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Abstract

The study of Bose-Einstein integral functions is important in the fact that such functions arise
in various numerical calculations of different domains of physics. The significance of gamma
function and Riemann zeta function in solving such integrals has been studied and functional
equations are evaluated thereby enabling the integrals of all orders to be calculated.
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1. Introduction

Over the years, several authors [1-8] have worked on the analysis and evaluation of Bose-Einstein integrals
using different approaches. The Bose-Einstein distribution function describes the statistical behaviour of
integer spin particles called bosons. The probability fBE (ε) that a boson occupies a state of energy ε is
given by

fBE (ε) =
1

eα+
ε
kT − 1

(1)

where k is Boltzmann constant, T is absolute temperature and α depends on the properties of the system
and is a function of T. The sum over all energy states of n (ε) = g (ε) f (ε) is equal to the total number of
particles N in the system, i.e. N =

∑
ni.

The distribution of the average number of molecules ni in an energy level εi of statistical weight gi is
then given as

ni =
gi

eα+
ε
kT − 1

(2)

The energy spectrum of an ideal monatomic gas of mass m enclosed in a cubic volume V can be repre-
sented by the smoothed weight function given as

Cite this paper: Akbari Jahan (2021). Analytical computation of Bose-Einstein integral functions.
Boson Journal of Modern Physics, 8(1), 1-9. Retrieved from
http://scitecresearch.com/journals/index.php/bjmp/article/view/1952

1

http://www.scitecresearch.com/journals/index.php/bjmp
http://creativecommons.org/licenses/by/4.0/


Akbari Jahan

g (ε) =
2πV

h3
(2m)

3
2 ε

1
2 (3)

where g (ε) d (ε) gives the number of energy levels in the interval (ε, ε+ dε).

Replacing the summation
∑
ni by an integral for a macroscopic volume and using Eq.(3) in Eq.(2), we

obtain [9, 10]

N =
2πV

h3
(2m)

3/2

∞∫
0

ε1/2dε

eα+
ε
kT − 1

(4)

This expression of N can be written as

N = V

(
2πmkT

h2

)3/2

F3/2 (α) (5)

where F3/2 (α) is the case of σ = 3/2 of the Bose-Einstein integral functions of the form

Fσ (α) =
1

Γ (σ)

∞∫
0

xσ−1

ex+α − 1
dx (6)

Here Γ (σ) is the gamma function. For α = 0 and σ > 1, the function Fσ (0) is identical with the Riemann
zeta function.

The aim of the present work is the numerical computation of the special functions, viz. Gamma function
and Riemann zeta function, and the Bose-Einstein integral function. A comparative study and analysis are
done among the different expressions of σ and α of the Bose-Einstein integral functions. Both gamma function
and Riemann zeta function are often encountered while evaluating such integrals. These two functions are
discussed in the next section.

2 Gamma function and Riemann zeta function

Most special functions come as solutions of first or second order differential equations. However, two most
important special functions, Gamma function and Riemann zeta function, do not arise from differential
equations.

The Gamma function is a component in various probability distribution function. For a given complex
number z, it is defined by the definite integral [11, 12]

Γ (z) =

∞∫
0

e−xxz−1dx (7)

For any complex number σ, the Riemann zeta function is defined by the Dirichlet series: [13]

ζ (σ) =

∞∑
n=1

1

nσ
(8)

On the real line with any variable σ > 1, it can be defined by the integral

ζ (σ) =
1

Γ (σ)

∫ ∞
0

xσ−1

ex − 1
dx (9)

which relates it to the Gamma function.
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2.1 Lanczos approximation

The complex values of Gamma function can be computed numerically with arbitrary precision using the
Lanczos approximation [14]. Gamma function is undefined for negative integers but using Lanczos approx-
imation, the function can be calculated not only for positive arguments but also for negative fractions to a
very high order of accuracy. The Lanczos approximation is given as

Γ (z) =

[√
2π

z

(
p0 +

6∑
n=1

pn
z + n

)]
(z + 5.5)

(z+0.5)
e−(z+5.5) (10)

where

p0 = 1.000000000190015

p1 = 76.18009172947146

p2 = −86.50532032941677

p3 = 24.01409824083091

p4 = −1.231739572450155

p5 = 1.208650973866179× 10−3

p6 = −5.395239384953× 10−6 (11)

The Gamma function of a few rational numbers, computed using the Lanczos approximation, has been listed
in Table 1. It should be noted that the approximation is not defined at z = −5.5 upto z = −7.4. It works
well again at z = −7.5 and beyond. The calculated values are agreeable with the theoretical ones.

