
flul n) T(S,o7 +02)

(A-5)

1
e
W[Spo;i + 02+ 03}

f(y|02 = 03 + 0?) =

(A-6)

The probability of the noise variance is related to the
channel sensing result. Let us assume that the channel is
sensed as busy. so, Pr(c®> = o2) means that there are
no primary users in the channel and hence channel is idle.
Since our assumption, channel is sensed as busy. Therefore,
Pr(c® = o) is equal to the conditional probability
Pr (Ch is} (

Chis )
idle sensed busy/”

See the derivations form (A-7) to (A-11).

APPENDIX B

p1 = Pr{the channel is being busy and it is detected
as busy and r, < Ci(k) in the k** frame given that the
channel is being busy and it is detected as busy and ry <
Cl(k —1) in the (k — 1)*" frame}
According to the chain rule in probability theorem, if there
are four events: A1, A2, As and Ay, then

Pr(Ay, Ag, As|lAy) = Pr(A; N Ay nAzlAg)
= Pr(Aj[Ay) x Pr(Az[A; N Ay)
x  Pr(Asld;n Asn Ay) (B-1)

So
p11 = Pr{channel is busy in i"* frame|channel is busy in
(i— 1)}
x Pr{channel is busy in i*" frame | channel is busy in
()"}
x Pr{ry < CY(i)|r, < CI(i —1)}
P11 = (1= b)PyPr{r, < C{(i)|r, < Cl_;(i — 1)}
p11 = (1 = b)PaPr{zi > A|zi—1 > A1}
pii= (1= B)PaPr{z; > M} = (1 — B)PiPr{z > A} =
n

We omitted the index 7 in z; due to the fact that z; and
zi—1 are independent due to the block fading assumption.
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By the same manner , the transition probabilities from
any state to state 1 can be expressed as

(1 =b)PiPr{z > A}

(1—b)Pge ™ =p

Pnl =DPs1 =Ps1 =Ppnn=ps1 = dPiPr{z > A}
= dPje " =

Pin=P1=p21=pPa1=pran =

(B-2)

Using the same modality, the full transition probabilities
can be obtained, and they are listed in Table I

APPENDIX C

Let A be an n x n matrix. the eigenvalues of the
matrix A are the zeroes of its characteristic polynomial,
det(wl — A), which can be written as

Qw) =w" — Cpqw™ 1+ Cp_gw™ 2 — ... (=1)"Cy
(C-1)

It is well known that the coefficients €,,_; and C are,
respectively, the trace(A)(the sum of its diagonal entries)
and the det(A). All other coefficients Cp—p .,k = 1,2,---,
can be expressed by the sum of the k—rowed principle
minors of A. A k-rowed principal minor of an n x n matrix
A is the determinant of a k& x %k submatrix of A whose
entries, a,;, have indices i and 7 that are the elements of
the same k—element subset of 1,2,... .n.

With rank (the dimension of the largest square submatrix
of A with nonzero determinant) r, where. r < n. All
nonzero eigenvalues of A are among the zeros of the
polynomial[33]

Qw)=w"—Cp "+ (-1)"Cpy (C2)

(]

—(+ Ps + ToPy + pg + Taps + Dy + Tabs + P2
Top1 )w + (TaPepa + TeTaPaDs + TByPe + Tel7Ds

+ o+

TyTdbyPs — Tob1 Py — ThTab1 D3 — TabaPs + Te BrP1
—  Papy + ByPeByPi — TaPshs — TabyPs + TaPs Py

+  TipsPs —TaPsbe — Py Pe + Peby + TaPebs

- T;,Qﬁf Py — ToP2Py — ToBsP7 — ToBePr — Tob1 Ps

—  PaPs — TaPsPs — DgPs + PsPe + TaPsPs + Pspa

+ Tebspi) =0 (C-3)
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Pr(o® = o) — Pr (Ch is) | ( Ch is ) PGB Pr (i) 1(5)

n idle sensed busy pg«(mg: ";my}
false detection
PT(C.TS) Pr Ch is | (?h is
_ idle sensed busy idle (A-7)
n Chis Ch is Ch is Chis Ch is Ch is
Pr(Gac) Pr ((sensed busy | idle +Pr("“‘>‘1 Pr sensed busy | busy
false d:lcction COTI'CC[E;ICCIILOTI
b
——P
=— bd” f ] = bFy Channel is sensed busy
g Pr+ 55Pa bPp +dP;
Using a similar approach, we can obtain the other cases:
b(1 - Py) . .
2 2y i) _
Pric” =a;,) = —b(l — P+ P, Channel is sensed idle (A-8)
dP,
2 2y _ d i -
Pr(e” =0, +07) 5P, + db; Channel is sensed busy (A-9)
2 2 2 de : .
Pr(o® =0;, +0;) = ————=———-—  Channel is sensed idle (A-10)

b(1 — Pr) + dPn
Note that the probability of the channel state can be derived easily from the transition matrix of the two-state Markov
chain of Fig. 2.

d PR
. . T i is bus
Pr(channel in state i) = ¢ 7% o Y (A-11)
e i isidle
The solution for the maximum eigenvalue of (C-3) is [2] M. Marcus, “Unlicensed cognitive sharing of TV spectrum: The
1 controversy at the federal communications commission,” [EEE
A 5 (p's + TPy + ps + Taps + 154 + Taps + p2 + prj] Communicarion Magazine, vol. 43, no. 5, pp. 24-25, May 2005.
1 = [3] M. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, “Access strate-
+ 5 [(PS + TyP7 + Pg + TaPs + Py + TaDs + P2 + prj} glfes for spectrum sharing 1I‘acl:ng environment: overlay, underlay, and
2 mixed,” [EEE Trans. Mobile Comput., vol. 9, no. 12, pp. 1780-1793,
. . . . Dec 2010.
— 4| 7aP3 P2 + TvTaP3 Pt + TeDy P2 + ToD7 D6 [4] E Hou and J. Huang, “Dynamic channel selection in cognitive
. . . . 3. radio network with channel heterogeneity,” In Proceedings of IEEE
+  TeTdPT Ps — TeP1 P4 — TeTdP: Pz — TdP2 P3 + Ty Py D1 GLOBECOM. Nov 2000.
. . . 2 . . - i . i w ‘ i r -
_ 9Py + Py P2+ Py 1 — TIP3 D5 — Tapg Bs + TaPs By [51 D. Qlalo_ M. Gurso_v,,_ar{d S. Velipasalar, . Energy efﬁlmen(:} of fixed
5 ) ) ) . ) rate wireless transmissions under queueing constraints and channel
+ TiPs5 P3 — TdP3 Ps — P4 Pé + P Py + TdPé P3 uncertainty,” In Proceedings of IEEE GLOBECOM, pp. 24-29, Nov
2. . . . . 2009.
— ToP1Pr— P2 PY TPs Py P P17 P11 P§ [6] 1. Cavers, “An analysis of pilot symbol assisted modulation for
—  Poapg — TqPs Pg — g Pg + Pg P + TadPs D5 rayleigh fading channels.” IEEE Trans. Vehicular Tech., vol. 40, pp.
S 686-693, Nov 1991,
+  pgpa + Thps P1 (C-4) 7 G._ Hattab, Pilor Tone-Aided Detection for Cognitive Radio Ap-
plicarions, Queen’s University, Kingston, Ontario, Canada, 2014,
Electronic version.
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