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Abstract.

Based on a QED like Lagrangian, in which the fermions are dressed by photons, a "complete” bound
state description of p—e~ and e —e” systems is presented, in which no external parameter is needed. With
a quantum condition linear in the radius, the deduced binding energies are consistent with Coulomb energies
and radii in general agreement with other work. The sum of partial coupling strengths is in agreement with
the electric coupling constant ev ~ 1/137, showing that this important quantity can be understood from first
principles.

PACS/ keywords: 3.50.Kk, 11.15.-q, 31.15.Ne/ Bound state description of light atoms, based on a mod-
ified QED Lagrangian with fermions dressed by bosons. Description of hydrogen and positronium bound

states. Integrated coupling strength consistent with the fine structure constant a ~ 1/137.

1. Introduction

The study of fundamental forces is the only way to gain insight into the basic structure of matter and the origin of
the universe. For a realistic description of these forces a quantum field theory is needed, in which all parameters
can be derived from first principles (completeness). Such a theory is required for a logic understanding of nature.
Quantum electrodynamics (QED) is close to a complete theory. Only with one parameter, the coupling constant
a ~ 1/137 determined precisely from experimental data, QED gives rise to a quantitative description of spectra
of light atoms (by use of the Coulomb potential), fine and hyperfine structure splittings and Lamb shift as well
as magnetic moments of leptons. Nevertheless, QED has to be regarded as an effective theory, in which o cannot
be derived from first principles. Therefore, a complete version of QED must exist, in which all parameters (also
the coupling constant) are constrained by basic boundary conditions. In this theory one should understand,

why a value of e ~ 1/137 has been chosen by nature.

In the description of atoms the effective character of QED is clearly visible in the structure of the Coulomb
potential, a bound state potential of fermions. But a free particle bound state in the vacuum (with potential
as well as kinetic energy) cannot be composed of fermions only. Its kinetic energy gives rise to rotation, which
would be spurious, if the fermion recoil could not be absorbed by other particles (photons). Therefore, in a

complete theory the fermions have to be dressed (accompanied) by photons, see ref. [1].

A double bound state structure of fermions and bosons leads naturally to a finite theory (with finite radial
moments), since in such a system both fermions and bosons can be described by radial wave functions, which

are normalized. Finite dimensions of atomic states are conform with Bohr’'s model of the atom, but also with
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the observation of covalent radii [2]. In the present paper such a theory is discussed, but it is not intended
to replace QED entirely by a new theory (many observations may be simpler described in an effective theory)
but to show that a complete theory exists, which yields a satisfactory understanding of the electric coupling

constant .

2. Formalism

The Lagrangian with fermions dressed by boson fields may be written in the form

L= %(@D,,) i D, (D"T) — EFWFW , (1)
where 7 is the mass parameter and ¥ are charged fermion fields, ¥ = W+ and ¥ = ¥~, Vector boson fields A,,
with coupling ¢ to fermions are contained in the covariant derivatives D), = &,, —igA,,. The second term of the
Lagrangian represents the Maxwell term with Abelian field strength tensors F#¥ given by FH = gt AY — J” A¥|

which gives rise to both electric and magnetic coupling.

This Lagrangian includes naturally higher order boson and fermion fields. In the past two arguments have been
brought forward against this type of Lagrangian: the necessary 1//m? factor should give rise to uncontrolled
divergences in standard (infinite) gauge theories; further, a Lagrangian with higher order fermion fields will lead
to nonphysical solutions [3]. However, both arguments do not apply to the present case: the Lagrangian (1)
leads to a finite theory due to the necessary normalization of the boson wave functions (as mentioned above).
In such a theory the mass parameter 12 = mima/(m1 + ma) cannot lead to convergence problems; in contrary,
it is needed to establish the consistency of the theory. Further, non-physical solutions can be excluded by strict
geometrical and energy-momentum constraints.