Table 1: Gamma function of some rational numbers.

z Γ (z) Remarks

−1.5 2.363271713
−1.25 3.921333551
−0.75 −4.834146500
−0.50 −3.544907808
−0.25 −4.901666641
0.25 3.625609875
0.50 1.772453904

√
π ≈ 1.772453851

0.75 1.225416660
1 1.000000000

1.25 0.906402469
1.5 0.886226925

√
π/2 ≈ 0.886226925

1.75 0.919062555
2 1.000000000

2.5 1.329340388 3
√
π/4 ≈ 1.329340388

2.75 1.608359456

From Table 1, it can be inferred that the values of Gamma function obtained using the Lanczos approx-
imation agrees well with those of the theoretical values, e.g. the most well-known value Γ (1/2) =

√
π ≈

1.772453851 and Γ (1.5) =
√
π/2 ≈ 0.886226925 are almost equal to the calculated values. Thus, despite its

limitations, this approximation proves to be of great importance in computing and evaluating the Gamma
function of any argument to a high order of accuracy.
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2.2 Plot of Gamma graph and the location of minima

It can be checked that using the values of Gamma function of any argument in the range 1 ≤ x ≤ 2, one can
compute the Gamma function of any other arguments, irrespective of the sign. Following is the tabulation
used for plotting the Gamma graph and the location of minima.

Table 2: Gamma function of some arguments.

x Γ (x)

1.435 0.885910
1.437 0.885865
1.439 0.885824
1.441 0.885787
1.443 0.885753
1.445 0.885722
1.447 0.885695
1.449 0.885672
1.451 0.885652
1.453 0.885635
1.455 0.885622
1.457 0.885612
1.459 0.885606
1.461 0.885603
1.462 0.885603
1.464 0.885606
1.466 0.885611
1.468 0.885621
1.470 0.885633
1.472 0.885649
1.474 0.885669

Using Table 2, the Gamma graph is plotted taking the values of the variable along x -axis and Γ (x) along
y-axis. With the increase in values of the variable, the values of Gamma function decrease gradually and
then after attaining a minima it increases gradually. We know that Γ (1) = 1 and Γ (2) = 1. Hence one may
expect the minima to be located at the midpoint, i.e. (1+2)/2 = 1.5. But the expectation cannot be a
proof. Γ (1.5) =

√
π/2 ≈ 0.886226. It is clearly observed from the graph that the minima lies between x =

1.461 and x = 1.462 and its Gamma function is approximately equal to 0.885603, which is less than
√
π/2.

Figure 1 shows the Gamma graph and the location of minima.

2.3 Riemann’s functional equation

Using Eq.(8), the computation of the Riemann zeta function is restricted only to non-negative arguments.
The function for negative integers and fractions can be calculated using the functional equation [15]

Γ
(σ

2

)
π−σ/2ζ (σ) = Γ

(
1− σ

2

)
π−(1−σ)/2ζ (1− σ) (12)
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Figure 1: Plot of Gamma graph and the location of minima.

The values of positive arguments are used simultaneously while computing the Riemann zeta function of
negative arguments.

The Riemann zeta function of some rational numbers computed using the functional equation (Eq.(12))
are listed in Table 3.

The values of Riemann zeta function computed using the functional equation formula (Eq.(12)) accords
with the theoretical values. It can be observed that the Riemann zeta function has zeros at the negative
even integers and it is an important property of this function.

3 Bose-Einstein integral functions

The expansions in Dirichlet series for the Bose-Einstein integral functions (Eq. (6)) in powers of α are
desirable in the study of the behaviour of Fσ (α) for small α. Here, σ and α are the parameters of the
Bose-Einstein gas where α is a function of total number of molecules at absolute temperature T. The power
series expression for the Bose-Einstein integral function Fσ (α) as obtained in Ref. [16] is given as
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Table 3: Riemann zeta function of some rational numbers.

