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Abstract 

In this paper, most of the systems in our daily life 
consist of power electronic circuits. They are micro 
circuits which are difficult to be analyze because the 
circuit consists of nonlinear elements. This paper 
deals with one of the power electronic circuit, boost 
converter. The non-linear elements of the converter 
circuit are linearized. The obtained linearized 
converter circuit is a higher order model. Designing a 
controller for this higher order model is complex and 
simulation time also increases. So, efficient order 
reduction techniques have been used to reduce the 
system order. The models are simulated using 
MATLAB 13.0 simulink software. Simulation results 
show that hankel was a better method for order 
reduction depicting same characteristics for higher 
and lower order models.  

Keywords: Order reduction; Boost Converter; 

Hankel. 

1. INTRODUCTION 

Switching power converters pose several unique problems 

in the construction of efficient time-domain simulators. 

Events of interest in a typical power converter cover many 

orders of magnitude on the time scale, starting from 

switching transitions in the order of nanoseconds to 

closed-loop start-up or load transients that may last for 

seconds[1]. Detailed models that describe physical 

properties of semiconductor switching devices are used 

only when results of interests are within one, or at most 

several switching cycles. Such results include switching 

losses, lengths of switching transitions, and voltage current 

overshoots during switching. For majority of other 

simulation tasks, such as studies of the circuit steady-state 

waveforms, conversion functions, stability of feedback 

loops, load, input or reference transients, application of 

detailed nonlinear models is impractical. This is because 

simulation time step must be short compared to the 

switching period, and each simulation step requires 

computationally intensive iterative solution [2]. If the 

simulation runs over many switching cycles, simulation 

time becomes the limiting factor. In order to improve 

efficiency of time-domain simulation, semiconductor 

devices are replaced with much simpler models. The 

simplification is justified by the fact that switching 

transitions are many orders of magnitude shorter than the 

total simulation time, and that errors introduced by 

ignoring details of the switching transitions are 

insignificant in the results expected from long-term 

simulations. Numerous methods specifically geared toward 

efficient long-term simulation of switching power 

converters have been developed. An ideal switch has zero 

impedance when on, zero admittance when off, and 

switches between the two states in zero time. With n ideal, 

single-pole, single-throw switches, the switching converter 

network reduces to one of two possible switched networks 

(without switches). Then, approach is to write and solve 

state-space equations for each of the switched networks, 

and to establish conditions for transitions of switched 

networks. These switched networks is of higher order and 

needs to be reduced to lower order for less complication in 

designing controller circuits for the switching converters. 

These are various order reduction methods are available. 

Among which modal order reduction is one of them. an 

equivalent circuit is directly generated from the reduced 

transfer function obtained using MOR based on Pade 

approximation via the Lanczos process[3]. 

Model order reduction is a technique for reducing the 

computational complexity of mathematical models in 

numerical simulations. Many modern mathematical 

models of real-life processes pose challenges when used in 

numerical simulations, due to complexity and large size 

(dimension), model order reduction aims to lower the 

computational complexity of such problems [4]. The oldest 

method is pade approximation method for reducing the 

higher order to lower order[5]. There is a different mixed 

order technique also available for reducing the order. In 

that one of the mixed methods is routh-pade approximation 

[6]. One of the new order reduction technique considered 

in the paper is Hankel reduction method. Hankel reduction 

is a stochastic realisation theory. Several methods based on 

Hankel matrix have been used for deriving lower order 

state models from a given complex system described by its 

http://www.scitecresearch.com/


Innovative Engineering and Physical Sciences (IEPS)                                                                                                                                                            

Volume 1, Issue 1 available at www.scitecresearch.com/journals/index.php/IEPS                                                               2 

 

transfer function matrix or state model. The minimal 

realization can be achieved in fixed number of operations 

on the Hankel matrix. The method is applicable to linear 

SISO and MIMO dynamic systems [8]. 

