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Abstract  

Almost all the multi-phase flow meters (MPFMs) using gamma-ray attenuation, are calibrated for liquid 
and gas phases with constant density and pressure. When operational conditions such as temperature 
and pressure change in pipelines, the radiation-based multi-phase flow meters would measure the flow 
rate with error. Therefore, performance of MPFMs would be improved by eliminating any dependency on 
the fluid properties such as density. In this work, a method based on dual modality densitometry 
combined with Artificial Neural Network (ANN) is proposed in order to estimate the void fraction in 
homogenous regime of gas-liquid two-phase flows in unstable operational conditions (changeable 
temperature and pressure) in oil industry. An experimental setup was implemented to generate the 
optimum required input data for training the network. ANNs were trained on the registered counts of the 
transmission and scattering detectors in various liquid phase densities and void fractions. Void fractions 
were predicted by ANNs with mean relative error of less than 0.78% in density variations range of 0.735 
up to 0.98 g/cm3. 
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1. Introduction 

During the last three deca des, development, evaluation, and use of multiphase-flow- measurement (MFM) systems 

have been a major focus for the oil and gas industry worldwide. Within the oil and gas industries, it is recognized 

that MFMs have several benefits in applications such as layout of production facilities, well testing, reservoir 

management, production allocation, and production monitoring [1]. Conventional test separators have many 

disadvantages such their large space for installing hard-wares, more capital and operating expenses, and requiring 

much time to monitor each well‟s performance [2-4].  

By determination of volume fraction of each phase coupled with flow velocity, the mass flow rate can be achieved; 

which is one of the key parameters in the oil industry. In order to determine the gas, oil and water volume fractions, 

there are some methods like nuclear techniques, electrical impedance, and microwave techniques [5]. Utilizing 

nuclear techniques such as neutrons and gamma ray because of their ability for measuring volume fractions without 

modifying the operational conditions and being non-invasive, is so useful [6-7]. Aboulwafa and Kendall were the 

first that proposed a multi-energy gamma attenuation technique to resolve three-phase mixture component ratios 

[8]. They examined various static mixture of oil-water-gas in a 0.1 m diameter pipe section using cobalt-57 

(122KeV) and barium-133 (365 KeV) radioisotopes and a lithium-drifted germanium based detector. Li et al also 

analyzed static mixtures of stratified regime in a cubic conduit using americium-241 (59.5 KeV) and cesium-137 

(662 KeV) radioisotopes and a sodium iodide detector crystal [9].  

Also, It has been shown that Artificial Neural Network (ANN) is an useful tool in nuclear engineering [10-17]. In 

2014, Roshani et al. used a dual energy source consists of 241Am (59.5 keV ) and 137Cs (662 keV) with just one 

transmission NaI detector to predict volume fraction in oil-water-gas three-phase flows [12]. By using ANN, they 

predicted the volume fraction of oil, water and gas phases with Mean Absolute error (MAE%) of less than 1%. 
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Roshani et al. also proposed a method based on dual modality densitometry using ANN to first identify the flow 

regime and then predict the void fraction in gas-liquid two-phase flows [11]. 

Operation of a multi-phase flow meter (MPFMs) using gamma-ray attenuation, depends strongly on the fluid 

properties. By changing the fluid properties such as density, recalibration is required. Removing any dependency on 

the fluid properties, would improve the performance of MPFMs. In  previous studies, little attention has been paid 

to the changes of the density of the liquid phase. Changes of both temperature and pressure, can influence the liquid 

density, consequently measuring the void faction deals with significant errors.  

In this study, a method is proposed based on dual modality densitometry (using transmitted and scattered photons 

together) using ANN in order to estimate the void fraction in homogenous regime of gas-liquid two-phase flows in 

unstable operational conditions (changeable temperature and pressure) in oil industry. As the first step in this study, 

the optimum position in which the scattering detector is more sensitive relative to density changes, was obtained. As 

much as the sensitivity of detector relative to density changes is more, the ANN could better predict the void 

fraction independent of density. After obtaining optimum positions for the detectors, the registered counts in these 

detectors for different void fractions and densities, were used for training the ANN. 

2. Approach 

2.1. Experiment 

In this work, all the experiments were done in static conditions. A plexy-glass pipe with inner diameter of 9.5 cm 

and wall thickness of 2.5mm is used as the main pipe. For modeling the homogenous regime in static conditions, an 

arrangement with 80 cubic plastic straws distributed over the whole pipe cross section was used. This was done 

systematically, so for each of the two straws covered by the measurement volume between the 1th detector and 

source, a corresponding number of straws (6) over the total pipe cross section is treated the same way. A schematic 

cross sectional view of the various void fractions in the range of 10 to 70 percent is shown in Fig. 1. The blue and 

white cells correspond to gas phase and liquid phase, respectively. This method was used to model homogenous 

regime, because making the ideal homogenous regime with different void fractions in static conditions is so 

difficult. 

