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Abstract  

The main objective of this paper is to study some geometric properties of warped product semi-

slant submanifold of nearly quasi sasakian manifold. 
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1. Introduction 

The notion of slant submanifolds of an almost contact metric manifold were introduced by J. L. 
Cabrerizo et al. [8]. The study of semi-slant submanifolds of almost Hermitian manifolds was 

initiated by N. Papaghuic [17]. In fact, semi-slant submanifolds in almost Hermitian manifolds 

are defined on the line of CR-submanifolds. Cabrerizo et al. [7] introduced almost contact metric 

manifolds, semi-slant submanifolds and studied their properties.  

Also, the notion of warped products manifolds with negative curvature was defined and studied 

by Bishop and O'Neill [6]. B.Y. Chen [9] extended the work the work of Bishop and O'Neill and 

studied the warped product CR-submanifold of Kachler manifolds and many mores and was 

followed up by several other authors. 

In [3], Blair introduced the notion of Quasi Sasakian structure. Since then several papers on 

quasi-Sasakian manifolds have studied by Tanno [27], Kanemaki [11, 12], Oubina [16], and the 

author and et al., [18-24]. Kim [14] extensively studied quasi-Sasakian manifolds and proved 

that fibred Riemannian spaces with invariant fibrs normal to the structure vector field do not 

admit nearly Sasakian or contact structure but a quasi-Sasakian or cosympletic structure. 
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In the present paper we study warped product semi-slant submanifold of nearly quasi sasakian 

manifold. The paper is divided into three sections. In Section 2 we recall some necessary detail 

of a nearly quasi sasakian manifold. In Section 3, we prove that the warped product semi-slant 

submanifolds of the type 𝑀 = 𝑁𝜃 ×𝑓 𝑁𝑇 do not exist in a nearly quasi Sasakian manifold 𝑀 . 

However, we obtain some interesting results on the existence of the warped product 

submanifolds of the type 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  of a nearly quasi Sasakian manifold 𝑀 , where 𝑁𝑇 and 

𝑁𝜃  are the invariant and proper slant submanifolds of 𝑀 , respectively. 

 

2. Preliminaries 

Suppose 𝑀  be a real (2𝑛 + 1) dimensional differentiable manifold endowed with an almost 

contact metric structure (𝑓, 𝜉, 𝑛, 𝑔), where 𝑓 is a tensor field of type (1, 1), vector field , 𝜂 is a 1- 

form and 𝑔 is a Riemannian metric on 𝑀  s. t. 

        𝜙2 = −𝐼 + 𝜂⨂𝜉,       𝜂 𝜉 = 1,         𝜂𝑜𝜙 = 0,      𝜙 𝜉 = 0,    𝜂 𝑋 = 𝑔 𝑋, 𝜉             

         𝑔 𝜙𝑋, 𝜙𝑌 = 𝑔 𝑋, 𝑌 − 𝜂 𝑋 𝜂 𝑌                                                                             (2.1) 

for any vector field 𝑋, 𝑌  tangent to 𝑀 , where 𝐼 is the identity on the tangent bundle Γ𝑀  of 𝑀 . An 

Almost contact metric structure  𝑓, 𝜉, 𝜂, 𝑔  on 𝑀  is called Quasi Sasakian manifold if 

          ∇ 𝑋𝜙 𝑌 = 𝜂 𝑌 𝐴𝑋 − 𝑔 𝐴𝑋, 𝑌 𝜉                                                                                (2.2) 

where 𝐴 is symmetric lineartransformationfield , ∇   denotes the Riemannian connection of on  

𝑀 .  If in a addition to above relations 

           ∇ 𝑋𝜙 𝑌 +  ∇ 𝑌𝜙 𝑋 = 𝜂 𝑌 𝐴𝑋 + 𝜂 𝑋 𝐴𝑌 − 2𝑔 𝐴𝑋, 𝑌 𝜉                                         (2.3) 

then 𝑀     is called  a  nearly  quasi –Sasakian manifold. We have also on nearly quasi Sasakian 

manifold  𝑀 ,   

           ∇ 𝑋𝜉 = 𝜙𝐴𝑋 

Suppose M be a submanifold of 𝑀 . Then the induced Riemannian metric on M is denoted by the 

same symbol 𝑔 and the induced Riemannian connection by ∇. Further, if 𝑇𝑀  and 𝑇𝑀 denote the 

tangent bundle on 𝑀  and on 𝑀 respectively and 𝑇⊥𝑀, the normal bundle on 𝑀, then the Gauss 

and Weingarten formulae are respectively given by 

            ∇ 𝑋𝑌 =  ∇𝑋𝑌 + 𝑕  𝑋, 𝑌                                                                                            (2.4)   