By inserting D* = 9" —igA* and D,D" = 9,0" —ig(A,d" + 9,A") — g?A, A" in eq. (1), the first part of £
gives rise to a number of terms, which contain boson and fermion fields and/or their derivatives. All terms

containing the derivative of the fermion fields 9”W are related to a complex dynamics of the system. For

stationary solutions only two terms of the Lagrangian contribute

_192 T pi v ‘
Log = 2 (WA,) 110, (ATT) (2)
and
—¢* -
L3y = —5 (TA,) " A, (A"D). (3)

m

From the Lagrangians (2) and (3) fermion matrix elements have been derived, based on generalized Feynman dia-

grams, see e.g. ref. [4]. These have been used in the general form M =< g.s.| K (p'—p) |g.s. >~ (p') K(q) ¥'(p),
1

where 1(p) is a fermion wave function ¢(p) = —z=zW¥(p1)¥(p2) and K (g) a kernel related to the boson structure

of the Lagrangian. In the present case the latter is given by K(g) = ?15 [0%(a;) Og(qj)]} in which 0?(g;) repre-
sents a product of boson fields or derivatives given by the square brackets in eqs. (2) and (3). Using a = ¢ /47

this leads to matrix elements of the form

=}
[E]

Moy = — (') Au(dh) A (4) 7 7° 90" As(gh)A%(q) Y(p) (4)

m-
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and
—ad

—= V(') Au(dh) A (a3) " Aula2) AP (a1) Ac(ad)A7(dh) ©(p) - (5)

m>

Ms, =
One may compare these matrix elements to similar ones derived from the first order QED Lagrangian Ly, =
iy, DFl — %FWF“”. By writing similarly M = (p") K(q) ¢(p), with K (q) = # [OY(g2) O'(qy)] one obtains
for the case ¥ = 0 only one (boson-exchange) matrix element My, = =2 ¢(p') 7,77 A, (q2)A” (1) ¢(p).
Since the boson-fields A (qg;) are relativistic, they overlap only momentarily and do not form a stable potential.

Only in the non-relativistic limit (which is not realized for strongly bound atomic states) one can write M =

D(p') Vi) ¥(p), where V(q) ~ a - 1/¢* is the Coulomb potential.

The two theories show two essential differences: 1. The "hoson-exchange” matrix element M3z, has a more
complex structure than My , with additional boson fields, needed to balance the fermion motion. 2. A second
matrix element Mo, is present, which does not exist in first order theories. This term leads to a dynamical

stabilization of the system (discussed below).

From these matrix elements bound state potentials can be deduced. First, by using a gauge condition 824" = 0
the bosonic part (d, A (g5)) (9, A7 (q})) in eq. (4) can be replaced by %82 (A.(g5)A%(q})). Then (analogue to the
fermion wave functions) normalized boson (quasi) wave functions W (¢') = %AM(QEJA”(QQ) of scalar (g = r)

and vector (u # 1) structure are introduced. Further, a boson-exchange interaction is obtained with a form

Vi(g) = %AH(QQ)AV (g1) (@ # v), which is similar to that in first order QED.

By equal time requirement the fermion and boson vectors can be reduced by one dimension, yielding boson

wave functions' of scalar and vector structure w,(q') and w,(q¢') and an interaction v,(q). This yields

a? -
My = o (3!) waldl) (') () )
and ;
Mag = _m—a? D) wew(dvo(@)ws,(d) V(p) - (7)

The bosonic part of eq. (7) can also be written in the form of a matrix element, in which the wave functions

w(q') are connected by v,(q)

_ad

! !
M = —5 wsw(q) vol(2) ws,o (). (8)
In the evaluation of these matrix elements one can rely on the Hamiltonian formalism by relating kinetic and
potential energies by (I' + V)i = E), where the binding energy E is determined by use of the virial theorem.
Further, we assume that all quantities described in momentum space can be transformed to r-space by Fourier
transformation. Energies, masses and momenta are given in energy units (using c=1), whereas the constant he

is used for radius-momentum conversion.

Going to r-space the fermion matrix element (6) can be written by
Mg = (r) Vag(r) 9(r) | (9)

in which Vy,(r) is a potential, which can be derived from a boson Hamiltonian of a form

_aQ(ﬁc)Q (dgws(f') 2 dws(r)
dr? rodr

)+ Vag(r) walr) = By wy(r) (10)

2m

lwith dimension [GeV].
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This leads to

Vag(r) =

a?(he)? (.:Fws(r) gdws(-r)) ' 5 (11)

dr? rdr we(r)

A connection to the vacuum is made by assuming E, = E.,,. = 0. This potential is of large importance, since

2m

it leads to dynamical stabilization of the system: during the overlap of boson fields fermion-antifermion pairs
are locked and form a stable system, which cannot decay. The stabilizing potential V5,(r) shows a quite linear
rise towards larger radii, see below, very similar to the empirically introduced ”confinement” potential needed

in hadron potential models [5].