 

Fig 1: A schematic cross sectional view of the made void fractions for homogenous regime in the range of 10 to 70 

percent. 

A 
137

Cs (662 KeV) source with activity of 2 mCi was used as the gamma-ray emitter source. Also a measurement 

time of 600 s was chosen was chosen for all the experiments. The source was collimated (a cubic collimator with 

0.6 cm width, 2 cm height and 10 cm length) in order to make a narrow beam passing through the center of the pipe. 

Two 1-inch NaI detectors used in this work. The experimental configuration is shown in Fig. 2.  

As the first step in this study, best position for the detectors in dual modality densitometry configuration was 

investigated. As shown in Fig. 3, the position of transmission detector was kept fixed in the angle of 0
o
 and the 

scattering detector was located in angles of 45
o
, 90

o
 and 135

o
 respect to center of the pipe.  

The void fractions in the range of 10% to 70% for homogenous regime of gas-liquid two-phase flows were tested at 

each position of the scattering detector. Air with density of 0.001 g/cm
3 

was used as the gas phase in the pipe. For 

making a wide range of density for liquid phase in laboratory (from 0.735 g/cm
3
 to 0.980 g/cm

3
), gasoline, 

kerosene, gasoil, lubricant oil, and water with the densities of 0.735, 0.795, 0.826, 0.852, and 0.980 (g/cm
3
), 

respectively, have been used as the liquid phases. Since the predominant interaction mechanism for high energy 

photons in low atomic number materials is Compton scattering and the photoelectric interaction could be negligible, 

therefore, the interaction probability depends just on the density of the liquid phase regardless of its composition. 

Also, because the effective atomic numbers of used liquids are close to each other, it could be assumed that all of 

the 5 liquid phases regardless of their compositions, are considered as one liquid phase with various densities. In 

transmission detector, the counts in full energy peak of Cs-137 were registered (2 FWHM from centered channel) 

and the scattering detector was operated in total count mode. 
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Fig 2: Experimental setup. 

 

 

 

 
 

Fig 3: A top view of positioning of the scattering detector in different angles in order to obtain the most sensitive position 

relative to density changes.  

At each position of the scattering detector, sensitivity response of this detector relative to density changes of the 

liquid phase from the lowest density (0.735 g/cm
3
 ) to the highest density (0.980 g/cm

3
) of liquid phase for void 

fractions in the range of 10% to 70% was calculated according equation 1:  

3 3

3

Re  count for density of 0.98 (g/cm )-Re  count for density of 0.735 (g/cm ) 
100

Re  count for density of 0.98 (g/cm )

gistered gistered
Sensitivity

gistered

 
  
 

   (1) 

Sensitivity of the scattering detector relative to the density changes of the liquid phase for different void fractions 

was shown in Fig. 4. 

 

Fig 4: Sensitivity of the scattering detector relative to the density changes of the liquid phase from 0.735 g/cm3 to 0.980 

g/cm3 versus different void fractions. 
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2.2. Artificial Neural Network 

In the course of the past thirty years, neural networks (NNs) have been a very active field of multidisciplinary 

research. For applications, an artificial neural network (ANN) uses features of real nervous systems implemented 

either in hardware or more often in software in general-purpose computing equipment. An ANN consists of a 

collection of „neurons‟ (switching processing elements) communicating with each other via modifiable weighted 

connections. It has been demonstrated that an ANN can be applied to the recognition and classification of a wide 

range of situations, patterns and individual features of different systems. 

The aim of this study was to apply the technique to predict void fraction independent of the liquid phase density 

changes in homogenous regime of gas-liquid two-phase flows, using counts registered by detectors. The simplified 

overview of the proposed MLP model is shown in Fig. 5, where the inputs are registered counts in transmission 

detector and registered counts in scattering detector and the output is void fraction independent of the liquid phase 

density. 

Registered Counts in Scattering 

Detector

Registered Counts in Transmitted 

Detector
Void Fraction (percent)

Output layerHidden layerInput layer

 
Fig 5: Architecture for the presented MLP neural network. 

  

The input to the node m in the first hidden layer is given by [18-19]: 
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The output from mth neuron of the hidden layer is given by: 
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The output of the neuron in the output layer is given by: 
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                                                                                                                   (4) 

Where X is the inputs, b is the bias term, W is the weighting factor and f  is the activation function of the hidden 

layers. 

By using the experimental data which was described in the previous section, the data set required for training the 

network is obtained. Training of the presented MLP networks is done by Levenberg-Marquardt (LM) algorithm. In 

this algorithm, first derivative and second derivative (hessian) are used for network weight correction [20].  