             ∇ 𝑋𝑁 = −𝐴𝑁𝑋 + ∇𝑋
⊥𝑁                                                                                           (2.5) 

for each 𝑋, 𝑌 ∈  𝑇𝑀 and 𝑁 ∈  𝑇⊥𝑀, 𝑕 and 𝐴𝑁  denote respectively the second fundamental 

forms and the shape operator (corresponding to the normal vector field 𝑁) of the immersion of 𝑀 

into 𝑀. The two are related as: 

            𝑔 𝑕  𝑋, 𝑌 , 𝑁 = 𝑔 𝐴𝑁𝑋, 𝑌                                                                                   (2.6)  

where 𝑔 denotes the Riemannian metric on 𝑀  as well as induced on 𝑀. 

Further, for any 𝑝 ∈ 𝑀, let  𝑒1 ,𝑒2 , 𝑒3, …… . 𝑒𝑚 , ……𝑒2𝑛+1  be an orthogonal frame for the 

tangent space 𝑇𝑝𝑀  such that 𝑒1, 𝑒2 , ……… , 𝑒𝑚   are tangent to  𝑀 at  . We denote by 𝐻  the mean 

curvature vector, that is   
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           𝐻(𝑝)=
1

𝑚
 𝑕 (𝑒𝑖 ,

𝑚
𝑖=1 𝑒𝑖)  

Also we get,  

           𝑕 𝑖𝑗  
𝑟 = 𝑔 𝑕  𝑒𝑖 , 𝑒𝑖 , 𝑒𝑟 ,   𝑖, 𝑗 ∈  1,2, … . . , 𝑚 ,   𝑟 ∈  𝑚 + 1, 𝑚 + 2, …… 2𝑛 + 1  

and  𝑕  2 =  𝑔(𝑕 (𝑒𝑖 ,
𝑚
𝑖=1 𝑒𝑗 ), 𝑕 (𝑒𝑖 , 𝑒𝑗  )). 

For any 𝑋 ∈ Γ 𝑇𝑀 , we write, 

         𝜙𝑋 = 𝑃𝑋 + 𝐹𝑋                                                                                                        (2.7)  

where 𝑃𝑋  is the tangential component  and 𝐹𝑋  is the normal component of  𝜙𝑋. 

Similarly for any 𝑁 ∈ Γ 𝑇⊥𝑀 , we write  

          𝜙𝑁 = 𝐵𝑁 + 𝐶𝑁                                                                                                      (2.8) 

where  𝐵𝑁 is the tangential component and 𝐶𝑁 is the normal component of 𝜙𝑁. 

The covariant derivative of the tensor field 𝜙 is defined as 

           ∇ 𝑋𝜙 𝑌 =  ∇ 𝑋𝜙𝑌 − 𝜙∇ 𝑋Y                                                                                      (2.9) 

for all   𝑋, 𝑌 ∈ Γ 𝑇𝑀  . 

Now, denote by 𝒫𝑋𝑌 and  𝒬𝑋𝑌 the tangential and normal parts of  ∇ 𝑋𝜙 𝑌, i.e., 

            ∇ 𝑋𝜙 𝑌 = 𝒫𝑋𝑌 + 𝒬𝑋𝑌                                                                                        (2.10) 

for all 𝑋, 𝑌 ∈ Γ 𝑇𝑀 . Making use of (2.7)-(2.10) and the Gauss and Weingarten formulae, the 

following equations may easily be obtained 

          𝒫𝑋𝑌 =  ∇ 𝑋𝑃 𝑌 − 𝐴𝐹𝑌𝑌 − 𝐵𝑕 (𝑋, 𝑌)                                                                    (2.11)  

          𝒬𝑋𝑌 =  ∇ 𝑋𝐹 𝑌 + 𝑕  𝑋, 𝑃𝑌 − 𝐶𝑕  𝑋, 𝑌                                                               (2.12) 

where the covariant derivative of 𝑃 and 𝐹 are defined by 

            ∇ 𝑋𝑃 𝑌 = ∇𝑋𝑃𝑌 − 𝑃∇𝑋𝑌                                                                                   (2.13) 

            ∇ 𝑋𝐹 𝑌 = ∇𝑋
⊥𝐹𝑌 − 𝐹∇𝑋𝑌                                                                                   (2.14) 

for all 𝑋, 𝑌 ∈ Γ 𝑇𝑀 . 