2. SYSTEM MODELLING 

2.1. General Boost Converter 

In boost converter, the output voltage is greater than the 

input voltage – hence the name “boost”. A boost converter 

(step up converter) is a DC to DC power converter that 

steps up the voltage (while stepping down current) from its 

input as supply to its output as load. It is a class of 

switched mode of power supply (SMPS) containing the at 

least two semi conductors (one is a diode and one is 

transistor) and at least one energy storage element. A 

capacitor, inductor or the two I combination to reduce the 

voltage ripple, filters made of capacitors (sometimes in 

combination with inductors) are normally added to such a 

converters output (load side filter) and input (supply side 

filter). The switch in a boost converter is typically a 

MOSFET, IGBT or BJT are used as the switches. 

The ideal schematic diagram for the boost converter is 

shown in below. 

 

Fig. 1: Schematic Circuit of Boost Converter 

2. 2. Detailed High-Order Model 

In the ideal boost converter has the linear and nonlinear 

components. So we can cange the components of nonlinear 

to linear as shown in below. Power converter model 

synthesis consists of component models and control laws. 

First, high-order detailed models of switching-converter 

components diode, switches are shown below, are set 

forth. A wide-bandwidth inductor model includes 

equivalent series resistance, rL, and lumped shunt parasitic 

capacitance, cL. The equivalent series resistance, rC, and 

inductance, Lc, of the capacitor are extracted from the 

hardware prototype using impedance characterization. 

Switching-component modeling is more challenging, as 

the resulting model should predict accurately both steady-

state characterizations as well as fast dynamics. The 

MOSFET is represented as a switching state dependent 

resistance with appropriate drain to source parasitic 

capacitance, Csw, and wiring inductance, Lsw.  

These values can be found in MOSFET data sheets. The 

static V-I characteristics of the diode can be modeled as a 

diode state-dependent series resistance and an offset 

voltage source. The capacitance exhibited by 

semiconductor-metal junctions plays a dominant role in 

turn-on/-off transients. Therefore, the switching transient 

dynamics, such as reverse recovery, are accounted for by a 

diode state-dependent linear capacitor, Cd. The capacitance 

is higher when the diode is off. A series resistance is 

considered with this capacitor, rcd, to damp the reverse 

recovery current. Wiring inductance and resistance of the 

diode (Ldand rLd) are also considered. A different variation 

of this diode model is presented. It should be noted that 

proposed models in above Fig, are just one form of model 

development; one can also use alternative piecewise-linear 

high-fidelity component models 

 

Fig. 2: Highly detailed behavioral component models: 

(a) Inductor; (b) Capacitor; (c) Diode; (d) MOSFET 

In the above figure switching component models 

and, subsequently, the final converter model depend on the 

state of switching components. Switching state and timing 

are either externally determined by a command signal 

(transistors turn on/off), or internally resolved by meeting 

appropriate threshold conditions (e.g., diodes). 

Mathematically, the switching time constraint equation can 

be expressed as 

( ( ), ( ), ) 0j j j j

f t fc x t u t t   

The continuous state-space model is determined by 

partitioning the circuit graph to the spanning tree and link 

branches, and choosing the inductive link currents and 

capacitive tree voltages as the state variable. This process 

is automated in available numerical toolboxes (e.g., 

automated state model generator). Based on the component 

models in Fig.2,the state vector consists of inductor 

currents and capacitor voltages of both bulky and parasitic 

components
    

[ , , , , , , , ]
L c sw sw d d

i i j j m m n n T

L C C L L C L Cx i v v i i v i v

                                                         
 

Where i=1……..kL, j = 1……..KC, m = 1……Ksw, and n = 

1……..Kd, kL, kC, kSW, kd are the number of inductors, 

capacitors, active switches, and diodes. The input vector is 

composed of the input voltage sources, load currents, and 

the diode voltage drops. 

1 1 1 '[ ,..., , ,... , ( ),..., ( )]ig load d

Load

kk k

g g load d du v v i i V on V on  
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Fig. 3: Detailed High-Order Model 

Considering, the state variables and input 

variables as below
                                                                                                                                  

[ , , , , , , , ]
L c sw sw d d

i i j j m m n n T

L C C L L C L Cx i v v i i v i v …       

[ , ]S loadU V i  

State space variables are obtained from higher order model 

as in fig.3. Using block reduction techniques. The state 

variables are obtained as 
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The obtained system is a 8
th

 order system. As the realistic 

model of the system was high in dimension, that a direct 

simulation or design would be neither computationally 

desirable nor practically possible in this case. Thus, 

reduction of system model is highly desirable. From this 

above state matrices we get the transfer function by 

substitute the suitable values for the variables. From this 

state space matrix we get the higher order transfer 

function. In theoretically the state space transfer function 

find by using the  

T/F = C (SI - A)
-1

 B + D 

 

3. ORDER REDUCTION 

The development of Model Order Reduction (MOR) in 

terms of its application in Power system stability, Control 

system design, designing of reduced order estimators, etc. 