Further, the matrix element (7) can be written in r-space by
Mz, = &(r) Vi (r) ¢(r) , (12)

in which the potential V3, () has the form of a folding potential

al

Vag(r) = — e /d?" W (1) o (r = 1") Wy, (1) (13)

m
with boson wave functions w, ,(r) and an interaction v,(r). As mentioned above, this potential can also be
considered as boson matrix element, in which the bosons are "bound” in the potential v, (r). It is important to
note that due to the condition E, = 0 for Vo, (r) both potentials (11) and (13) yield absolute binding energies,
for which a constant should not be added (this is different from other potentials, as e.g. the harmonic oscillator

potential).

The structure of M3, gives rise to two states (scalar and vector) with similar fermion and boson wave functions

g,0(1) ~ wg (7). The fermion wave functions are orthogonal, leading to the constraint

/ r2dr by ()i, (r) = f r2dr we (T, (r) =< ry,am, >=0. (14)
< Tyw,.w, >= 0 indicates that there is no spurious motion of bosons. This condition is satisfied for
dw,(r
w,(r) =, () + 8B 220 (13)

where w,,_ is obtained from the normalisation 27 [ rdr w?(r) =1 and BR is given by
BR=—[ r2dr w,(r)/ J r2dr [dw,(r)/dr]. Because of the derivative structure, w,(r) has a smaller root mean
square radius than wg(r). Therefore, a natural geometric condition requires that the interaction for this state

takes place inside the bound state volume of w?(r). This leads to the geometrical boundary condition

P}Z,(-r” ~ wf(-r) . (16)
The conditions (14) and (16) require a form of the boson wave function of the scalar state

we(r) = w,, exp{—(r/b)"}, (17)

where w, is fixed by the normalisation 27 [rdr w2(r) = 1. The interaction in eq. (13) has a form v,(r) ~

's 0

—he 222w, (r). However, the derivative part of w,(r) gives rise to a small attraction at large radii. This can

Yo

be avoided by a small reduction of the derivative part of a few %. But a better consistency of the geometric

boundary condition (16) is obtained by simply reducing the repulsive part of the interaction to zero.
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Figure 1: Radial dependence of a self-consistent solution for a p—e~ bound state with < 'I‘E.s >12 =
210 pm. Upper part: Relative interaction v,(r) in comparison with the Coulomb potential given

by dot-dashed line. Second part: Stabilizing potential Vo,(r). Lower two parts: Boson density

(dot-dashed line) and boson-exchange potentials (dashed and solid lines) shown in r- and g-space.

In the entire formalism there are only three parameters, the slope and shape parameters b and as well as the
coupling constant «, which have to be determined from boundary conditions as discussed below. Concerning
the application of the potentials (11) and (13) for scalar and vector states, V3, (r) has a different form for each
state, whereas Vo, (r) is shared between scalar and vector states in the ratio 1:3, yielding V3, (r) = %%g(-rj and
Vi (r) = §V2g(r).

In addition to the states without angular momentum (s-states) two other states exist with angular momentum
L=1 (p-states), for which similar forms of their wave functions can be assumed. In atomic systems all L=0 and
L=1 states give rise to degenerate singlet and triplet states. However, fine and hyperfine structure splittings
of these states are observed, which are in the hydrogen atom 5-6 orders of magnitude smaller than the binding
energies. These splittings as well as very small shifts (as the Lamb shift) are satisfactorily described in QED

and are not considered in the present analysis.

The general structure of the bound state solutions is shown in fig. 1 for a system with root mean square radius
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< -ris >1/2 of about 180 pm. In the upper part the radial dependence of the interaction v, (r) is compared to
the 1/7 dependence of the Coulomb potential, which shows that there are no divergences for r — 0 and oo in the
present description. Below the potential Vy,(r) is displayed, which shows a quite linear increase at larger radii.
In the third part the radial dependence of boson density w?(r) and potentials T/ "(r) is shown, which indicates
that relation (16) is reasonably well fulfilled. Since both states lead to s-states Wlth large momentum spread,
a significant mixing of both states is expected. In the lowest part the Fourier transformed density (dot-dashed
line) and potentials (solid and dashed lines) are given, which show a satisfactory matching of relation (16) also

in momentum space.

Binding energies have been calculated by using the virial theorem in the radial form E}‘g = dr[[ r2dr 2 (r)Vag(r)
% / ridr % (r )F= d ~Vig(r)], where the fermion wave functions +/(r) are normalized by 4 [ r2dr ¢*(r) = 1. In ad-
dition, V3,(r) can be interpreted as "bound state” of bosons. The corresponding binding energies E; have been
calculated by E, = 27 [ [ rdr w?(r)uv,(r) — % Jrédr w?(-r)d—‘it.'l,(-r)]. The masses (due to binding) of the scalar and
vector states are defined by _-‘H;'U = |E;;’\ + |E§;’|, whereas the total mass is given by M. = My + m1 + ma,

where m1 and mo are the participating fermion masses.