Similarly, for any 𝑋 ∈ Γ 𝑇𝑀  and 𝑁 ∈ Γ 𝑇⊥𝑀 , denoting the tangential and normal parts of 

 ∇ 𝑋𝜙 𝑁 by 𝒫𝑋𝑁 and 𝒬𝑋𝑁 respectively, we obtain 

         𝒫𝑋𝑁 =  ∇ 𝑋𝐵 𝑁 + 𝑃𝐴𝑁𝑋 − 𝐴𝐶𝑁𝑋                                                                         (2.15) 

         𝒬𝑋𝑁 =  ∇ 𝑋𝐶 𝑁 + 𝑕  𝐵𝑁, 𝑋 + 𝐹𝐴𝑁𝑋                                                                   (2.16) 

where the covariant derivative of 𝐵 and 𝐶 are defined by 

          ∇ 𝑋𝐵 𝑁 = ∇𝑋𝐵𝑁 − 𝐵∇𝑋
⊥𝑁                                                                                     (2.17)  

          ∇ 𝑋𝐶 𝑁 = ∇𝑋
⊥𝐶𝑁 − 𝐶∇𝑋

⊥𝑁                                                                                      (2.18) 

It is uncomplicated to verify the following properties of P and Q, which we enrol here for later 

on use: 
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 𝑝1    (i)    𝒫𝑋+𝑌𝑊 = 𝒫𝑋𝑊 + 𝒫𝑌𝑊         (ii)     𝒬𝑋+𝑌𝑊 = 𝒬𝑋𝑊 + 𝒬𝑌𝑊 

 𝑝2    (i)    𝒫𝑋 𝑌 + 𝑊 = 𝒫𝑋𝑌 + 𝒫𝑋𝑊    (ii)   𝒬𝑋  𝑌 + 𝑊 = 𝒬𝑋𝑌 + 𝒬𝑋𝑊 

 𝑝3    (i)    𝑔 𝒫𝑋𝑌, 𝑊 = −𝑔 𝑌, 𝒫𝑋𝑊     (ii)   𝑔 𝒬𝑋𝑌, 𝑁 = −𝑔 𝑌, 𝒬𝑋𝑁   

for all 𝑋, 𝑌, 𝑊 ∈ Γ 𝑇𝑀   and  𝑁 ∈ Γ 𝑇⊥𝑀 . 

On a submanifold 𝑀 of a nearly quasi Sasakian manifold, by equations (2.3) and (2.10) we have 

(a)   𝒫𝑋𝑌 + 𝒫𝑌𝑋 = 𝜂 𝑌 𝐴𝑋 + 𝜂 𝑋 𝐴𝑌 − 2𝑔 𝐴𝑋, 𝑌 𝜉,   (b)  𝑄𝑋𝑌 + 𝒬𝑌𝑋 = 0             (2.19) 

for all 𝑋, 𝑌 ∈ Γ 𝑇𝑀 . 

A submanifold 𝑀 of an almost contact metric manifold 𝑀  is said to be invariant if 𝐹 is 

identically zero, that is, 𝜙𝑋 ∈ Γ 𝑇𝑀  and anti-invariant if 𝑃 is identically zero, that is, 𝜙𝑋 ∈
Γ 𝑇⊥𝑀 , for any 𝑋 ∈ Γ 𝑇𝑀 . 

We shall always consider 𝜉 to be tangent to the submanifold 𝑀. There is another class of 

submanifolds called slant. For each non zero vector 𝑋 tangent to 𝑀 at 𝑥, such that 𝑋 is not 

proportional to 𝜉𝑥 , we denote by 0 ≤  𝜃(𝑋)  ≤  𝜋/2, the angle between 𝜙𝑋 and 𝑇𝑥𝑀 is called 

the slant angle. If the slant angle 𝜃(𝑋) is constant for all 𝑋 ∈ 𝑇𝑥𝑀 −  𝜉𝑥  and 𝑥 ∈ 𝑀, then 𝑀 is 

said to be slant submanifold [8]. Obviously if 𝜃 =  0, 𝑀 is invariant and if 𝜃 =  𝜋/2, 𝑀 is an 
anti-invariant submanifold. A slant submanifold is said to be proper slant if it is neither invariant 

nor anti-invariant submanifold. 

We recall the following result for a slant submanifold. 