Recently MOR is developed in the area of power systems 

and control theory, which studies properties of dynamical 

systems in application for reducing their complexity, while 

preserving their input-output behaviour as much as 

possible. Nowadays, model order reduction has been a 

flourishing field of research, both in systems and control 

theory and in numerical analysis. This has a very healthy 

effect on MOR as a whole system, bringing together 

different techniques and different ideas. 

There are different types of order reduction techniques are 

available, in that some of the order reduction techniques 

used in this work are 

1. Pade approximation 

2. Modal reduction 

3. Hankel reduction 

3.1. Pade Approximation Reduction 

The Pade approximation was introduced by Pade in 1892 

and it was extended by wall in 1948.  

Consider a function 

f(x)= c0+c1x+c2x
2
+c3x

3
+………+cnx

n
                                   

and a rational function ( )

( )

m

m

u x

v x

are the m
th

 order 

polynomial in m n. the rational function ( )

( )

m

m

u x

v x

 is set to 

be Pade approximation of f(x) if and only if the first (m+n) 

terms of power series expansion of f(x) and rational 

function ( )

( )

m

m

u x

v x

are identical.  

For the function f(x) is to be approximated, let the 

following Pade approximant can be defined as ( )

( )

m

m

u x

v x

=

2 3
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2 3
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.....
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,        

Gk(s) is higher order and         

The reduced order transfer function is Rk(s). 

Rk(s) =  

 
k

k

P s

Q s
= 

2

0 1

2

0 1

.

s

a a s as

b b s b s

  

  
 

m = order of highest of numerator 

n = order of highest of denominator  

This is the reduced order transfer function for the 

considered system in Pade approximation.  
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3.2. Modal Reduction 

Balancing is an important approach for modal reduction of 

controlled systems which consists of two steps: the first 

step is to find a transformation that balances the 

controllability and observability gramians in order to 

determine which states have the greatest contribution to 

the input-output behavior. The next step is to perform a 

Galerkin projection onto the states corresponding to the 

largest singular values of the balanced gramians for the 

region of interest in state-space. In order to perform model 

reduction via balancing, three components are required: a 

controllability gramian, an observability gramian, and a 

transformation matrix which balances the system. 

Gramians (or covariance matrices) and the transformation 

are required for balanced model reduction. The routines for 

unscaled systems are mainly for verifying these routines 

by comparison against the MATLAB commands for linear 

systems. In practice, the routines for scaled systems are 

applied as it needs to be taken into account that a state 

changing by orders of magnitude can be more important 

than a state which hardly changes, even though its steady 

state may have a smaller absolute value. After obtaining a 

balanced system, it needs to be determined how many 

states can be reduced and which reduction method to use. 

The former problem can be solved by a trial and error 

procedure while taking into account the magnitude of the 

Hankel singular values of the states to be reduced. The 

answer to the latter question is that balanced truncation is 

the method of choice for nonlinear systems as other 

techniques. 

3.3. Hankel Order Reduction 

This is a stochastic realization theory with the Hankel 

matrix present a new procedure for obtaining a reduced-

order state variable model for a stationary Gaussian 

process. Furthermore, we also show that the error in our N-

dimensional reduced order model is bounded by the N + 1 

singular value of the system’s Hankel matrix. The Hankel 

matrix results have also been used and elsewhere in 

deterministic and stochastic model reduction. The 

technique is completely different from others. We use the 

stochastic realization theory in and solve a different model 

reduction problem.  

Throughout, we follow the standard notation for Hilbert 

spaces.  The orthogonal projection onto a subspace   is 

denoted by P  . The space L
2
 = L

2
(0,2π) and the inner 

product on L
2
 is defined by 

   
2

2

0

1
( , ) ( , ) ( ) ( )

2

it it

L
h g h g h e g e dt      (h, g∈L

2
). 