2.1 Boundary conditions

An important implication of the coupling to the vacuum is energy-momentum conservation, which requires that
the (negative) hinding energies of bosons E, and fermions E are compensated by the corresponding root mean

square momenta

0=<gq, > +E, (18)

and

0=<gq; > —x My, (19)

where z = \/W . In eq. (19) the effect of the mass parameter and the binding energies in both potentials
Va,(q) and Vi,(g) are taken into account. The average momentum square for bosons is given by < qg >=
fq3dq Vag(a)/ [ qdq Vas(q), whereas that for fermions is < q? >= fq“LdQ V2 (q)Vag (g /fquq 2 (q)Vag(g). An
important consequence of energy-momentum conservation is that all distributions of momentum ¢, and ¢; can
to be identified with similar ones of energy or mass.

L. . . . . . 1/2
In addition, we require momentum matching, implying that the recoil momenta for bosons < qg >H2 and

fermions < g2 ¥ >mc cancel each other
2 172 1/2 .
< QQ rgc - < Qf >réc‘_ 0. (20)
All conditions (18) - (20) hawve to be fulfilled for scalar and vector states and can be taken as a strict consistency
check of the assumed wave functions.

Another condition can be derived from the structure of the potential V5,(r), which may be written in a different

form (this can be seen from dimensional arguments)

Vg () = o?(M,/2) <r2 > (des(r) n gdws(r]) 1 (21)

2 dr? r dr we(r)
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Dividing both potentials (11) and (21) leads to a mass-radius constraint

(fic)? _
(M /2) <12 >

Raty, = (22)

This condition is very powerful and relates all parameters, s, b and a.

3. Application to atomic systems

This formalism has been applied to the basic atomic bound state systems p — e~ and et — e~, which have been
studied previously in the Bohr model, with the Schrédinger equation, the Dirac equation and in QED (using

effective potentials).

3.1 p — e bound states

For this system m = myma/(mi +me) = 0.511 MeV. By using the geometric boundary condition (16) together

with the constraints (18) - (20) and (22), all parameters are determined.

First, s-states (without angular momentum L) are discussed. The 1s and 2s states correspond to vector and
scalar states in the notation above. A satisfactory description of both states is obtained by using a coupling
constant « of 2.14, a shape parameter £ of 1.35 and a slope parameter b of 210 pm. The derived momenta
and binding energies (masses) are given in table 1, which show consistent boson and fermion properties. The
deduced root mean square radii < r“fus_u =12 are found to be 186 and 100 pm for scalar and vector state,
respectively. Since w,(r) matches the radial form of the vector potential V3, (r) by the condition (16), the root
mean square radius of the 1s potential < -r%.—ls =1/2 is 186 pm, leading to radii at half maximum R%?Q of 58 pm

and R:‘ffg of 115 pm, in reasonable agreement with the radii deduced from other work, see table 2.

The momentum distributions of the potentials in fig. 1 are comparable to the difference in average momentum
of about 1.3 keV between both states (table 1), indicating that there should he a mixing between scalar and
vector states. Using E¢(ls) = (1 —x)E, + zF, and E¢(2s) = (1 —x)E, — 2E, with a mixing = of about 14 %,

the binding energies in table 2 are well reproduced.

3.2 e — e bound states

In this system (positronium), m is a factor of two smaller than for the hydrogen atom (m= 0.255 MeV).

Relation (22) indicates that the binding energies have to be a factor two smaller than in p — e~, whereas the

Table 1: Test of energy-momentum conservation and boson-fermion momentum matching for the strongest

bound states. Energies, masses and momenta in keV.

system < qg >1/2 E, < q? >1/2 xMy
p—e~,(2s) || (21 £01) -—21 | (21+£0.2) 241
p—e ,(1s) || (3.3£0.2) —-35 | (35+£03) 34
et —e™, (28) || (1.0£01) —1.0 | (1.0£0.1) 1.0
et —e, (1s) || (1.6 £01) —1.7 | (1.7£02) 1.7
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Table 2: Results for p— e~ and et — e~ bound state solutions, using a=2.14, k=1.35 and a mixing between the
binding energies of ns and 2ns (but also between 2np and 4np) states of 14 %. Binding energies E; are given

in eV, b and radii in pm.