Theorem 2.1 [8] If 𝑀 be an almost contact metric manifold  𝑀 , 𝜙, 𝜉, 𝜂, 𝑔  such that 𝜉 ∈ (𝑇𝑀), 

then 𝑀 is slant if and only if there exists a constant 𝜆 ∈ [0, 1] such that 

          𝑃2 =  𝜆 −𝐼 + 𝜂⨂𝜉                                                                                               (2.20) 

Also, if 𝜃 is slant angle of 𝑀, then 𝜆 = cos2 𝜃. 

 

Next relations are basic consequences of relation (2.20) 

 

Corollary 2.2 If 𝑀 be a slant submanifold of a Lorentzian almost paracontact manifold 

 𝑀 , 𝜙, 𝜉, 𝜂, 𝑔  with 𝜉 ∈ Γ(𝑇𝑀), then 

         𝑔 𝑃𝑋, 𝑃𝑌 = 𝑐𝑜𝑠2𝜃 𝑔 𝑋, 𝑌 − 𝜂 𝑌 𝜂 𝑋                                                             (2.21)  

          𝑔 𝐹𝑋, 𝐹𝑌 = 𝑠𝑖𝑛2𝜃 𝑔 𝑋, 𝑌 − 𝜂 𝑌 𝜂 𝑋                                                            (2.22)  

for any 𝑋, 𝑌 ∈ Γ 𝑇𝑀 . 

A submanifold 𝑀 of an almost contact metric manifold 𝑀  is said to be semi-slant if there exist 

two orthogonal complementary distributions 𝐷1 and 𝐷2 satisfying: 

(i) 𝑇𝑀 = 𝐷1 ⨁ 𝐷2 ⨁   𝜉   

(ii) 𝐷1 is an invariant i.e., 𝜙𝐷1 ⊆ 𝐷1 

(iii) 𝐷2 is a slant distribution with slant angle 𝜃 ≠
𝜋

2
. 



                                                                                                        Boson Journal of Modern Physics (BJMP)  
                                                                                                                                                  ISSN: 2454-8413    

 
Volume 5, Issue 1 available at www.scitecresearch.com/journals/index.php/bjmp                                                  447|                                           

A semi-slant submanifold 𝑀 of an almost contact manifold 𝑀  is mixed geodesic if 

          𝑕  𝑋, 𝑍 = 0                                                                                                                (2.23) 

for any 𝑋 ∈ 𝐷1 and 𝑍 ∈ 𝐷2. Moreover, if 𝜇 is the 𝜙−invariant subspace of the normal bundle 

𝑇⊥𝑀, then in case of semi-slant submanifold, the normal bundle 𝑇⊥𝑀 can be decomposed as 

          𝑇⊥𝑀 = 𝐹𝐷2⨁𝜇                                                                                                        (2.24) 

 

3. Warped product semi-slant submanifolds 

Suppose (𝑁1, 𝑔1) and (𝑁2, 𝑔2) be two Riemannian manifolds and 𝑓 >  0 a differentiable 

function on 𝑁1. Consider the product manifold 𝑁1 × 𝑁2 with its projections 𝜋1: 𝑁1 × 𝑁2 → 𝑁1 

and 𝜋2: 𝑁1 × 𝑁2 → 𝑁2. Then the warped product of 𝑁1 and 𝑁2 denoted by 𝑀 = 𝑁1 ×𝑓 𝑁2 is a 

Riemannian manifold 𝑁1 × 𝑁2 equipped with the Riemannian structure such that 

          𝑔 𝑋, 𝑌 = 𝑔1 𝜋1∗𝑋, 𝜋1∗𝑋 +  𝑓 ∘ 𝜋 2𝑔1 𝜋2∗𝑋, 𝜋2∗𝑋   

for each 𝑋, 𝑌 ∈ Γ 𝑇𝑀  and ∗ is a symbol for the tangent map. Thus we have 

           𝑔 = 𝑔1 + 𝑓2𝑔2                                                                                                          (3.1) 

The function 𝑓 is called the warping function of the warped product [2, 11]. A warped product 

manifold 𝑁1 ×𝑓 𝑁2 is said to be trivial if the warping function 𝑓 is constant. We recall the 

following general result for a warped product manifold for later use. 

 

Lemma 3.1 [6]  If 𝑀 = 𝑁1 ×𝑓 𝑁2 be a warped product manifold, then 

(i) 𝛻𝑋𝑌 ∈  𝑇𝑁1 is the lift of 𝛻𝑋𝑌 on 𝑁1. 