Moreover, H
2
  is the Hardy space of analytic functions in 

L
2
. To be precise, f ∈ H

2
 if and only if f is in L

2
 and (f, e

-int
) 

= 0 for all n > 0. Throughout, Г(ψ) is the Hankel operator 

on H
2
 with symbol ψ (in L

∞
) defined by 

           Г(ψ) f (e
it
)= PH

2
 ψ (e

it
)f(e

-it
)      (f(e

it
)∈H

2
) . 

Throughout, y(n) is a purely nondeterministic stationary 

Gaussian random process. The process y(n) can be 

generated by a stable state variable model of the form 

x(n+ l)=Ax(n)+Bu(n) 

                       y(n)=Cx(n)                                    (1) 

Where A, B, and C are operators on the appropriate space, 

and u(n) is a Gaussian white noise process such that x(m) 

is independent to u(n) for all m ≤ n. The output covariance 

sequence is given by 

    Rn= E (y(n)  0y ) =CA
n
XC* (n≥0)                   (2) 

Where X is the state covariance satisfying the discrete 

Lyapunov equation 

           X=AXA*+BB*       (O<X<∞)                      (3) 

System A, B, C, X is called a stochastic realization of the 

covariance sequence R, when (2) and (3) hold. 

Since y(n) is purely nondeterministic, there exists 

unique outer or minimum phase factor θ in H
2
 such that  

( ( ), (0) ( ( ) (0))nR y n y E y n y   

               
2

int

0

1
( ) ( ) ( , ).

2

int it ite e e dt e



            (4) 

Without loss of generality it is assumed that R0 = 1 or 

equivalently    = 1. Let y = V
∞

-∞y(n) be the Hilbert 

space generated by the process y(n) with the inner product 

determined by the expectation in (4). By (4) there exists a 

unitary operator Y mapping ϑ onto L
2
 such that Yy(n) = 

e
int

θ. Therefore, y(n) is unitarily equivalent to e
int

θ. In 

particular, y(0) can be identified with 𝜃( = Yy(0)). Our 

strategy is to obtain a reduced order model for the process 

e
int

θ on L
2
 .Since Yy(n) = e

int
θ, this yields a reduced-order 

model for y(n). 

4. PROGRAMMING RESULTS 

Circuit Parameters of the Boost Converter System: 

Vg = 5 volt, L = 1.316 mH, rL = 0.14 Ω, CL = 1 pF, Lsw = 20 

nH, CSW = 200 pF, rSW (on) = 0.2 Ω, rSW (off) = 2.3 MΩ, Ld 

= 5 nH, rLd = 1 mΩ, Vd(on) = 0.61 volt, Vd(off) = 0 volt, 

rd(on) = 50mΩ, rd(off) = 40MΩ, Cd(on) = 15pF, Cd(off) = 

100pF, rCd = 5mΩ, C = 42µF, Lc = 100pH, rC  = 0.38 Ω, 

Rload = 10.5Ω, fSW = 10KHz, Duty = 05. 

The circuit parameters are used to find the state space 

model of the circuit. Step response of the system for both 

inputs are shown in fig.4 and fig.5 
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Fig. 4: Original system response for first input. 

 

 

Fig. 5: Original system response for second input. 

 

 

Fig. 6: Response of reduced order models obtained 

from pade-approximation, modal reduction methods 

with original system 

 

Fig. 7: Response of reduced order models obtained 

from modal reduction, Hankel reduction methods with 

original system. 

The boost converter circuit considered is of higher order, 

this system is reduced using pade approximation, modal 

order reduction and hankel reduction method. The 

response of the reduced order system obtained from these 

methods are compared in figs.6&7 

5. CONCLUSION 

Various controller design techniques have been used to 

design controller for the boost converter circuit. Hankel 

based PID controller is best suitable for voltage control of 

the circuit among all other controllers. The controller  

Design is based on reduced order system. Various 

techniques have been used for order reduction, among 

which, hankel reduction method was proved to be the 

reduction method producing reduced model similar to 

higher order model.  
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