σ ζ (σ)

−5 −0.003968253
−4 0
−3.5 0.004441010
−3 0.008333333
−2.5 0.008516913
−2 0
−1.5 −0.025484722
−1 −0.08333333
−0.5 −0.207000464

0 −0.5
0.5 −1.460354508
1 ∞

1.5 2.601244688
2 1.644725323

2.5 1.341462016
3 1.202050686

3.5 1.126731873
4 1.082322121
5 1.036927462

Fσ (α) = ασ−1Γ (1− σ) +

∞∑
n=0

(−α)
n ζ (σ − n)

n!
(13)

By the principle of analytic continuation, Eq.(13) holds for all σ. A comparative study and analyses are done
for the functions F1/2 (α), F3/2 (α), F5/2 (α) and F7/2 (α) for different values of σ and α. While evaluating the
infinite series of these functions, both Gamma function and Riemann zeta function of positive and negative
rational numbers are used. Following are the infinite series of these functions, which are obtained using Eq.
(13):

F1/2 (α) = 1.77245α−1/2 − 1.46035 + 0.20789α− 0.01274α2 − 0.00142α3 +

0.00018α4 − 0.000026α5 + ...

F3/2 (α) = −3.544908α1/2 + 2.61237 + 1.46035α− 0.10394α2 + 0.00425α3 +

0.00035α4 − 0.000037α5 + ...

F5/2 (α) = 2.36327α3/2 + 1.34148− 2.61237α− 0.73017α2 + 0.03465α3 −
0.00106α4 − 0.000071α5 + ...

F7/2 (α) = −0.94531α5/2 + 1.12670− 1.34148α+ 1.30619α2 + 0.24339α3 −
0.00866α4 + ...... (14)

Table 4 gives the list of some arguments of the Bose-Einstein integral functions given by Eq.(13). They are
evaluated using Gauss-Laguerre Quadrature [11, 17] for different values of σ and α and are compared with
the values of exponential function.
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Table 4: Bose-Einstein integral functions for different values of σ and α.

α F1/2 (α) F3/2 (α) F5/2 (α) F7/2 (α) e−α

0 ∞ 2.612 1.341 1.127 1.000
0.1 4.165 1.636 1.477 1.003 0.905
0.2 2.544 1.315 1.001 0.896 0.819
0.3 1.837 1.099 0.881 0.802 0.741
0.4 1.423 0.938 0.779 0.719 0.670
0.5 1.147 0.811 0.692 0.645 0.606
0.6 0.948 0.706 0.617 0.579 0.549
0.7 0.797 0.619 0.551 0.522 0.497
0.8 0.679 0.546 0.493 0.469 0.449
0.9 0.584 0.483 0.441 0.423 0.407
1.0 0.506 0.428 0.396 0.381 0.368
2.0 0.149 0.142 0.139 0.137 0.135

It can be observed from Table 4 that the function F1/2 (α) has no finite maximum value. The functions
F3/2 (α), F5/2 (α) and F7/2 (α), on the other hand, have respective finite maximum values 2.612, 1.341
and 1.127 at α = 0, from which they decrease monotonically with increasing α and then merge with the
exponential function e−α. Figure 2 shows the plot of Bose-Einstein integral functions against α.

4 Conclusions

This paper is mainly concerned with the study of two special functions, viz. Gamma function and Riemann
zeta function, followed by the numerical evaluation of the Bose-Einstein integral functions. The present work
follows the discussion of Bose-Einstein integrals in Ref. [16].

Figure 2: Plot of Bose-Einstein integral functions F1/2 (α), F3/2 (α), F5/2 (α) and F7/2 (α) with
e−α for the range 0 ≤ α ≤ 2.
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It is found that the Gamma function of positive as well as negative rational numbers can be computed
to a very high order of accuracy using Lanczos approximation. The significance and the limitation of this
approximation have been discussed.

It is also observed that the Gamma function gradually decreases with the increase in the value of argu-
ments and then after attaining a minima it increases gradually. A very significant analysis of the function is
the location of the minima.

The Riemann zeta function is also discussed and then analysed the reduction of its integral form to the
well-known functional equation, using which the Riemann zeta function has been computed not only for
non-negative arguments but also for negative integers and fractions. The function is found to be zero for
negative even integers.

From the plot of the Bose-Einstein integral functions against the Bose-Einstein gas parameter α, it is
evident that the functions decrease gradually as α increases and then finally merge with the exponential
function.
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