(ii) 𝛻𝑋𝑍 = 𝛻𝑍𝑋 =  𝑋 ln 𝑓 𝑍 

(iii) 𝛻𝑍𝑊 = 𝛻𝑍
𝑁2𝑊 − 𝑔 𝑍, 𝑊 𝛻 ln 𝑓 

for all 𝑋, 𝑌 ∈ Γ 𝑇𝑁1  and 𝑍, 𝑊 ∈ Γ 𝑇𝑁2  where 𝛻 and 𝛻𝑁2  denote the Levi-Civita connections 

on 𝑀 and 𝑁2, respectively, and 𝛻 ln 𝑓 is the gradient of ln 𝑓. 

 

Suppose 𝑀 be a Riemannian manifold of dimension 𝑘 with the inner product 𝑔 and  𝑒1, … , 𝑒𝑘   
be an orthonormal frame on 𝑀. Then for a differentiable function 𝑓 on 𝑀, the gradient 𝛻𝑓 of a 

function 𝑓 on 𝑀 is defined by 

          𝑔 𝛻𝑓, 𝑈 = 𝑈𝑓                                                                                                          (3.2) 

for any 𝑈 ∈ Γ 𝑇𝑀 . As a consequence, we have 

            𝛻𝑓 2 =   𝑒𝑖 𝑓  
2𝑘

𝑖=1                                                                                              (3.3)  

where 𝛻𝑓 is the gradient of the function 𝑓 on 𝑀. 

Now, we consider warped product semi-slant submanifolds tangent to the structure vector field 𝜉 

which are either in the form 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃   or 𝑀 = 𝑁𝜃 ×𝑓 𝑁𝑇   in a nearly quasi Sasakian 

manifold 𝑀 , where 𝑁𝑇 and 𝑁𝜃  are invariant and proper slant submanifolds of a nearly quasi 
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Sasakian manifold 𝑀  , respectively. On a warped product submanifold 𝑀 = 𝑁1 ×𝑓 𝑁2 of a 

nearly quasi Sasakian manifold 𝑀 , we have the following result. 

 

Theorem 3.1. Suppose 𝑀 = 𝑁1 ×𝑓 𝑁2 be a warped product semi-slant submanifold of a nearly 

quasi Sasakian manifold 𝑀 . Then 𝑀 is usual Riemannian product if the structure vector field 𝜉 is 

tangent to 𝑁2, where 𝑁1 and 𝑁2 are the Riemannian submanifolds of 𝑀 . 

Starting the above theorem for the existence of warped products we always consider the structure 

vector field 𝜉 is tangent to the base. First we discuss the warped product semi-slant submanifolds 

of the type 𝑀 = 𝑁𝜃 ×𝑓 𝑁𝑇 of a nearly quasi Sasakian manifold 𝑀 . 

 

Theorem 3.2 If 𝑀  be a nearly quasi Sasakian manifold, then there do not exist warped product 

semi-slant submanifolds 𝑀 = 𝑁𝜃 ×𝑓 𝑁𝑇 such that 𝑁𝜃  is a proper slant submanifolds and 𝑁𝑇 is 

invariant submanifolds 𝑀 . 

 

Now, we will discuss the other case 

 

Lemma 3.2 If 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  be a warped product semi-slant submanifold of a nearly quasi 

Sasakian manifold 𝑀  such that 𝑁𝑇 and 𝑁𝜃  are invariant and proper slant submanifolds of 𝑀 , then 

(i) 𝜉 ln 𝑓 = 0 

(ii) 𝑔 𝑕  𝑋, 𝑌 , 𝐹𝑍 = 0 

(iii) 𝑔 𝑕  𝑃𝑋, 𝑍 , 𝐹𝑍 =  𝑋 𝑙𝑛𝑓  𝑍 2 

(iv) 𝑔 𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍 = − 𝑔 𝑕 𝑋, 𝑃𝑍 , 𝐹𝑍  

(v) 𝑔 𝒫𝑋𝑍, 𝑃𝑍 = 2𝑔(𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍)  

for all 𝑋, 𝑌 ∈ Γ 𝑇𝑁𝑇  and 𝑍 ∈ Γ 𝑇𝑁𝜃 . 