The number of samples for training and testing data are 25(about 72%) and 10 (about 28%), respectively. In this 

study, various ANN structures were tested and optimized to obtain the best ANN configuration with minimum 

error. Many different structures with one, two and three hidden layers with different number of neurons in each 

layer and with different activation function were tested. MATLAB 8.1.0.604 software was used for training the 

ANN model. Table 1 shows the specification of the proposed MLP neural network being used in this study. 
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Table 1: Specification of the proposed ANN model 

Neural network MLP 

Number of neurons in the input layer 2 

Number of neurons in the first hidden layer 3 

Number of neurons in the output layer 1 

Number of epochs 220 

Activation function tansig 

 

3. Results and Discussion 

Fig. 6 shows the comparison between the experimental and predicted void fraction percentage using the proposed 

MLP neural network for training and testing data. The comparison between experimental and predicted results for 

training and testing data were tabulated in Table 2 and Table 3, respectively.  

 

 

 
 

 

 
 

Fig 6:  Comparison of experimental and predicted void fraction percentage for (a) training data (b) testing data. 
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Table 2: The data that were used for training the networks and predicted void fraction (MLP neural network) 

Density(g/cm3) Registered Counts in  

transmitted detector 

Registered  Counts in  

scattering detector 

Void Fraction Predicted Void 

Fraction 

0.735 213936 149794 10 7.69 

0.735 225004 136652 20 20.28 

0.735 251423 109239 40 43.94 

0.735 282511 80718 60 58.46 

0.795 204644 159486 10 11.35 

0.795 216903 145525 20 21.15 

0.795 244748 116462 40 38.97 

0.795 261490 101845 50 50.52 

0.795 278096 85466 60 61.18 

0.826 199885 164773 10 10.42 

0.826 212628 150850 20 20.27 

0.826 226097 135078 30 30.72 

0.826 240298 120976 40 40.30 

0.826 257058 104573 50 52.39 

0.826 292372 72435 70 70.41 

0.852 196033 169179 10 9.4 

0.852 222963 139551 30 29.23 

0.852 238073 123684 40 37.78 

0.852 254842 107301 50 47.11 

0.852 290174 73810 70 69.05 

0.980 175409 195613 10 10.18 

0.980 189228 176583 20 19.15 

0.980 204606 159231 30 29.71 

0.980 239329 122759 50 49.77 

0.980 258232 102267 60 56.86 

 

From Table 2, Table 3 and Fig. 6, it is obvious that the predicted unknown void fraction percentage by MLP neural 

network is close to the experimental results. These results show the applicability of ANN as an accurate and reliable 

model for predicting the void fraction according to the registered counts in transmission and scattering detectors. 

Table 4 shows the obtained errors for the proposed ANN model, where the mean relative error percentage (MRE %) 

and the root mean square error (RMSE) of the network are calculated by: 
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                                                                                      (5) 
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Where N is the number of data and „X (Exp)‟ and „X (Pred)‟ stand for experimental and predicted (ANN) values, 

respectively. 
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Table 3: The data that were used for testing the networks and predicted void fraction (MLP neural network) 

Density(g/cm3) Registered Counts in  

transmitted detector 

Registered Counts 

in  scattering 

detector 

Void Fraction Predicted Void Fraction 

0.735 239528 123449 30 34.32 

0.735 268138 95479 50 54.10 

0.735 298967 66567 70 72.37 

0.795 230574 131500 30 28.74 

0.795 294570 70234 70 69.85 

0.826 273682 88022 60 56.79 

0.852 208803 154399 20 17.52 

0.852 271475 90214 60 58.35 

0.98 220941 140838 40 37.10 

0.98 281381 82246 70 68.83 

 

Table 4: Obtained errors for training and testing results of the proposed ANN model 

Test Train Error 

0.78 0.44 MRE% 

2.67 1.57 RMSE 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Contour plot for obtained void fraction percentage. 

Fig. 7 shows the obtained void fraction percentage using the proposed MLP neural network for whole registered 

counts in transmission and scattering detectors independent of the liquid phase density. 
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4. Conclusions 

Variations of operational conditions in oil industry‟s pipelines, would cause large errors in determination of void 

fraction in radiation-based multi-phase flow meters. A conventional solution for avoiding such significant errors, is 

continuous recalibration during the measuring of void fraction. In this work, a method is proposed based on dual 

modality densitometry (using transmitted and scattered photons together) using ANN in order to estimate the void 

fraction in homogenous regime of gas-liquid two-phase flows in unstable operational conditions (changeable 

temperature and pressure) without recalibration of system during the measuring. At first, angle of 135
o
 was obtained 

as the optimum angle for positioning of the scattering detector. After obtaining optimum position for the detectors, 

registered counts in these detectors for void fractions from 10% to 70% and density in the range of 0.735 to 0.980 

g/cm
3
 were used as the inputs of ANN and void fraction was used as the output of the ANN. Trained ANN model, 

predicted void fraction with mean relative error less than 0.78%. Multi-layer perceptron (MLP) neural network was 

used for developing the ANN model.  

The proposed method could be applied for measuring the void fraction in situations where the operational 

conditions in pipelines such as temperature and pressure are unstable.  
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