p—e
sol. b E¢(ns) E+(2ns, 2np) E¢(4np) Rl’;; R%“; n Rpon. R,
1 210 || -13.6 (1s)  -3.4 (2s) (2p) -0.85 (4p) 58 115 53 3145
2 420 || -3.4 (28)  -0.85 (4s) (4p) -0.21 (8p) | 116 230 106
3 630 | -1.51 (3s) -0.38 (6s) (6p)  -0.09 (12p) | 174 345 158
4 840 || -0.85 (4s)  -0.21 (8s) (8p)  -0.05 (16p) | 232 460 212
5 1050 || -0.54 (5s) -0.14 (10s) (10p) -0.03 (20p) | 290 575 265
6 1260 || -0.38 (6s) -0.09 (12s) (12p) -0.02 (24p) | 348 690 318
7 1470 || -0.28 (7s) -0.07 (14s) (14p) -0.02 (28p) | 406 805 371
8 1680 || -0.21 (8s) -0.05 (16s) (16p) -0.01 (32p) | 464 920 424
et —e”
sol. b FE¢(ns) E'¢(2ns,2np) E¢(4np) ‘ R R?”QS ‘ n Rponr
1 420 -6.8 (1s) -1.7 (2s) (2p) -0.43 (4p) 116 230 106
2 840 -1.7 (2s)  -0.43 (4s) (4p) -0.11 (8p) 232 460 ‘ 212

*

covalent radius from ref. [2].

radii are a factor two larger. As shown in table 1, the energy-momentum conditions (18) and (19) are fulfilled,

and also a quantitative account of the binding energies is obtained, as shown in the lower part of table 2.

3.3 Quantum condition and sum of equivalent first-order coupling strengths

Other solutions should exist for larger values of the slope parameter b. However, in elementary systems a
discrete spectrum of eigenvalues is expected due to the quantum structure of the theory. In the present case the
radius is the only variable, which is determined by the slope parameter b. This requires a quantum condition,

L

in which the slope parameter b,, of the n!” solution is related directly to the first solution discussed above

b, = n by. (23)

Indeed, with a value of b of 420 pm (and o and x unchanged) 2s and 4s states are obtained, in good agreement
with experiment (assuming the same mixing between both states). Solutions up to n=8 are given in table 2,
which show only very small deviations from the corresponding Coulomb energies of less than 1 %. For all
solutions energy-momentum conservation and momentum matching is fulfilled, confirming the full consistency

of the theoretical framework.

Solutions for p-states with angular momentum L=1 can be obtained with similar wave functions as for s-states.
For solution 1 in table 1 a dominant wave of vector structure yields agreement with the binding energy of the
4p-state at -0.85 eV, whereas the 2p-state binding energy of -3.4 eV is obtained by a wave function dominated

by scalar form. In a similar way also the other p-wave solutions in table 1 are obtained. Because of the good

Volume 3, Issue 1 available at www.scitecresearch.com/journals/index.php/bjmp 204|




Boson Journal of Modern Physics (BJMP)
ISSN: 2454-8413

10 = p—e” system
) binding energies
= L
\Q’/ (]
= Ve
8 C « . TTTm==-d
(=) [ ]
\; [ ]
o |
¢ 10 e
o = ﬁaa
g . %4
k] L Oge
£ Sage.
Fa] ’ Dgé‘c..
2 %o AT
10 — DDDD S,
[ DD ..
[ Og, e,
[ DD
L Og
Og,
L Og
DDDD
- (=]
10-3HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH

0 5 10 15 20 25 30 35 40 45 50
n

Figure 2: Binding energies (absolute values) for ns states in the p — ¢~ system as a function of n.
The small points relate to the Coulomb energies, the open squares to the binding energies E7,
which yield a sum of partial couplings strengths 3 Q,a} ~ a. The correction factors 2, to the

Coulomb energies are given by dashed line.

agreement with Coulomb energies, it should be possible to understand the magnitude of the fine structure

constant a ~ 1/137 from the present approach.

An equivalent first-order coupling constant c,, can be derived from the potentials V) (r) by writing a., ~
Yo, ok, where a} = 2a? ([drVay"(r))/([ dr h/r) (the factor 2 is due to s- and p-state contributions). In
a first step the potentials V3, (7) have been calculated for each n independent of all other solutions n’#n. This
leads to ai = al/n (al=1.87 107%), which is proportional to the harmonic series (see above) and yields
3 nc: , @ divergent. The corresponding spectrum is identical to the Coulomb energy spectrum, given by solid

points in fig. 2.