 

Proof. Consider 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  be a warped product semi-slant submanifold of a nearly quasi 

Sasakian manifold 𝑀 . We assume that the structure vector field 𝜉 is tangent to 𝑁𝑇, then for any 

𝑍 ∈ Γ 𝑇𝑁⊥ , we have 

               ∇ 𝜉𝜙 𝑍 +  ∇ 𝑍𝜙 𝜉 = 𝐴𝑍  

Using (2.4), we obtain                 

            −∇ 𝜉𝜙𝑍 + 𝜙 ∇ 𝜉𝑍 + 𝜙 ∇ 𝑍𝜉 = −𝐴𝑍 

Then from Lemma 2.1(ii) and (2.5), we derive  

            − ∇ 𝜉𝜙𝑍 + 2𝜙𝑕  𝑍, 𝜉 + 2𝜙 𝜉 𝑙𝑛𝑓 𝑍 = −𝐴𝑍  

 Taking inner product with 𝜙𝑍, we have 

            𝜉 ln 𝑓  𝑍 2 = 0 ⇒   𝜉 𝑙𝑛𝑓 = 0  
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This means that either 𝑀 is invariant or 𝜉 ln 𝑓 = 0, which proves (i). Now, we consider 𝑋, 𝑌 ∈
Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃), the we have 

         𝑔 𝑕  𝑋, 𝑌 , 𝐹𝑍 = 𝑔 ∇ 𝑋𝑌, 𝐹𝑍 = −𝑔 𝑌 , ∇ 𝑋𝐹𝑍   

with (2.7) and (2.9), we obtain 

         𝑔 𝑕  𝑋, 𝑌 , 𝐹𝑍 = −𝑔(𝑌,  ∇ 𝑋𝜙 𝑍) − 𝑔 𝑌, 𝜙∇ 𝑋𝑍 + 𝑔 𝑌, ∇ 𝑋𝑃𝑍   

Then from (2.2), (2.4) and Lemma 3.1 (ii), the second and last terms of right hand side vanish 

identically and hence by (2.10), we derive 

          𝑔 𝑕  𝑋, 𝑌 , 𝐹𝑍 = −𝑔 𝑌, 𝒫𝑋𝑍   

Thus, on using the property 𝑝3 (i), we get 

          𝑔 𝑕  𝑋, 𝑌 , 𝐹𝑍 = 𝑔(𝒫𝑋𝑌, 𝑍)  

Hence, by skew-symmetry of 𝒫𝑋𝑌 and symmetry of 𝑕(𝑋, 𝑌), we get the second part of the 
lemma. 

For the third part, consider for any 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃), we have 

         𝑔 𝑕  𝑃𝑋, 𝑌 , 𝐹𝑍 = 𝑔 ∇ 𝑍𝑃𝑋, 𝜙𝑍 − 𝑃𝑍   

                                     = −𝑔 𝑃𝑋, ∇ 𝑍𝜙𝑍 − 𝑔 ∇ 𝑍𝑃𝑋, 𝑃𝑍   

From (2.4), (2.9) and Lemma 3.1 (ii), the above equation is reduced to 

         𝑔 𝑕  𝑃𝑋, 𝑌 , 𝐹𝑍 = −𝑔 𝑃𝑋,  ∇ 𝑍𝜙 𝑍 − 𝑔 𝑃𝑋, 𝜙 ∇ 𝑍𝑍 − 𝑃𝑋 ln 𝑓 𝑔(𝑍, 𝑃𝑍) 

On using the structure equation of a nearly quasi Sasakian manifold and the fact that 𝑍 and 𝑃𝑍 
are orthogonal vector fields, the first and last terms of the right hand side are identically zero. 

Then from (2.2) we derive 

         𝑔 𝑕  𝑃𝑋, 𝑌 , 𝐹𝑍 = 𝑔 𝜙2𝑋, ∇ 𝑍𝑍  

Using (2.1), we get 

        𝑔 𝑕  𝑃𝑋, 𝑌 , 𝐹𝑍 = −𝑔 𝑋, ∇ 𝑍𝑍 + 𝜂 𝑋 𝑔 𝜉 , ∇ 𝑍𝑍   

By the property of Riemannian connection ∇ , the above equation takes the form 

        𝑔 𝑕  𝑃𝑋, 𝑌 , 𝐹𝑍 = 𝑔 ∇ 𝑍𝑍, 𝑋 − 𝜂 𝑋 𝑔 ∇ 𝑍𝜉 , 𝑍  

Then from (2.4), Proposition 2.1 and Lemma 3.1 (ii), we obtain 

        𝑔 𝑕  𝑃𝑋, 𝑌 , 𝐹𝑍 =  𝑋 ln 𝑓  𝑍 2  

which is third part of the lemma. For the other parts, consider 

        𝑔 ∇𝑃𝑍𝜙𝑋, 𝑍 = 𝑔 ∇ 𝑃𝑍𝜙𝑋, 𝑍   

for any 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃). Using the property of Riemannian connection ∇  and 
Lemma 3.1 (ii), we get 

       𝜙𝑋 ln 𝑓 𝑔 𝑍, 𝑃𝑍 = −𝑔(𝜙𝑋, ∇ 𝑃𝑍𝑍) 

Using the fact that 𝑍 and 𝑃𝑍 are orthogonal vector fields, the above equation reduces to 

       𝑔 𝑋, 𝜙∇ 𝑃𝑍𝑍 = 0  
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Then form (2.9), we derive 

        0 = 𝑔 𝑋, ∇ 𝑃𝑍𝜙𝑍 − 𝑔 𝑋,  ∇ 𝑃𝑍𝜙 𝑍  

By (2.7) and (2.10), we obtain   

        0 = 𝑔 𝑋 , ∇ 𝑃𝑍𝑃𝑍 + 𝑔 𝑋, ∇ 𝑃𝑍𝐹𝑍  − 𝑔 𝑋, 𝒫𝑃𝑍𝑍   

Using (2.4), (2.5) and (2.19) (a), we get 

        0 = −𝑔 ∇𝑃𝑍𝑋 , 𝑃𝑍 − 𝑔 𝑋, 𝐴𝐹𝑍𝑃𝑍  + 𝑔 𝑋, 𝒫𝑍𝑃𝑍   

Then from the property 𝑝3 (i) and Lemma 3.1 (ii), we obtain 

        0 = − 𝑋 ln 𝑓 𝑔 𝑃𝑍, 𝑃𝑍 − 𝑔 𝑕 𝑋, 𝑃𝑍 , 𝐹𝑍 − 𝑔(𝒫𝑍𝑋, 𝑃𝑍)  

Again with (2.19) (a), (2.21) and the fact that 𝜉 is tangent to 𝑁𝑇, we derive 

       𝑔 𝒫𝑋𝑍, 𝑃𝑍 =  𝑋 𝑙𝑛𝑓 𝑐𝑜𝑠2𝜃 𝑍 2 + 𝑔(𝑕 𝑋, 𝑃𝑍 , 𝐹𝑍)                                                (3.4) 

Interchanging 𝑍 by 𝑃𝑍 and then using (2.20), (2.21) and the fact that 𝜉 is tangent to 𝑁𝑇, we 
obtain 

            −𝑐𝑜𝑠2𝜃 𝑔 𝒫𝑋𝑃𝑍, 𝑍 =  𝑋 ln 𝑓  𝑐𝑜𝑠4𝜃  𝑍 2 − 𝑐𝑜𝑠2𝜃 𝑔(𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍)  

By the property 𝑝3 (i), the above equation will be 

             𝒫𝑋𝑍, 𝑃𝑍 =  𝑋 ln 𝑓  𝑐𝑜𝑠2𝜃  𝑍 2 − 𝑔(𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍)                                            (3.5) 

Thus, the fourth part of the lemma follows from (3.4) and (3.5). Now, for the part (v), we 

consider  

        𝑔 𝑕  𝑋, 𝑃𝑌 , 𝐹𝑍 = 𝑔 ∇ 𝑋𝑃𝑍, 𝐹𝑍   

for any 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃). Using the property of Riemannian connection 𝛻  and then 
using (2.7), we have 

        𝑔 𝑕  𝑋, 𝑃𝑌 , 𝐹𝑍 = −𝑔 𝑃𝑍, ∇ 𝑋𝜙𝑍 + 𝑔 𝑃𝑍, ∇ 𝑋𝑃𝑍   

Using (2.9), Lemma 3.1 (ii), (2.21) and the fact that 𝜉 is tangent to 𝑁𝑇, we obtain 

        𝑔 𝑕  𝑋, 𝑃𝑌 , 𝐹𝑍 = −𝑔 𝑃𝑍, 𝜙∇ 𝑋𝑍 − 𝑔 𝑃𝑍,  ∇ 𝑋𝜙 𝑍 +  𝑋 ln 𝑓 𝑐𝑜𝑠2𝜃  𝑍 2 

Then from (2.2) and (2.10), we get 

        𝑔 𝑕  𝑋, 𝑃𝑌 , 𝐹𝑍 = 𝑔 𝜙𝑃𝑍, ∇ 𝑋𝑍 − 𝑔 𝑃𝑍, 𝒫𝑋𝑍 +  𝑋 ln 𝑓 𝑐𝑜𝑠2𝜃  𝑍 2 

Using (2.4) and (2.7), we derive 

        𝑔 𝑕  𝑋, 𝑃𝑌 , 𝐹𝑍 = 𝑔 𝑃2𝑍, ∇𝑋𝑍 + 𝑔 𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍  