However, for larger values of n an independence of the potentials from those of solution 1 cannot be expected.
Their potential strengths should fall off with the momentum dependence of the potential Vg (g) for n=1.
Therefore, correction factors €2,, have been applied to the partial coupling strengths o’} , which are given by

Qn = V3, (4n)/V3,(q1). To cover the entire fall-off of the potential up to large momenta (see fig. 1), values of {2,,
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from n=1-500 have been calculated with a momentum step size Aq ~ 40 eV, which corresponds to about 2 %
of the average momentum < q:‘; >1/2 of the lowest state (with n=1). Since V3, (qn) decreases rapidly for large
n (for n=300 the factor €2, has already fallen off to a value of about 10~%) this leads to a good convergence
of 3 Q,alk with a value of Ziozol Q.aj ~ 7.5 10=3, which is in excellent agreement with o ~ 7.3 102, The

correction factors (2,, are shown by the dashed line in fig. 2, which fall off rather slowly for small n, but decrease

rapidly for large values of n.

The corresponding potentials €,V (r) result in binding energies for ns states shown in fig. 2 by open squares,
which decrease more rapidly than the Coulomb energies. Up to n~10 (for which data are available) very small
differences between E'¢(ns) and Ecoui(ns) of < 0.6 % are found, which are difficult to detect experimentally (the
Balmer series with transitions n — 2 up to n=9 are still consistent with both theories). However, in the present
formalism a consistent analysis of the binding energies is obtained with > Q,a ~ a., ~ a. If the binding

energies would not fall off stronger than the Coulomb energies, a finite value of a., could not be obtained.

4. Summary

By replacing the fermions in QED by fermions dressed with photon fields, a complete (parameter free) description
of basic atomic systems is achieved. The dressing of fermions is needed for a physically correct description of free
hound states in the vacuum, from which radii of atoms can be deduced. The main points may be summarized
as follows:

1. The general arguments against the use of higher order Lagrangians (leading to divergences and ghosts) are
not valid for the present Lagrangian, since all matrix elements are finite and non-physical solutions can be
eliminated by strict boundary conditions.

2. The correct structure of free particle bound states is obtained without spurious motion. Further, the potential
Vag(r) warrants dynamical stability of the system.

3. A quantitative description of the p — e~ and et — e~ systems is obtained without open parameters. The
validity of the Coulomb energy spectrum (up to n ~ 10) is confirmed.

4. The electric coupling (fine structure) constant o ~ 1/137 is reproduced, supporting strongly the validity of

the present formalism.

Finally, a complete theory without external parameters is needed also for systems bound by all other fundamental
forces. This should lead to a realistic understanding of the properties of these forces and a better insight into

the structure of the universe.

For fruitful discussions, direct help in the derivation of the formalism and general support the author is indebted

to many colleagues, in particular to B. Loiseau and P. Zupranski.

References

[1] [H.P. Morsch, Brit. J. Math. and Comp. Sc. 17(6): 1-11 (2016) (open access).

Volume 3, Issue 1 available at www.scitecresearch.com/journals/index.php/bjmp 206




Boson Journal of Modern Physics (BJMP)
ISSN: 2454-8413
[2] B. Cordera et al., Covalent radii revisited, Daton Trans. 21, 2832 (2008).

[3] J.Z. Simon, Phys. Rev. D 41, 3720 (1990); A. Foussats, E. Manavella, C. Repetto, O.P. Zandron,

and O.S. Zandron, Int. J. theor. Phys. 34, 1 (1995); V.V. Nesterenko, J. Phys. A: Math. Gen. 22,
1673 (1989); and refs. therein

[4] seee.g. LI.R. Aitchison and A.J.G. Hey, “Gauge theories in particle physics”, Adam Hilger Ltd,
Bristol, 1982; or M.E. Peskin and D.V. Schroeder, “An introduction to quantum field theory”,
Addison-Wesley Publ. 1995.

[5] R. Barbieri, R. K'ogerler, Z. Kunszt, and R. Gatto, Nucl. Phys. B 105, 125 (1976); E. Eichten,
K.Gottfried, T. Kinoshita, K.D. Lane, and T.M. Yan, Phys. Rev. D 17, 3090 (1978); D. Ebert,
R.N. Faustov, and V.O. Galkin, Phys. Rev. D 67, 014027 (2003); and refs. therein

Volume 3, Issue 1 available at www.scitecresearch.com/journals/index.php/bjmp 207