                                     −𝑔 𝑃𝑍, 𝒫𝑋𝑍 +  𝑋 𝑙𝑛𝑓 𝑐𝑜𝑠2𝜃 𝑍 2  

Again, from the fact that 𝜉 is tangent to 𝑁𝑇 and using (2.20), the above equation reduces to 

        𝑔 𝒫𝑋𝑍, 𝑃𝑍 = 𝑔 𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍 − 𝑔(𝑕 𝑋, 𝑃𝑍 , 𝐹𝑍)                                                  (3.6) 

Thus, the fifth part of the lemma follows from (3.6) and the fourth part of this lemma. This 

proves the lemma completely. 
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Theorem 3.3 If 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  be a warped product semi-slant submanifold in a nearly quasi 

Sasakian manifold 𝑀  such that 𝑁𝑇 and 𝑁𝜃  are invariant and proper slant submanifolds of 𝑀 , then 

          𝑔 𝒫𝑋𝑍, 𝑃𝑍 =
2

3
 𝑋 ln 𝑓 𝑐𝑜𝑠2𝜃 𝑍 2  

for all 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃). 

Proof. With (3.4) and (3.5), we obtain 

         2𝑔 𝒫𝑋𝑍, 𝑃𝑍 = 2 𝑋 ln 𝑓 𝑐𝑜𝑠2𝜃 𝑍 2 + 𝑔 𝑕 𝑋, 𝑃𝑍 , 𝐹𝑍 − 𝑔 𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍         (3.7) 

Then, by Lemma 3.2 (iv), we obtain 

         2𝑔 𝒫𝑋𝑍, 𝑃𝑍 = 2 𝑋 ln 𝑓 𝑐𝑜𝑠2𝜃 𝑍 2 − 2𝑔 𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍                                       (3.8) 

Thus, from Lemma 3.2 (v) and (3.8), we obtain the desire result.  

From the above theorem we have the following consequence. 

Corollary 3.1 If 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  is a warped product semi-slant submanifold of a nearly quasi 

Sasakian manifold 𝑀  is a Riemannian product of 𝑁𝑇 and 𝑁𝜃   if and only if 𝒫𝑋𝑍 ∈ Γ(𝑇𝑁𝑇), for 

any 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃). 

 

Theorem 3.4 If 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  be a warped product semi-slant submanifold in a nearly quasi 

Sasakian manifold 𝑀  such that 𝑁𝑇 and 𝑁𝜃  are invariant and proper slant submanifolds of 𝑀 , 

respectively, then 

         𝑔 𝑕 𝑋, 𝑍 , 𝐹𝑃𝑍 = −𝑔 𝑕 𝑋, 𝑃𝑍 , 𝐹𝑍  =
1

3
 𝑋 𝑙𝑛𝑓 𝑐𝑜𝑠2𝜃 𝑍 2  

for all 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃).  

Proof. The first equality is nothing but Lemma 3.2 (iv) and the second equality is directly 

followed by the equation (3.8) and Lemma 3.2 (v). 

From the above theorem we have the following corollaries. 

Corollary 3.2 Suppose 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  be a semi-slant warped product submanifold of a nearly 

quasi Sasakian manifold 𝑀 . Then 𝑀 is simply a Riemannian product of 𝑁𝑇 and 𝑁𝜃  if and only if 

𝑕(𝑋, 𝑍)  ∈ Γ(𝜇), for all 𝑋 ∈ Γ(𝑇𝑁𝑇) and 𝑍 ∈ Γ(𝑇𝑁𝜃), where 𝜇 is the invariant normal subbundle 

of 𝑇⊥𝑀. 

 

Corollary 3.3 If 𝑀  be a nearly quasi Sasakian manifold, then there do not exist a mixed geodesic 

warped product semi-slant submanifold 𝑀 = 𝑁𝑇 ×𝑓 𝑁𝜃  such that 𝑁𝑇 is invariant submanifolds 

and 𝑁𝜃  is proper slant submanifolds 𝑀 . 

From Lemma 3.2 (i), (iv) and Theorem 3.4, we obtain 

         𝑔(𝑕(𝜉, 𝑍), 𝐹𝑃𝑍)  =  𝑔(𝑕(𝜉, 𝑃𝑍), 𝐹𝑍)  =  0,                                                              (3.9) 

for any 𝑍 ∈ Γ(𝑇𝑁𝜃). 
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